Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 365
Filter
1.
Stroke ; 55(6): 1660-1671, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38660789

ABSTRACT

BACKGROUND: Activation of the acid-sensing ion channels (ASICs) by tissue acidosis, a common feature of brain ischemia, contributes to ischemic brain injury, while blockade of ASICs results in protection. Cholestane-3ß,5α,6ß-triol (Triol), a major cholesterol metabolite, has been demonstrated as an endogenous neuroprotectant; however, the mechanism underlying its neuroprotective activity remains elusive. In this study, we tested the hypothesis that inhibition of ASICs is a potential mechanism. METHODS: The whole-cell patch-clamp technique was used to examine the effect of Triol on ASICs heterogeneously expressed in Chinese hamster ovary cells and ASICs endogenously expressed in primary cultured mouse cortical neurons. Acid-induced injury of cultured mouse cortical neurons and middle cerebral artery occlusion-induced ischemic brain injury in wild-type and ASIC1 and ASIC2 knockout mice were studied to examine the protective effect of Triol. RESULTS: Triol inhibits ASICs in a subunit-dependent manner. In Chinese hamster ovary cells, it inhibits homomeric ASIC1a and ASIC3 without affecting ASIC1ß and ASIC2a. In cultured mouse cortical neurons, it inhibits homomeric ASIC1a and heteromeric ASIC1a-containing channels. The inhibition is use-dependent but voltage- and pH-independent. Structure-activity relationship analysis suggests that hydroxyls at the 5 and 6 positions of the A/B ring are critical functional groups. Triol alleviates acidosis-mediated injury of cultured mouse cortical neurons and protects against middle cerebral artery occlusion-induced brain injury in an ASIC1a-dependent manner. CONCLUSIONS: Our study identifies Triol as a novel ASIC inhibitor, which may serve as a new pharmacological tool for studying ASICs and may also be developed as a potential drug for treating stroke.


Subject(s)
Acid Sensing Ion Channels , Acidosis , Cricetulus , Mice, Knockout , Animals , Acid Sensing Ion Channels/metabolism , Acid Sensing Ion Channels/genetics , Mice , CHO Cells , Acidosis/metabolism , Acidosis/drug therapy , Brain Ischemia/metabolism , Brain Ischemia/drug therapy , Neurons/drug effects , Neurons/metabolism , Cricetinae , Neuroprotective Agents/pharmacology , Cholestanols/pharmacology , Mice, Inbred C57BL , Acid Sensing Ion Channel Blockers/pharmacology , Male , Cells, Cultured
2.
J Biochem Mol Toxicol ; 36(6): e23026, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35253313

ABSTRACT

Brassinolide is a new type of steroidal hormone with strong activities, which is well known as an efficient and low-toxicity plant growth regulator for a long time. Because steroidal hormones have a wide application prospect, brassinosteroids have been gradually explored in pharmacology and animal cells in recent decades. Brassinolide could effectively reverse the resistance of human T lymphoblastoid cell line CCRF-VCR 1000 by inhibiting the effusion of drug transported by P-glycoprotein. Brassinosteroids could also accelerate wound healing by positively eliminating inflammation and stimulating reepithelialization of the reparation stage. The occurrence of cancer is a multistep process mediated by a variety of factors. Until now, cancer has always been one group of the major diseases that threaten human health. Many studies have found that brassinosteroids have attracted a great deal of potential as an anticancer agent in the treatment of cancer cells, and most of them exert anticancer activity by inducing apoptosis in cancer cells. There are few articles on the relationship between brassinosteroids and cancer so far. Accordingly, in this article, we summarized current research about the brassinosteroids and cancers. Through the review, researchers could know more about brassinosteroids which might become a new tool for the treatment of cancer in the future, and not only a plant hormone.


Subject(s)
Brassinosteroids , Neoplasms , Animals , Brassinosteroids/pharmacology , Cholestanols/metabolism , Cholestanols/pharmacology , Neoplasms/drug therapy , Plant Growth Regulators/pharmacology
3.
J Nat Prod ; 84(5): 1507-1514, 2021 05 28.
Article in English | MEDLINE | ID: mdl-33904732

ABSTRACT

Agonism of the G protein-coupled bile acid receptor "Takeda G-protein receptor 5" (TGR5) aids in attenuating cholesterol accumulation due to atherosclerotic progression. Although mammalian bile compounds can activate TGR5, they are generally weak agonists, and more effective compounds need to be identified. In this study, two marine bile compounds (5ß-scymnol and its sulfate) were compared with mammalian bile compounds deoxycholic acid (DCA) and ursodeoxycholic acid (UDCA) using an in vitro model of TGR5 agonism. The response profiles of human embryonic kidney 293 cells (HEK293) transfected to overexpress TGR5 (HEK293-TGR5) and incubated with subcytotoxic concentrations of test compounds were compared to nontransfected HEK293 control cells using the specific calcium-binding fluorophore Fura-2AM to measure intracellular calcium [Ca2+]i release. Scymnol and scymnol sulfate caused a sustained increase in [Ca2+]i within TGR5 cells only, which was abolished by a specific inhibitor for Gαq protein (UBO-QIC). Sustained increases in [Ca2+]i were seen in both cell types with DCA exposure; this was unaffected by UBO-QIC, indicating that TGR5 activation was not involved. Exposure to UDCA did not alter [Ca2+]i, suggesting a lack of TGR5 bioactivity. These findings demonstrated that both scymnol and scymnol sulfate are novel agonists of TGR5 receptors, showing therapeutic potential for treating atherosclerosis.


Subject(s)
Aquatic Organisms/chemistry , Bile/chemistry , Biological Products/pharmacology , Cholestanols/pharmacology , Receptors, G-Protein-Coupled/agonists , Calcium/chemistry , Depsipeptides , HEK293 Cells , Humans
4.
J Parkinsons Dis ; 10(4): 1477-1491, 2020.
Article in English | MEDLINE | ID: mdl-32925094

ABSTRACT

BACKGROUND: Parkinson's disease (PD) is a progressive neurodegenerative disorder thought to be caused by accumulation of α-synuclein (α-syn) within the brain, autonomic nerves, and the enteric nervous system (ENS). Involvement of the ENS in PD often precedes the onset of the classic motor signs of PD by many years at a time when severe constipation represents a major morbidity. Studies conducted in vitro and in vivo, have shown that squalamine, a zwitterionic amphipathic aminosterol, originally isolated from the liver of the dogfish shark, effectively displaces membrane-bound α-syn. OBJECTIVE: Here we explore the electrophysiological effect of squalamine on the gastrointestinal (GI) tract of mouse models of PD engineered to express the highly aggregating A53T human α-syn mutant. METHODS: GI motility and in vivo response to oral squalamine in PD model mice and controls were assessed using an in vitro tissue motility protocol and via fecal pellet output. Vagal afferent response to squalamine was measured using extracellular mesenteric nerve recordings from the jejunum. Whole cell patch clamp was performed to measure response to squalamine in the myenteric plexus. RESULTS: Squalamine effectively restores disordered colonic motility in vivo and within minutes of local application to the bowel. We show that topical squalamine exposure to intrinsic primary afferent neurons (IPANs) of the ENS rapidly restores excitability. CONCLUSION: These observations may help to explain how squalamine may promote gut propulsive activity through local effects on IPANs in the ENS, and further support its possible utility in the treatment of constipation in patients with PD.


Subject(s)
Constipation/drug therapy , Electrophysiological Phenomena/drug effects , Enteric Nervous System/drug effects , Gastrointestinal Motility/drug effects , Myenteric Plexus/drug effects , Neurons, Afferent/drug effects , Parkinson Disease/complications , Vagus Nerve/drug effects , Animals , Cholestanols/administration & dosage , Cholestanols/pharmacology , Constipation/etiology , Disease Models, Animal , Jejunum/innervation , Mice , Mice, Transgenic , Mutant Proteins , Neurons, Afferent/cytology , Patch-Clamp Techniques , alpha-Synuclein/metabolism
5.
Cell Physiol Biochem ; 53(6): 933-947, 2019.
Article in English | MEDLINE | ID: mdl-31805226

ABSTRACT

BACKGROUND/AIMS: We showed that patho-physiological concentrations of either 7-keto-cholesterol (7-KC), or cholestane-3beta, 5alpha, 6beta-triol (TRIOL) caused the eryptotic death of human red blood cells (RBC), strictly dependent on the early production of reactive oxygen species (ROS). The goal of the current study was to assess the contribution of the erythrocyte ROS-generating enzymes, NADPH oxidase (RBC-NOX), nitric oxide synthase (RBC-NOS) and xanthine oxido-reductase (XOR) to the oxysterol-dependent eryptosis and pertinent activation pathways. METHODS: Phosphatidylserine exposure at the cell surface was estimated from annexin-V-binding, reactive oxygen/nitrogen species (RONS) and nitric oxide formation from 2',7'-dichloro-dihydrofluorescein (DCF-DA) and 4-amino-5-methylamino-2',7'-difluorofluorescein diacetate (DAF-FM DA) -dependent fluorescence, respectively; Akt1, phospho-NOS3 Ser1177, and PKCζ from Western blot analysis. The activity of individual 7-KC (7 µM) and TRIOL (2, µM) on ROS-generating enzymes and relevant activation pathways was assayed in the presence of Diphenylene iodonium chloride (DPI), N-nitro-L-arginine methyl ester (L-NAME), allopurinol, NSC23766 and LY294002, inhibitors in this order of RBC-NOX, RBC-NOS, XOR and upstream regulatory proteins Rac GTPase and phosphoinositide3 Kinase (PI3K); hemoglobin oxidation from spectrophotometric analysis. RESULTS: RBC-NOX was the target of 7-KC, through a signaling including Rac GTPase and PKCζ, whereas TRIOL caused activation of RBC-NOS according to the pathway PI3K/Akt, with the concurrent activity of a Rac-GTPase. In concomitance with the TRIOL-induced .NO production, formation of methemoglobin with global loss of heme were observed, ascribable to nitrosative stress. XOR, activated after modification of the redox environment by either RBC-NOX or RBC-NOS activity, concurred to the overall oxidative/nitrosative stress by either oxysterols. When 7-KC and TRIOL were combined, they acted independently and their effect on ROS/RONS production and PS exposure appeared the result of the effects of the oxysterols on RBC-NOX and RBC-NOS. CONCLUSION: Eryptosis of human RBCs may be caused by either 7-KC or TRIOL by oxidative/nitrosative stress through distinct signaling cascades activating RBC-NOX and RBC-NOS, respectively, with the complementary activity of XOR; when combined, the oxysterols act independently and both concur to the final eryptotic effect.


Subject(s)
Cholestanols/pharmacology , Eryptosis/drug effects , Ketocholesterols/pharmacology , NADPH Oxidases/metabolism , Nitric Oxide Synthase/metabolism , Erythrocytes/cytology , Erythrocytes/metabolism , Hemoglobins/chemistry , Humans , Oxidation-Reduction , Phosphatidylinositol 3-Kinases/chemistry , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects , rac GTP-Binding Proteins/antagonists & inhibitors , rac GTP-Binding Proteins/metabolism
6.
J Steroid Biochem Mol Biol ; 192: 105390, 2019 09.
Article in English | MEDLINE | ID: mdl-31170473

ABSTRACT

Dendrogenin A (DDA) is a tumor suppressor mammalian cholesterol-derived metabolite and a new class of ligand of the Liver X receptor (LXR), which displays tumor cell differentiation. In human MCF7 breast adenocarcinoma cells, DDA-induced cell differentiation was associated with an increased accumulation of neutral lipids and proteins found in milk indicating that DDA re-activates some functions of lactating cells. Active iodide transport occurs in the normal lactating mammary cells through the sodium/iodide symporter (NIS) and iodide (I) is secreted into milk to be used by the nursing newborn for thyroid hormones biosynthesis. In the present study, we assessed whether DDA may induce other characteristic of lactating cells such as NIS expression and iodine uptake in MCF7 breast cancer cells and extended this study to the papillary B-CPAP and undifferentiated anaplastic 8505c thyroid cancer cells. Moreover, we evaluated DDA impact on the expression of thyroid specific proteins involved in thyroid hormone biogenesis. We report here that DDA induces NIS expression in MCF7 cells and significantly increases the uptake of 131-I by acting through the LXR. In addition, DDA induces phenotypic, molecular and functional characteristics of redifferentiation in the two human thyroid carcinoma cell lines and the uptake of 131-I in the undifferentiated 8505c cells was associated with a strong expression of all the specific proteins involved in thyroid hormone biosynthesis, TSH receptor, thyroperoxidase and thyroglobulin. 131-I incorporation in the 8505c cells was stimulated by DDA as well as by the synthetic LXR ligand, GW3965. Together these data show that the re-differentiation of breast and thyroid cancer cells by DDA, is associated with the recovery of functional NIS expression and involves an LXR-dependent mechanism. These results open new avenues of research for the diagnosis of thyroid cancers as well as the development of new therapeutic approaches for radioiodine refractory thyroid cancers.


Subject(s)
Adenocarcinoma/drug therapy , Breast Neoplasms/drug therapy , Cholestanols/pharmacology , Imidazoles/pharmacology , Iodine Radioisotopes/metabolism , Thyroid Neoplasms/drug therapy , Adenocarcinoma/metabolism , Adenocarcinoma/pathology , Animals , Antineoplastic Agents/pharmacology , Apoptosis , Autoantigens/metabolism , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Cycle , Cell Proliferation , Female , Humans , Iodide Peroxidase/metabolism , Iron-Binding Proteins/metabolism , Mice , Mice, Nude , Receptors, Thyrotropin/metabolism , Symporters/metabolism , Thyroglobulin/metabolism , Thyroid Neoplasms/metabolism , Thyroid Neoplasms/pathology , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
7.
Ecotoxicol Environ Saf ; 179: 50-61, 2019 Sep 15.
Article in English | MEDLINE | ID: mdl-31026750

ABSTRACT

In the current investigation, we studied role of castasterone (CS), (a bioactive brassinosteroid) in Brassica juncea grown under imidacloprid (IMI) stress. We observed that CS-seed treatment resulted in the recovery of seedling growth under IMI toxicity. Seed treatment with CS, significantly enhanced the contents of pigments like chlorophylls, carotenoids, anthocyanins and xanthophylls under stress. Oxidative stress generated by the production of reactive oxygen species (ROS) like hydrogen peroxide and superoxide anion, was reduced after CS treatment under IMI toxicity. Antioxidative defense system got activated after CS-seed treatment, resulting in the increased activities of enzymes. Moreover, CS-seed treatment under IMI stress also stimulated the biosynthesis of organic acids of Krebs cycle (citrate, succinate, fumarate and malate) and phenolics. We also noticed that CS is also involved in the regulation of the gene expression of some key enzymes involved in pigment metabolism (CHLASE, PSY, CHS), carbon fixation (RUBISCO), Krebs cycle (CS, SUCLG1, SDH, FH), ROS generation (RBO), antioxidative enzymes (SOD, CAT, POD, DHAR, GR, GST), phenolic biosynthesis (PAL) and pesticide detoxification system (CXE, P450, NADH). This modulated gene expression after CS-treatment activated the insecticide detoxification, leading to the reduction of IMI residues. Data analysis using multivariate statistical technique i.e. multiple linear regression, also supported the fact that CS can efficiently reduce IMI induced phytotoxicity in B. juncea.


Subject(s)
Brassinosteroids/pharmacology , Cholestanols/pharmacology , Insecticides/toxicity , Mustard Plant/drug effects , Neonicotinoids/toxicity , Nitro Compounds/toxicity , Oxidative Stress/drug effects , Antioxidants/metabolism , Carotenoids/metabolism , Chlorophyll/metabolism , Inactivation, Metabolic , Mustard Plant/metabolism , Reactive Oxygen Species/metabolism , Seedlings/drug effects , Seedlings/metabolism , Seeds/drug effects , Seeds/metabolism
8.
Cancer Lett ; 449: 66-75, 2019 05 01.
Article in English | MEDLINE | ID: mdl-30771431

ABSTRACT

Angiogenesis is critical for breast cancer progression. Overexpression of HER-2/neu receptors occur in 25-30% of breast cancers, and treatment with trastuzumab inhibits HER-2-overexpressing tumor growth. Notably, HER-2-mediated signaling enhances vascular endothelial growth factor (VEGF) secretion to increase tumor-associated angiogenesis. Squalamine (aminosterol compound) suppresses VEGF-induced activation of kinases in vascular endothelial cells and inhibits tumor-associated angiogenesis. We assessed antitumor effects of squalamine either alone or with trastuzumab in nude mice bearing breast tumor xenografts without (MCF-7) or with HER2-overexpression (MCF-7/HER-2). Squalamine alone inhibited progression of MCF-7 tumors lacking HER2 overexpression, and squalamine combined with trastuzumab elicited marked inhibition of MCF-7/HER2 growth exceeding that of trastuzumab alone. MCF-7/HER-2 cells secrete higher levels of VEGF than MCF-7 cells, but squalamine elicited no growth inhibition of either MCF-7/HER-2 or MCF-7 cells in vitro. However, squalamine did stop growth of human umbilical vein endothelial cells (HUVECs) and reduced VEGF-induced endothelial tube-like formations in vitro. These effects correlated with blockade of focal adhesion kinase phosphorylation and stress fiber assembly in HUVECs. Thus, squalamine effectively inhibits growth of breast cancers with or without HER-2-overexpression, an effect due in part to blockade of tumor-associated angiogenesis.


Subject(s)
Angiogenesis Inhibitors/administration & dosage , Breast Neoplasms/drug therapy , Vascular Endothelial Growth Factor A/metabolism , Angiogenesis Inhibitors/pharmacology , Animals , Breast Neoplasms/metabolism , Cell Proliferation/drug effects , Cholestanols/administration & dosage , Cholestanols/pharmacology , Female , Focal Adhesion Kinase 1/metabolism , Gene Expression Regulation, Neoplastic/drug effects , Human Umbilical Vein Endothelial Cells , Humans , MCF-7 Cells , Mice , Phosphorylation/drug effects , Receptor, ErbB-2/metabolism , Signal Transduction/drug effects , Trastuzumab/administration & dosage , Trastuzumab/pharmacology , Xenograft Model Antitumor Assays
9.
Molecules ; 24(2)2019 Jan 12.
Article in English | MEDLINE | ID: mdl-30642032

ABSTRACT

Treatment of animal African trypanosomiasis (AAT) requires urgent need for safe, potent and affordable drugs and this has necessitated this study. We investigated the trypanocidal activities and mode of action of selected 3-aminosteroids against Trypanosoma brucei brucei. The in vitro activity of selected compounds of this series against T. congolense (Savannah-type, IL3000), T. b. brucei (bloodstream trypomastigote, Lister strain 427 wild-type (427WT)) and various multi-drug resistant cell lines was assessed using a resazurin-based cell viability assay. Studies on mode of antitrypanosomal activity of some selected 3-aminosteroids against Tbb 427WT were also carried out. The tested compounds mostly showed moderate-to-low in vitro activities and low selectivity to mammalian cells. Interestingly, a certain aminosteroid, holarrhetine (10, IC50 = 0.045 ± 0.03 µM), was 2 times more potent against T. congolense than the standard veterinary drug, diminazene aceturate, and 10 times more potent than the control trypanocide, pentamidine, and displayed an excellent in vitro selectivity index of 2130 over L6 myoblasts. All multi-drug resistant strains of T. b. brucei tested were not significantly cross-resistant with the purified compounds. The growth pattern of Tbb 427WT on long and limited exposure time revealed gradual but irrecoverable growth arrest at ≥ IC50 concentrations of 3-aminosteroids. Trypanocidal action was not associated with membrane permeabilization of trypanosome cells but instead with mitochondrial membrane depolarization, reduced adenosine triphosphate (ATP) levels and G2/M cell cycle arrest which appear to be the result of mitochondrial accumulation of the aminosteroids. These findings provided insights for further development of this new and promising class of trypanocide against African trypanosomes.


Subject(s)
Cholestanols/pharmacology , Drug Resistance , Trypanocidal Agents/pharmacology , Trypanosoma brucei brucei/drug effects , Adenosine Triphosphate/metabolism , Animals , Cell Cycle/drug effects , Cholestanols/chemistry , Inhibitory Concentration 50 , Intracellular Space/metabolism , Membrane Potential, Mitochondrial/drug effects , Molecular Structure , Trypanocidal Agents/chemistry , Trypanosomiasis, African/drug therapy
10.
Int J Antimicrob Agents ; 53(3): 337-342, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30423343

ABSTRACT

Squalamine is a natural polycationic aminosterol extracted from the shark Squalus acanthias. Squalamine displays remarkable efficacy against antimicrobial-resistant Gram-negative and Gram-positive bacteria. Its membranolytic activity and low cytotoxicity make squalamine one of the most promising agents to fight nosocomial pathogens such as Acinetobacter baumannii. In the context of chronic diseases and therapeutic failures associated with this pathogen, the presence of dormant cells, i.e. persisters and viable but non-culturable cells (VBNCs), highly tolerant to antimicrobial compounds is problematic. The aim of this study was to investigate the antibacterial activity of squalamine against this bacterial population of A. baumannii. Bacterial dormancy was induced by cold shock and nutrient starvation in the presence of high doses of either colistin, ciprofloxacin or squalamine. Persisters and VBNCs induced by these treatments were then challenged with 100 mg/L squalamine. The efficacy of each treatment was determined by evaluating culturability on agar medium, membrane integrity (LIVE/DEAD®BacLightTM staining) and respiratory activity (BacLightTM RedoxSensorTM CTC staining) of bacteria. A. baumannii ATCC 17978 generated persisters as well as VBNCs in the presence of high doses of ciprofloxacin but not colistin or squalamine. Squalamine at 100 mg/L (below its haemolytic concentration) was able to kill dormant cells. Squalamine did not induce persister cell or VBNC formation in A. baumannii ATCC 17978. Interestingly, squalamine was significantly active against this type of dormant population generated by ciprofloxacin, making it a very promising anti-persister agent.


Subject(s)
Acinetobacter/drug effects , Anti-Bacterial Agents/pharmacology , Microbial Viability/drug effects , Cholestanols/pharmacology , Microbial Sensitivity Tests
11.
FASEB J ; 33(2): 2809-2822, 2019 02.
Article in English | MEDLINE | ID: mdl-30303744

ABSTRACT

Nonalcoholic steatohepatitis (NASH) is associated with an increased risk of developing cardiovascular complications and mortality, suggesting that treatment of NASH might benefit from combined approaches that target the liver and the cardiovascular components of NASH. Using genetic and pharmacologic approaches, we show that G protein-coupled bile acid-activated receptor 1 (GPBAR1) agonism reverses liver and vascular damage in mouse models of NASH. NASH is associated with accelerated vascular inflammation representing an independent risk factor for development of cardiovascular diseases and cardiovascular-related mortality. GPBAR1, also known as TGR5, is a G protein-coupled receptor for secondary bile acids that reduces inflammation and promotes energy expenditure. Using genetic and pharmacologic approaches, we investigated whether GPBAR1 agonism by 6ß-ethyl-3α,7ß-dihydroxy-5ß-cholan-24-ol (BAR501) reverses liver and vascular damage induced by exposure to a diet enriched in fat and fructose (HFD-F). Treating HFD-F mice with BAR501 reversed liver injury and promoted the browning of white adipose tissue in a Gpbar1-dependent manner. Feeding HFD-F resulted in vascular damage, as shown by the increased aorta intima-media thickness and increased expression of inflammatory genes (IL-6,TNF-α, iNOS, and F4/80) and adhesion molecules (VCAM, intercellular adhesion molecule-1, and endothelial selectin) in the aorta, while reducing the expression of genes involved in NO and hydrogen sulfide generation, severely altering vasomotor activities of aortic rings in an ex vivo assay. BAR501 reversed this pattern in a Gpbar1-dependent manner, highlighting a potential role for GPBAR1 agonism in treating the liver and vascular component of NASH.-Carino, A., Marchianò, S., Biagioli, M., Bucci, M., Vellecco, V., Brancaleone, V., Fiorucci, C., Zampella, A., Monti, M. C., Distrutti, E., Fiorucci, S. Agonism for the bile acid receptor GPBAR1 reverses liver and vascular damage in a mouse model of steatohepatitis.


Subject(s)
Cholestanols/pharmacology , Disease Models, Animal , Inflammation/prevention & control , Liver Diseases/prevention & control , Non-alcoholic Fatty Liver Disease/physiopathology , Receptors, G-Protein-Coupled/agonists , Vascular Diseases/prevention & control , Animals , Diet, High-Fat/adverse effects , Inflammation/etiology , Inflammation/metabolism , Inflammation/pathology , Liver Diseases/etiology , Liver Diseases/metabolism , Liver Diseases/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Non-alcoholic Fatty Liver Disease/etiology , Receptors, G-Protein-Coupled/physiology , Vascular Diseases/etiology , Vascular Diseases/metabolism , Vascular Diseases/pathology
12.
Biochem Pharmacol ; 153: 75-81, 2018 07.
Article in English | MEDLINE | ID: mdl-29409832

ABSTRACT

Dendrogenin A (DDA) is a mammalian cholesterol metabolite recently identified that displays tumor suppressor properties. The discovery of DDA has revealed the existence in mammals of a new metabolic branch in the cholesterol pathway centered on 5,6α-epoxycholesterol and bridging cholesterol metabolism with histamine metabolism. Metabolic studies showed a drop in DDA levels in cancer cells and tumors compared to normal cells, suggesting a link between DDA metabolism deregulation and oncogenesis. Importantly, complementation of cancer cells with DDA induced 1) cancer cell re-differentiation, 2) blockade of 6-oxo-cholestan-3ß,5α-diol (OCDO) production, an endogenous tumor promoter and 3) lethal autophagy in tumors. Importantly, by binding the liver X receptor (LXR), DDA activates the expression of genes controlling autophagy. These genes include NR4A1, NR4A3, LC3 and TFEB. The canonical LXR ligands 22(R)hydroxycholesterol, TO901317 and GW3965 did not induce these effects indicating that DDA delineates a new class of selective LXR modulator (SLiM). The induction of lethal autophagy by DDA was associated with the accumulation in cancer cells of lysosomes and of the pro-lysosomal cholesterol precursor zymostenol due to the inhibition of the 3ß-hydroxysteroid-Δ8Δ7-isomerase enzyme (D8D7I). The anti-cancer efficacy of DDA was established on different mouse and human cancers such as breast cancers, melanoma and acute myeloid leukemia, including patient derived xenografts, and did not discriminate bulk cancer cells from cancer cell progenitors. Together these data highlight that the mammalian metabolite DDA is a promising anticancer compound with a broad range of anticancer applications. In addition, DDA and LXR are new actors in the transcriptional control of autophagy and DDA being a "first in line" driver of lethal autophagy in cancers via the LXR.


Subject(s)
Antineoplastic Agents/metabolism , Autophagy/physiology , Cholestanols/metabolism , Cholesterol/metabolism , Imidazoles/metabolism , Liver X Receptors/metabolism , Neoplasms/metabolism , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Autophagy/drug effects , Cell Line, Tumor , Cholestanols/pharmacology , Cholestanols/therapeutic use , Cholesterol/pharmacology , Cholesterol/therapeutic use , Humans , Imidazoles/pharmacology , Imidazoles/therapeutic use , Neoplasms/drug therapy
13.
Ecotoxicol Environ Saf ; 147: 725-734, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28942275

ABSTRACT

The aim of the present study was to explore the effect of exogenous application of castasterone (CS) on physiologic and biochemical responses in Brassica juncea seedlings under copper (Cu) stress. Seeds were pre-soaked in different concentrations of CS and grown for 7 days under various levels of Cu. The exposure of B. juncea to higher levels of Cu led to decrease of morphologic parameters, with partial recovery of length and fresh weight in the CS pre-treated seedlings. Metal content was high in both roots and shoots under Cu exposure while the CS pre-treatment reduced the metal uptake. Accumulation of hydrogen peroxide (H2O2) and superoxide anion radical (O2-) were chosen as stress biomarker and higher levels of H2O2 (88.89%) and O2- (62.11%) showed the oxidative stress in metal treated B. juncea seedlings, however, CS pre-treatment reduced ROS accumulation in Cu-exposed seedlings. The Cu exposures lead to enhance the plant's enzymatic and non-enzymatic antioxidant system. It was observed that enzymatic activities of ascorbate peroxidase (APOX), dehydroascorbate reductase (DHAR), and glutathione reductase (GR), glutathione perxoidase (GPOX) and gultrathione-s-transferase increased while activity of monodehydroascorbate reductase (MDHAR) decreased under Cu stress. The pre-treatment with CS positively affected the activities of enzymes. RT-PCR analysis showed that mRNA transcript levels were correlated with total enzymatic activity of DHAR, GR, GST and GSH. Increase in the gene expression of DHAR (1.85 folds), GR (3.24 folds), GST-1 (2.00 folds) and GSH-S (3.18 folds) was noticed with CS pre-treatment. Overall, the present study shows that Cu exposure induced severe oxidative stress in B. juncea plants and exogenous application of CS improved antioxidative defense system by modulating the ascorbate-glutathione cycle and amino acid metabolism.


Subject(s)
Antioxidants/metabolism , Cholestanols/pharmacology , Copper/toxicity , Mustard Plant/drug effects , Oxidative Stress/drug effects , Soil Pollutants/toxicity , Amino Acids/metabolism , Copper/metabolism , Dose-Response Relationship, Drug , Gene Expression/drug effects , Hydrogen Peroxide/metabolism , Mustard Plant/enzymology , Mustard Plant/genetics , Soil Pollutants/metabolism
14.
Nat Commun ; 8(1): 1903, 2017 12 04.
Article in English | MEDLINE | ID: mdl-29199269

ABSTRACT

Dendrogenin A (DDA) is a newly discovered cholesterol metabolite with tumor suppressor properties. Here, we explored its efficacy and mechanism of cell death in melanoma and acute myeloid leukemia (AML). We found that DDA induced lethal autophagy in vitro and in vivo, including primary AML patient samples, independently of melanoma Braf status or AML molecular and cytogenetic classifications. DDA is a partial agonist on liver-X-receptor (LXR) increasing Nur77, Nor1, and LC3 expression leading to autolysosome formation. Moreover, DDA inhibited the cholesterol biosynthesizing enzyme 3ß-hydroxysterol-Δ8,7-isomerase (D8D7I) leading to sterol accumulation and cooperating in autophagy induction. This mechanism of death was not observed with other LXR ligands or D8D7I inhibitors establishing DDA selectivity. The potent anti-tumor activity of DDA, its original mechanism of action and its low toxicity support its clinical evaluation. More generally, this study reveals that DDA can direct control a nuclear receptor to trigger lethal autophagy in cancers.


Subject(s)
Antineoplastic Agents/pharmacology , Autophagy/drug effects , Cholestanols/pharmacology , Imidazoles/pharmacology , Leukemia, Myeloid, Acute , Liver X Receptors/drug effects , Melanoma , Animals , Cell Death/drug effects , Cell Line, Tumor , Drug Partial Agonism , Gene Expression/drug effects , HEK293 Cells , HL-60 Cells , Humans , In Vitro Techniques , Liver X Receptors/metabolism , Melanoma, Experimental , Membrane Transport Proteins/drug effects , Membrane Transport Proteins/genetics , Mice , Microtubule-Associated Proteins/drug effects , Microtubule-Associated Proteins/genetics , Nuclear Receptor Subfamily 4, Group A, Member 1/drug effects , Nuclear Receptor Subfamily 4, Group A, Member 1/genetics
15.
Proc Natl Acad Sci U S A ; 114(46): 12309-12314, 2017 11 14.
Article in English | MEDLINE | ID: mdl-29087309

ABSTRACT

G protein-coupled receptors (GPCRs) are considered to function primarily at the plasma membrane, where they interact with extracellular ligands and couple to G proteins that transmit intracellular signals. Consequently, therapeutic drugs are designed to target GPCRs at the plasma membrane. Activated GPCRs undergo clathrin-dependent endocytosis. Whether GPCRs in endosomes control pathophysiological processes in vivo and are therapeutic targets remains uncertain. We investigated the contribution of endosomal signaling of the calcitonin receptor-like receptor (CLR) to pain transmission. Calcitonin gene-related peptide (CGRP) stimulated CLR endocytosis and activated protein kinase C (PKC) in the cytosol and extracellular signal regulated kinase (ERK) in the cytosol and nucleus. Inhibitors of clathrin and dynamin prevented CLR endocytosis and activation of cytosolic PKC and nuclear ERK, which derive from endosomal CLR. A cholestanol-conjugated antagonist, CGRP8-37, accumulated in CLR-containing endosomes and selectively inhibited CLR signaling in endosomes. CGRP caused sustained excitation of neurons in slices of rat spinal cord. Inhibitors of dynamin, ERK, and PKC suppressed persistent neuronal excitation. CGRP8-37-cholestanol, but not unconjugated CGRP8-37, prevented sustained neuronal excitation. When injected intrathecally to mice, CGRP8-37-cholestanol inhibited nociceptive responses to intraplantar injection of capsaicin, formalin, or complete Freund's adjuvant more effectively than unconjugated CGRP8-37 Our results show that CLR signals from endosomes to control pain transmission and identify CLR in endosomes as a therapeutic target for pain. Thus, GPCRs function not only at the plasma membrane but also in endosomes to control complex processes in vivo. Endosomal GPCRs are a drug target that deserve further attention.


Subject(s)
Calcitonin Receptor-Like Protein/genetics , Endocytosis/drug effects , Endosomes/metabolism , Nociception/physiology , Pain/physiopathology , Synaptic Transmission/drug effects , Adrenergic Antagonists/pharmacology , Animals , Calcitonin Gene-Related Peptide/pharmacology , Calcitonin Receptor-Like Protein/antagonists & inhibitors , Calcitonin Receptor-Like Protein/metabolism , Capsaicin/antagonists & inhibitors , Capsaicin/pharmacology , Cholestanols/pharmacology , Clathrin/antagonists & inhibitors , Clathrin/genetics , Clathrin/metabolism , Dynamins/genetics , Dynamins/metabolism , Endosomes/drug effects , Formaldehyde/antagonists & inhibitors , Formaldehyde/pharmacology , Freund's Adjuvant/antagonists & inhibitors , Freund's Adjuvant/pharmacology , Gene Expression Regulation , Injections, Spinal , Male , Mice , Microtomy , Mitogen-Activated Protein Kinase 1/genetics , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/genetics , Mitogen-Activated Protein Kinase 3/metabolism , Nociception/drug effects , Pain/chemically induced , Pain/genetics , Pain/prevention & control , Peptide Fragments/pharmacology , Protein Kinase C/genetics , Protein Kinase C/metabolism , Rats , Spinal Cord/cytology , Spinal Cord/drug effects , Spinal Cord/metabolism , Tissue Culture Techniques
16.
Sci Rep ; 7(1): 13689, 2017 10 20.
Article in English | MEDLINE | ID: mdl-29057935

ABSTRACT

Gpbar1 is a bile acid activated receptor for secondary bile acids. Here we have investigated the mechanistic role of Gpbar1 in the regulation of adipose tissues functionality in a murine model of steatohepatitis (NASH). Feeding wild type and Gpbar1-/- mice with a high fat diet-fructose (HFD-F) lead to development of NASH-like features. Treating HFD-F mice with 6ß-ethyl-3a,7b-dihydroxy-5b-cholan-24-ol (BAR501), a selective Gpbar1-ligand, reversed insulin resistance and histologic features of NASH, increased the weight of epWAT and BAT functionality and promoted energy expenditure and the browning of epWAT as assessed by measuring expression of Ucp1 and Pgc-1α. The beneficial effects of BAR501 were lost in Gpbar1-/- mice. In vitro, BAR501 promoted the browning of 3T3-L1 cells a pre-adipocyte cell line and recruitment of CREB to the promoter of Pgc-1α. In conclusion, Gpbar1 agonism ameliorates liver histology in a rodent model of NASH and promotes the browning of white adipose tissue.


Subject(s)
Adipose Tissue, Brown/metabolism , Adipose Tissue, White/metabolism , Fatty Liver/drug therapy , Fatty Liver/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Receptors, G-Protein-Coupled/agonists , 3T3 Cells , Adipose Tissue, Brown/drug effects , Adipose Tissue, Brown/pathology , Adipose Tissue, White/drug effects , Adipose Tissue, White/pathology , Animals , Cholestanols/pharmacology , Cyclic AMP Response Element-Binding Protein/metabolism , Diet, High-Fat , Disease Models, Animal , Fatty Liver/pathology , Fructose , Insulin Resistance/physiology , Liver/drug effects , Liver/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Promoter Regions, Genetic , Protective Agents/pharmacology , Random Allocation , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism
17.
Ecotoxicol Environ Saf ; 145: 466-475, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28780445

ABSTRACT

Cadmium(II) toxicity is a serious environmental issue warranting effective measures for its mitigation. In the present study, ameliorative effects of a bioactive brassinosteroid, castasterone (CS) and low molecular weight organic acid, citric acid (CA) against the Cd(II) toxicity to Brassica juncea L. were evaluated. Seeds of B. juncea treated with CS (0, 0.01, 1 and 100nM) were sown in cadmium spiked soils (0 and 0.6mmolkg-1 soil). CA (0.6mmolkg-1soil) was added to soil one week after sowing seeds. Plants were harvested 30 days after sowing. Phytotoxicity induced by Cd(II) was evident from stunted growth of the plants, malondialdehyde accumulation, reduction in chlorophyll and carotenoid contents, and leaf gas exchange parameters. Cd(II) toxicity was effectively alleviated by seed soaking with CS (100nM) and/ or soil amendment with CA (0.6mMkg-1 soil). Relative gene expression of genes encoding for some of the key enzymes of pigment metabolism were also analysed. Expression of chlorophyllase (CHLASE) was reduced, while that of phytoene synthase (PSY), and chalcone synthase (CHS) genes were enhanced with CS and/or CA treatments with respect to plants treated with Cd(II) only. Cd also affected the activities of antioxidative enzymes. Plants responded to Cd(II) by accumulation of total sugars. CS (100nM) and CA treatments further enhanced the activities of these parameters and induced the contents of secondary plant pigments (flavonoids and anthocyanins) and proline. The results imply that seed treatment with CS and soil application with CA can effectively alleviate Cd(II) induced toxicity in B. juncea by strengthening its antioxidative defence system and enhancing compatible solute accumulation.


Subject(s)
Cadmium/toxicity , Cholestanols/pharmacology , Citric Acid/pharmacology , Mustard Plant/drug effects , Photosynthesis/drug effects , Soil Pollutants/toxicity , Antioxidants/metabolism , Mustard Plant/enzymology , Mustard Plant/physiology , Seeds/drug effects , Seeds/metabolism , Soil/chemistry
18.
Steroids ; 126: 92-100, 2017 10.
Article in English | MEDLINE | ID: mdl-28827069

ABSTRACT

In this paper is described a synthetic route to 6ß-phenylamino-cholestan-3ß,5α-diol and (25R)-6ß-phenylaminospirostan-3ß,5α-diol, starting from cholesterol and diosgenin, respectively. The products were obtained in two steps by epoxidation followed by aminolysis, through an environmentally friendly and solvent-free method mediated by SZ (sulfated zirconia) as catalyst. The use of SZ allows chemo- and regioselective ring opening of the 5,6α-epoxide during the aminolysis reaction eliminating the required separation of the epoxide mixture. The products obtained were spectroscopically characterized by 1H, PENDANT 13C NMR and HETCOR experiments, and complemented with FTIR-ATR and HRMS. The antiproliferative effect of the ß-aminoalcohols was evaluated on MCF-7 cells after 48h of incubation, by MTT and CVS assays. These methodologies showed that both compounds have antiproliferative activity, being more active the cholesterol analogue. Additionally, the cell images obtained by Harris' Hematoxylin and Eosin (H&E) staining protocol, evidenced formation of apoptotic bodies due to the presence of the obtained ß-aminoalcohols in a dose-dependent manner.


Subject(s)
Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Cholestanols/chemical synthesis , Cholestanols/pharmacology , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Cell Proliferation/drug effects , Chemistry Techniques, Synthetic , Cholestanols/chemistry , Humans , MCF-7 Cells
19.
Bioorg Med Chem ; 25(17): 4566-4578, 2017 09 01.
Article in English | MEDLINE | ID: mdl-28751198

ABSTRACT

Brassinolide (BL) and castasterone (CS) are the representative members of brassinosteroid class of plant steroid hormone having plant growth promoting activity. In this study, eleven CS analogs bearing a variety of side chains were synthesized to determine the effect of the side chain structures on the BL-like activity. The plant hormonal activity was evaluated in a dwarf rice lamina inclination assay, and the potency was determined as the reciprocal logarithm of the 50% effective dose (ED50) from each dose-response curve. The reciprocal logarithm of ED50 (pED50) was decreased dramatically upon deletion of the C-28 methyl group of CS. The introduction of oxygen-containing groups such as hydroxy, methoxy, and ethoxycarbonyl was also unfavorable to the activity. The pED50 was influenced by the geometry of carbon-carbon double bond between C-24 and C-25 (cis and trans), but the introduction of a fluorine atom at the C-25 position of the double bond did not significantly change the activity. The binding free energy (ΔG) was calculated for all ligand-receptor binding interactions using molecular dynamics, resulting that ΔG is linearly correlated with the pED50.


Subject(s)
Cholestanols/chemistry , Plant Growth Regulators/chemistry , Binding Sites , Brassinosteroids/chemistry , Brassinosteroids/metabolism , Brassinosteroids/pharmacology , Cholestanols/metabolism , Cholestanols/pharmacology , Ligands , Molecular Docking Simulation , Oryza/drug effects , Oryza/growth & development , Plant Growth Regulators/metabolism , Plant Growth Regulators/pharmacology , Plant Proteins/chemistry , Plant Proteins/metabolism , Plant Roots/drug effects , Plant Roots/growth & development , Protein Structure, Tertiary , Steroids, Heterocyclic/chemistry , Steroids, Heterocyclic/metabolism , Steroids, Heterocyclic/pharmacology
20.
J Immunol ; 199(2): 718-733, 2017 07 15.
Article in English | MEDLINE | ID: mdl-28607110

ABSTRACT

GPBAR1 (TGR5 or M-BAR) is a G protein-coupled receptor for secondary bile acids that is highly expressed in monocytes/macrophages. In this study, we aimed to determine the role of GPBAR1 in mediating leukocyte trafficking in chemically induced models of colitis and investigate the therapeutic potential of BAR501, a small molecule agonist for GPBAR1. These studies demonstrated that GPBAR1 gene ablation enhanced the recruitment of classically activated macrophages in the colonic lamina propria and worsened the severity of inflammation. In contrast, GPBAR1 activation by BAR501 reversed intestinal inflammation in the trinitrobenzenesulfonic acid and oxazolone models by reducing the trafficking of Ly6C+ monocytes from blood to intestinal mucosa. Exposure to BAR501 shifted intestinal macrophages from a classically activated (CD11b+, CCR7+, F4/80-) to an alternatively activated (CD11b+, CCR7-, F4/80+) phenotype, reduced the expression of inflammatory genes (TNF-α, IFN-γ, IL-1ß, IL-6, and CCL2 mRNAs), and attenuated the wasting syndrome and severity of colitis (≈70% reduction in the Colitis Disease Activity Index). The protective effect was lost in Gpbar1-/- mice. Exposure to BAR501 increased the colonic expression of IL-10 and TGF-ß mRNAs and the percentage of CD4+/Foxp3+ cells. The beneficial effects of BAR501 were lost in Il-10-/- mice. In a macrophage cell line, regulation of IL-10 by BAR501 was GPBAR1 dependent and was mediated by the recruitment of CREB to its responsive element in the IL-10 promoter. In conclusion, GPBAR1 is expressed in circulating monocytes and colonic macrophages, and its activation promotes a IL-10-dependent shift toward an alternatively activated phenotype. The targeting of GPBAR1 may offer therapeutic options in inflammatory bowel diseases.


Subject(s)
Colitis/immunology , Gene Expression Regulation/immunology , Intestinal Mucosa/immunology , Macrophages/immunology , Receptors, G-Protein-Coupled/metabolism , Animals , Antigens, Ly/genetics , Antigens, Ly/immunology , Cell Line , Cell Movement , Chemokine CCL2/genetics , Chemokine CCL2/immunology , Cholestanols/administration & dosage , Cholestanols/pharmacology , Colitis/chemically induced , Colitis/metabolism , Inflammation/immunology , Interleukin-10/deficiency , Interleukin-10/genetics , Interleukin-10/immunology , Interleukin-1beta/genetics , Interleukin-1beta/immunology , Interleukin-6/genetics , Interleukin-6/immunology , Macrophage Activation , Macrophages/drug effects , Mice , Mucous Membrane/immunology , Oxazolone/administration & dosage , Phenotype , Promoter Regions, Genetic , Receptors, G-Protein-Coupled/agonists , Receptors, G-Protein-Coupled/deficiency , Receptors, G-Protein-Coupled/genetics , T-Lymphocytes, Regulatory/drug effects , T-Lymphocytes, Regulatory/immunology , Trinitrobenzenesulfonic Acid/administration & dosage , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...