Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.767
Filter
1.
Biomed Pharmacother ; 174: 116530, 2024 May.
Article in English | MEDLINE | ID: mdl-38574623

ABSTRACT

BACKGROUND: Serum transaminases, alkaline phosphatase and bilirubin are common parameters used for DILI diagnosis, classification, and prognosis. However, the relevance of clinical examination, histopathology and drug chemical properties have not been fully investigated. As cholestasis is a frequent and complex DILI manifestation, our goal was to investigate the relevance of clinical features and drug properties to stratify drug-induced cholestasis (DIC) patients, and to develop a prognosis model to identify patients at risk and high-concern drugs. METHODS: DIC-related articles were searched by keywords and Boolean operators in seven databases. Relevant articles were uploaded onto Sysrev, a machine-learning based platform for article review and data extraction. Demographic, clinical, biochemical, and liver histopathological data were collected. Drug properties were obtained from databases or QSAR modelling. Statistical analyses and logistic regressions were performed. RESULTS: Data from 432 DIC patients associated with 52 drugs were collected. Fibrosis strongly associated with fatality, whereas canalicular paucity and ALP associated with chronicity. Drugs causing cholestasis clustered in three major groups. The pure cholestatic pattern divided into two subphenotypes with differences in prognosis, canalicular paucity, fibrosis, ALP and bilirubin. A predictive model of DIC outcome based on non-invasive parameters and drug properties was developed. Results demonstrate that physicochemical (pKa-a) and pharmacokinetic (bioavailability, CYP2C9) attributes impinged on the DIC phenotype and allowed the identification of high-concern drugs. CONCLUSIONS: We identified novel associations among DIC manifestations and disclosed novel DIC subphenotypes with specific clinical and chemical traits. The developed predictive DIC outcome model could facilitate DIC prognosis in clinical practice and drug categorization.


Subject(s)
Cholestasis , Machine Learning , Phenotype , Humans , Cholestasis/chemically induced , Male , Female , Prognosis , Databases, Factual , Middle Aged , Chemical and Drug Induced Liver Injury/diagnosis , Chemical and Drug Induced Liver Injury/etiology , Adult , Aged
2.
Chem Res Toxicol ; 37(5): 804-813, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38646980

ABSTRACT

With the increasing use of oral contraceptives and estrogen replacement therapy, the incidence of estrogen-induced cholestasis (EC) has tended to rise. Psoralen (P) and isopsoralen (IP) are the major bioactive components in Psoraleae Fructus, and their estrogen-like activities have already been recognized. Recent studies have also reported that ERK1/2 plays a critical role in EC in mice. This study aimed to investigate whether P and IP induce EC and reveal specific mechanisms. It was found that P and IP increased the expression of esr1, cyp19a1b and the levels of E2 and VTG at 80 µM in zebrafish larvae. Exemestane (Exe), an aromatase antagonist, blocked estrogen-like activities of P and IP. At the same time, P and IP induced cholestatic hepatotoxicity in zebrafish larvae with increasing liver fluorescence areas and bile flow inhibition rates. Further mechanistic analysis revealed that P and IP significantly decreased the expression of bile acids (BAs) synthesis genes cyp7a1 and cyp8b1, BAs transport genes abcb11b and slc10a1, and BAs receptor genes nr1h4 and nr0b2a. In addition, P and IP caused EC by increasing the level of phosphorylation of ERK1/2. The ERK1/2 antagonists GDC0994 and Exe both showed significant rescue effects in terms of cholestatic liver injury. In conclusion, we comprehensively studied the specific mechanisms of P- and IP-induced EC and speculated that ERK1/2 may represent an important therapeutic target for EC induced by phytoestrogens.


Subject(s)
Cholestasis , Ficusin , Furocoumarins , Psoralea , Zebrafish , Animals , Furocoumarins/pharmacology , Furocoumarins/chemistry , Ficusin/pharmacology , Cholestasis/chemically induced , Cholestasis/metabolism , Psoralea/chemistry , Estrogens/metabolism , Estrogens/pharmacology , Biological Products/pharmacology , Biological Products/chemistry , MAP Kinase Signaling System/drug effects
3.
J Ethnopharmacol ; 328: 118108, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38574780

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Polygala fallax Hemsl. is a traditional folk medicine commonly used by ethnic minorities in the Guangxi Zhuang Autonomous Region, and has a traditional application in the treatment of liver disease. Polygala fallax Hemsl. polysaccharides (PFPs) are of interest for their potential health benefits. AIM OF THIS STUDY: This study explored the impact of PFPs on a mouse model of cholestatic liver injury (CLI) induced by alpha-naphthyl isothiocyanate (ANIT), as well as the potential mechanisms. MATERIALS AND METHODS: A mouse CLI model was constructed using ANIT (80 mg/kg) and intervened with different doses of PFPs or ursodeoxycholic acid. Their serum biochemical indices, hepatic oxidative stress indices, and hepatic pathological characteristics were investigated. Then RNA sequencing was performed on liver tissues to identify differentially expressed genes and signaling pathways and to elucidate the mechanism of liver protection by PFPs. Finally, Quantitative real-time polymerase chain reaction (qRT-PCR) and Western blotting were used to verify the differentially expressed genes. RESULTS: Data analyses showed that PFPs reduced the levels of liver function-related biochemical indices, such as ALT, AST, AKP, TBA, DBIL, and TBIL. PFPs up-regulated the activities of SOD and GSH, down-regulated the contents of MDA, inhibited the release of IL-1ß, IL-6, and TNF-α, or promoted IL-10. Pathologic characterization of the liver revealed that PFPs reduced hepatocyte apoptosis or necrosis. The RNA sequencing indicated that the genes with differential expression were primarily enriched for the biosynthesis of primary bile acids, secretion or transportation of bile, the reactive oxygen species in chemical carcinogenesis, and the NF-kappa B signaling pathway. In addition, the results of qRT-PCR and Western blotting analysis were consistent with those of RNA sequencing analysis. CONCLUSIONS: In summary, this study showed that PFPs improved intrahepatic cholestasis and alleviated liver damage through the modulation of primary bile acid production, Control of protein expression related to bile secretion or transportation, decrease in inflammatory reactions, and inhibition of oxidative pressure. As a result, PFPs might offer a hopeful ethnic dietary approach for managing intrahepatic cholestasis.


Subject(s)
Cholestasis, Intrahepatic , Cholestasis , Polygala , Rats , Mice , Animals , Rats, Sprague-Dawley , 1-Naphthylisothiocyanate/toxicity , China , Liver/metabolism , Cholestasis/chemically induced , Cholestasis/drug therapy , Cholestasis/metabolism , Cholestasis, Intrahepatic/chemically induced , Isothiocyanates/adverse effects , Isothiocyanates/metabolism , Bile Acids and Salts/metabolism
4.
J Ethnopharmacol ; 327: 118009, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38447617

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: According to traditional Chinese medicine (TCM) theory, cholestasis belongs to category of jaundice. Artemisia capillaris Thunb. has been widely used for the treatment of jaundice in TCM. The polysaccharides are the one of main active components of the herb, but its effects on cholestasis remain unclear. AIM OF THE STUDY: To investigate the protective effect and mechanism of Artemisia capillaris Thunb. polysaccharide (APS) on cholestasis and liver injury. MATERIALS AND METHODS: The amelioration of APS on cholestasis was evaluated in an alpha-naphthyl isothiocyanate (ANIT)-induced mice model. Then nuclear Nrf2 knockout mice, mass spectrometry, 16s rDNA sequencing, metabolomics, and molecular biotechnology methods were used to elucidate the associated mechanisms of APS against cholestatic liver injury. RESULTS: Treatment with low and high doses of APS markedly decreased cholestatic liver injury of mice. Mechanistically, APS promoted nuclear translocation of hepatic nuclear factor erythroid 2-related factor (Nrf2), upregulated downstream bile acid (BA) efflux transporters and detoxifying enzymes expression, improved BA homeostasis, and attenuated oxidative liver injury; however, these effects were annulled in Nrf2 knock-out mice. Furthermore, APS ameliorated the microbiota dysbiosis of cholestatic mice and selectively increased short-chain fatty acid (SCFA)-producing bacteria growth. Fecal microbiota transplantation of APS also promoted hepatic Nrf2 activation, increased BA efflux transporters and detoxifying enzymes expression, ameliorated intrahepatic BA accumulation and cholestatic liver injury. Non-targeted metabolomics and in vitro microbiota culture confirmed that APS significantly increased the production of a microbiota-derived SCFA (butyric acid), which is also able to upregulate Nrf2 expression. CONCLUSIONS: These findings indicate that APS can ameliorate cholestasis by modulating gut microbiota and activating the Nrf2 pathway, representing a novel therapeutic approach for cholestatic liver disease.


Subject(s)
Artemisia , Cholestasis , Gastrointestinal Microbiome , Jaundice , Mice , Animals , NF-E2-Related Factor 2/metabolism , Liver , Cholestasis/chemically induced , Signal Transduction , Jaundice/metabolism , Bile Acids and Salts/metabolism
6.
Toxicol Lett ; 395: 50-59, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38552811

ABSTRACT

A better understanding of cyclosporine A (CsA)-induced nephro- and hepatotoxicity at the molecular level is necessary for safe and effective use. Utilizing a sophisticated study design, this study explored metabolic alterations after long-term CsA treatment in vivo. Rats were exposed to CsA with 4, 10, and 25 mg/kg for 4 weeks and then sacrificed to obtain liver, kidney, urine, and serum for untargeted metabolomics analysis. Differential network analysis was conducted to explore the biological relevance of metabolites significantly altered by toxicity-induced disturbance. Dose-dependent toxicity was observed in all biospecimens. The toxic effects were characterized by alterations of metabolites related to energy metabolism and cellular membrane composition, which could lead to the cholestasis-induced accumulation of bile acids in the tissues. The unfavorable impacts were also demonstrated in the serum and urine. Intriguingly, phenylacetylglycine was increased in the kidney, urine, and serum treated with high doses versus controls. Differential correlation network analysis revealed the strong correlations of deoxycytidine and guanosine with other metabolites in the network, which highlighted the influence of repeated CsA exposure on DNA synthesis. Overall, prolonged CsA administration had system-level dose-dependent effects on the metabolome in treated rats, suggesting the need for careful usage and dose adjustment.


Subject(s)
Cholestasis , Cyclosporine , Rats , Animals , Cyclosporine/toxicity , Cyclosporine/metabolism , Liver/metabolism , Kidney/metabolism , Cholestasis/chemically induced , Metabolome
7.
J Ethnopharmacol ; 326: 117909, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38350503

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Gancao Decoction (GCD) is widely used to treat cholestatic liver injury. However, it is unclear whether is related to prevent hepatocellular necroptosis. AIM OF THE STUDY: The purpose of this study is to clarify the therapeutic effects of GCD against hepatocellular necroptosis induced by cholestasis and its active components. MATERIALS AND METHODS: We induced cholestasis model in wild type mice by ligating the bile ducts or in Nlrp3-/- mice by intragastrical administering Alpha-naphthylisothiocyanate (ANIT). Serum biochemical indices, liver pathological changes and hepatic bile acids (BAs) were measured to evaluate GCD's hepatoprotective effects. Necroptosis was assessed by expression of hallmarkers in mice liver. Moreover, the potential anti-necroptotic effect of components from GCD were investigated and confirmed in ANIT-induced cholestasis mice and in primary hepatocytes from WT mouse stimulated with Tumor Necrosis Factor alpha (TNF-α) and cycloheximide (CHX). RESULTS: GCD dose-dependently alleviated hepatic necrosis, reduced serum aminotranferase activity in both BDL and ANIT-induced cholestasis models. More importantly, the expression of hallmarkers of necroptosis, including MLKL, RIPK1 and RIPK3 phosphorylation (p- MLKL, p-RIPK1, p-RIPK3) were reduced upon GCD treatment. Glycyrrhetinic acid (GA), the main bioactive metabolite of GCD, effectively protected against ANIT-induced cholestasis, with decreased expression of p-MLKL, p-RIPK1 and p-RIPK3. Meanwhile, the expression of Fas-associated death domain protein (FADD), long isoform of cellular FLICE-like inhibitory protein (cFLIPL) and cleaved caspase 8 were upregulated upon GA treatment. Moreover, GA significantly increased the expression of active caspase 8, and reduced that of p-MLKL in TNF-α/CHX induced hepatocytes necroptosis. CONCLUSIONS: GCD substantially inhibits necroptosis in cholestatic liver injury. GA is the main bioactive component responsible for the anti-necroptotic effects, which correlates with upregulation of c-FLIPL and active caspase 8.


Subject(s)
Cholestasis , Drugs, Chinese Herbal , Glycyrrhetinic Acid , Glycyrrhiza , Mice , Animals , Tumor Necrosis Factor-alpha/pharmacology , Caspase 8 , Necroptosis , Liver , Cholestasis/chemically induced , Cholestasis/drug therapy , Cholestasis/pathology , Glycyrrhetinic Acid/pharmacology , 1-Naphthylisothiocyanate/toxicity
8.
Exp Clin Transplant ; 22(Suppl 1): 338-341, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38385422

ABSTRACT

Drug-induced liver injury after liver transplant occurs in 1.7% of patients. Tacrolimus is an effective immunosuppressant that is used to treat acute rejection. Although rare, it can cause toxicity, which is demonstrated by cholestatic liver injury. Here, we present a case of a young male patient who was diagnosed with Wilson disease, had penicillaminechelating therapy, and underwent living related liver transplant. Within 1 month posttransplant, he developed deranged, predominantly cholestatic pattern liver function tests. Laboratory parameters showed total bilirubin of 1.12 mg/ dL, alanine aminotransferase of 553 IU/L, gammaglutamyltransferase of 624 IU/L, and tacrolimus level of 10.2 ng/mL. After thorough evaluation, a liver biopsy was performed. Liver biopsy showed hepatocellular necrosis with centrilobular cholestasis without any evidence of graft rejection. However, with normal level of tacrolimus, the biopsy was suggestive of drug-induced liver injury. Thus, tacrolimus dose was reduced, resulting in improved liver function tests and patient discharge from the hospital. Tacrolimus is an effective immunosuppressant after liver transplant and has the ability to treat early acute rejection. The patient's liver biopsy showed hepatocellular necrosis with centrilobular cholestasis without any evidence of graft rejection. Cholestatic liver injury after tacrolimus usually resolves after dose reduction or by switching to another agent. With demonstrated tacrolimus-induced toxicity in liver transplant recipients, despite normal serum levels, transplant physicians should keep high index of suspicion regarding toxicity in the posttransplant setting.


Subject(s)
Chemical and Drug Induced Liver Injury , Cholestasis , Liver Transplantation , Humans , Male , Tacrolimus/adverse effects , Liver Transplantation/adverse effects , Immunosuppressive Agents/adverse effects , Cholestasis/chemically induced , Cholestasis/diagnosis , Chemical and Drug Induced Liver Injury/diagnosis , Chemical and Drug Induced Liver Injury/etiology , Chemical and Drug Induced Liver Injury/surgery , Graft Rejection/diagnosis , Graft Rejection/prevention & control , Necrosis/drug therapy
9.
J Med Case Rep ; 18(1): 116, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38409063

ABSTRACT

BACKGROUND: In this manuscript, we report a case of tacrolimus-associated hepatotoxicity in a kidney transplant recipient. CASE PRESENTATION: In this case report, a 56 years old Arab male patient who received a kidney transplant presented with icterus, weakness, and lethargy two weeks after transplantation and tacrolimus initiation. In laboratory analysis hyperbilirubinemia and a rise in hepatic enzymes were observed. All possible causes of hepatotoxicity were examined. The panel for infectious causes was negative. Drug-induced liver injury was diagnosed. The patient's immunosuppressive regimen was changed to a cyclosporine-based regimen and after this change bilirubin and hepatic enzymes decreased and the patient was discharged without signs and symptoms of hepatitis. CONCLUSION: It seems that the patient's hyperbilirubinemia was due to tacrolimus, and the patient's bilirubin decreased after stopping tacrolimus.


Subject(s)
Chemical and Drug Induced Liver Injury , Cholestasis , Kidney Transplantation , Male , Humans , Middle Aged , Tacrolimus/adverse effects , Immunosuppressive Agents/adverse effects , Chemical and Drug Induced Liver Injury/etiology , Cholestasis/chemically induced , Bilirubin , Hyperbilirubinemia , Cyclosporine/adverse effects
10.
Toxicol In Vitro ; 96: 105782, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38244730

ABSTRACT

Estrogen-induced intrahepatic cholestasis (IHC) is a mild but potentially serious risk and urges for new therapeutic targets and effective treatment. Our previous study demonstrated that RORγt and CXCR3 signaling pathway of invariant natural killer T (iNKT) 17 cells play pathogenic roles in 17α-ethinylestradiol (EE)-induced IHC. Ursodeoxycholic acid (UDCA) and 18ß-glycyrrhetinic acid (GA) present a protective effect on IHC partially due to their immunomodulatory properties. Hence in present study, we aim to investigate the effectiveness of UDCA and 18ß-GA in vitro and verify the accessibility of the above targets. Biochemical index measurement indicated that UDCA and 18ß-GA presented efficacy to alleviate EE-induced cholestatic cytotoxicity. Both UDCA and 18ß-GA exhibited suppression on the CXCL9/10-CXCR3 axis, and significantly restrained the expression of RORγt in vitro. In conclusion, our observations provide new therapeutic targets of UDCA and 18ß-GA, and 18ß-GA as an alternative treatment for EE-induced cholestasis.


Subject(s)
Cholestasis , Glycyrrhetinic Acid , Natural Killer T-Cells , Receptors, CXCR3 , Ursodeoxycholic Acid , Cholestasis/chemically induced , Cholestasis/drug therapy , Ethinyl Estradiol/toxicity , Glycyrrhetinic Acid/analogs & derivatives , Glycyrrhetinic Acid/pharmacology , Glycyrrhetinic Acid/therapeutic use , Nuclear Receptor Subfamily 1, Group F, Member 3/genetics , Receptors, CXCR3/genetics , Receptors, CXCR3/metabolism , Signal Transduction , Ursodeoxycholic Acid/pharmacology , Ursodeoxycholic Acid/therapeutic use , Animals , Mice
11.
Chem Res Toxicol ; 37(1): 42-56, 2024 01 15.
Article in English | MEDLINE | ID: mdl-38091573

ABSTRACT

The chemokine receptor CXCR3 is functionally pleiotropic, not only recruiting immune cells to the inflamed liver but also mediating the pathological process of cholestatic liver injury (CLI). However, the mechanism of its involvement in the CLI remains unclear. Both alpha-naphthylisothiocyanate (ANIT) and triptolide are hepatotoxicants that induce CLI by bile acid (BA) dysregulation, inflammation, and endoplasmic reticulum (ER)/oxidative stress. Through molecular docking, CXCR3 is a potential target of ANIT and triptolide. Therefore, this study aimed to investigate the role of CXCR3 in ANIT- and triptolide-induced CLI and to explore the underlying mechanisms. Wild-type mice and CXCR3-deficient mice were administered with ANIT or triptolide to compare CLI, BA profile, hepatic recruitment of IFN-γ/IL-4/IL-17+CD4+T cells, IFN-γ/IL-4/IL-17+iNKT cells and IFN-γ/IL-4+NK cells, and the expression of ER/oxidative stress pathway. The results showed that CXCR3 deficiency ameliorated ANIT- and triptolide-induced CLI. CXCR3 deficiency alleviated ANIT-induced dysregulated BA metabolism, which decreased the recruitment of IFN-γ+NK cells and IL-4+NK cells to the liver and inhibited ER stress. After triptolide administration, CXCR3 deficiency ameliorated dysregulation of BA metabolism, which reduced the migration of IL-4+iNKT cells and IL-17+iNKT cells and reduced oxidative stress through inhibition of Egr1 expression and AKT phosphorylation. Our findings suggest a detrimental role of CXCR3 in ANIT- and triptolide-induced CLI, providing a promising therapeutic target and introducing novel mechanisms for understanding cholestatic liver diseases.


Subject(s)
1-Naphthylisothiocyanate , Cholestasis , Diterpenes , Phenanthrenes , Animals , Mice , 1-Naphthylisothiocyanate/toxicity , 1-Naphthylisothiocyanate/metabolism , Interleukin-17/toxicity , Interleukin-17/metabolism , Interleukin-17/therapeutic use , Interleukin-4/toxicity , Interleukin-4/metabolism , Interleukin-4/therapeutic use , Molecular Docking Simulation , Liver/metabolism , Cholestasis/chemically induced , Bile Acids and Salts , Epoxy Compounds
13.
J Chem Inf Model ; 64(7): 2775-2788, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-37660324

ABSTRACT

Drug development involves the thorough assessment of the candidate's safety and efficacy. In silico toxicology (IST) methods can contribute to the assessment, complementing in vitro and in vivo experimental methods, since they have many advantages in terms of cost and time. Also, they are less demanding concerning the requirements of product and experimental animals. One of these methods, Quantitative Structure-Activity Relationships (QSAR), has been proven successful in predicting simple toxicity end points but has more difficulties in predicting end points involving more complex phenomena. We hypothesize that QSAR models can produce better predictions of these end points by combining multiple QSAR models describing simpler biological phenomena and incorporating pharmacokinetic (PK) information, using quantitative in vitro to in vivo extrapolation (QIVIVE) models. In this study, we applied our methodology to the prediction of cholestasis and compared it with direct QSAR models. Our results show a clear increase in sensitivity. The predictive quality of the models was further assessed to mimic realistic conditions where the query compounds show low similarity with the training series. Again, our methodology shows clear advantages over direct QSAR models in these situations. We conclude that the proposed methodology could improve existing methodologies and could be suitable for being applied to other toxicity end points.


Subject(s)
Cholestasis , Quantitative Structure-Activity Relationship , Animals , Toxicokinetics , Drug Development , Cholestasis/chemically induced
14.
Aliment Pharmacol Ther ; 59(2): 186-200, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37904314

ABSTRACT

BACKGROUND: Seladelpar is a potent and selective peroxisome proliferator-activated receptor-δ agonist that targets multiple cell types involved in primary biliary cholangitis (PBC), leading to anti-cholestatic, anti-inflammatory and anti-pruritic effects. AIMS: To evaluate the long-term safety and efficacy of seladelpar in patients with PBC. METHODS: In an open-label, international, long-term extension study, patients with PBC completing seladelpar lead-in studies continued treatment. Seladelpar was taken orally once daily at doses of 5 or 10 mg with dose adjustment permitted for safety or tolerability. The primary analysis was for safety and the secondary efficacy analysis examined biochemical markers of cholestasis and liver injury. The study was terminated early due to the unexpected histological findings in a concurrent study for non-alcoholic steatohepatitis, which were subsequently found to predate treatment. Safety and efficacy data were analysed through 2 years. RESULTS: There were no serious treatment-related adverse events observed among 106 patients treated with seladelpar for up to 2 years. There were four discontinuations for safety, one possibly related to seladelpar. Among 53 patients who completed 2 years of seladelpar, response rates increased from years 1 to 2 for the composite endpoint (alkaline phosphatase [ALP] <1.67 × ULN, ≥15% decrease in ALP, and total bilirubin ≤ULN) and ALP normalisation from 66% to 79% and from 26% to 42%, respectively. In those with elevated bilirubin at baseline, 43% achieved normalisation at year 2. CONCLUSIONS: Seladelpar was safe, and markedly improved biochemical markers of cholestasis and liver injury in patients with PBC. These effects were maintained or improved throughout the second year. CLINICALTRIALS: gov: NCT03301506; Clinicaltrialsregister.eu: 2017-003910-16.


Subject(s)
Cholestasis , Liver Cirrhosis, Biliary , Humans , Ursodeoxycholic Acid/adverse effects , Liver Cirrhosis, Biliary/drug therapy , Cholestasis/drug therapy , Cholestasis/chemically induced , Biomarkers , Alkaline Phosphatase , Bilirubin
15.
J Appl Toxicol ; 44(4): 582-594, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37968239

ABSTRACT

Cholestasis is a pathological condition characterized by disruptions in bile flow, leading to the accumulation of bile acids (BAs) in hepatocytes. Allocholic acid (ACA), a unique fetal BA known for its potent choleretic effects, reappears during liver regeneration and carcinogenesis. In this research, we investigated the protective effects and underlying mechanisms of ACA against mice with cholestasis brought on by α-naphthylisothiocyanate (ANIT). To achieve this, we combined network pharmacology, targeted BA metabolomics, and molecular biology approaches. The results demonstrated that ACA treatment effectively reduced levels of serum AST, ALP, and DBIL, and ameliorated the pathological injury caused by cholestasis. Network pharmacology analysis suggested that ACA primarily regulated BA and salt transport, along with the signaling pathway associated with bile secretion, to improve cholestasis. Subsequently, we examined changes in BA metabolism using UPLC-MS/MS. The findings indicated that ACA pretreatment induced alterations in the size, distribution, and composition of the liver BA pool. Specifically, it reduced the excessive accumulation of BAs, especially cholic acid (CA), taurocholic acid (TCA), and ß-muricholic acid (ß-MCA), facilitating the restoration of BA homeostasis. Furthermore, ACA pretreatment significantly downregulated the expression of hepatic BA synthase Cyp8b1, while enhancing the expression of hepatic efflux transporter Mrp4, as well as the renal efflux transporters Mdr1 and Mrp2. These changes collectively contributed to improved BA efflux from the liver and enhanced renal elimination of BAs. In conclusion, ACA demonstrated its potential to ameliorate ANIT-induced liver damage by inhibiting BA synthesis and promoting both BA efflux and renal elimination pathways, thus, restoring BA homeostasis.


Subject(s)
Bile Acids and Salts , Cholestasis , Mice , Animals , Bile Acids and Salts/metabolism , 1-Naphthylisothiocyanate/toxicity , 1-Naphthylisothiocyanate/metabolism , Chromatography, Liquid , Tandem Mass Spectrometry , Cholestasis/chemically induced , Cholestasis/prevention & control , Liver , Cholic Acids/metabolism , Cholic Acids/pharmacology , Cholic Acids/therapeutic use , Membrane Transport Proteins/metabolism , Homeostasis
16.
Life Sci ; 337: 122355, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38104861

ABSTRACT

AIMS: Lithocholic acid (LCA)-induced cholestasis was accompanied by the occurrence of apoptosis, which indicated that anti-apoptosis was a therapeutic strategy for primary biliary cholangitis (PBC). As an agonist of (Farnesoid X receptor) FXR, we supposed that the hepatoprotection of Obeticholic acid (OCA) against cholestatic liver injury is related to anti-apoptosis beside of the bile acids (BAs) regulation. Herein, we explored the non-metabolic regulating mechanism of OCA for resisting LCA-induced cholestatic liver injury via anti-apoptosis. MAIN METHODS: LCA-induced cholestatic liver injury mice were pretreated with OCA to evaluate its hepatoprotective effect and mechanism. Biochemical and pathological indicators were used to detect the protective effect of OCA on LCA-induced cholestatic liver injury. The bile acids (BAs) profile in serum was detected by LC-MS/MS. Hepatocyte BAs metabolism, apoptosis and inflammation related genes and proteins alteration were investigated by biochemical determination. KEY FINDINGS: OCA improved LCA-induced cholestasis and hepatic apoptosis in mice. The BA profile in serum was changed by OCA mainly manifested as a reduction of taurine-conjugated bile acids, which was due to the upregulation of FXR-related bile acid efflux transporters bile salt export pump (BSEP), multi-drug resistant associated protein 2 (MRP2), MRP3 and multi-drug resistance 3 (MDR3). Apoptosis related proteins cleaved caspase-3, cleaved caspase-8 and cleaved PARP were obviously reduced after OCA treatment. SIGNIFICANCE: OCA improved LCA-induced cholestatic liver injury via FXR-induced exogenous cell apoptosis, which will provide new evidence for the application of OCA to ameliorate PBC in clinical.


Subject(s)
Cholestasis , Lithocholic Acid , Mice , Animals , Lithocholic Acid/adverse effects , Chromatography, Liquid , Tandem Mass Spectrometry , Liver/metabolism , Cholestasis/chemically induced , Cholestasis/complications , Cholestasis/drug therapy , Bile Acids and Salts/metabolism , Apoptosis
17.
J Ethnopharmacol ; 322: 117584, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38104874

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Cholestatic liver injury (CLI) is a pathologic process with the impairment of liver and bile secretion and excretion, resulting in an excessive accumulation of bile acids within the liver, which leads to damage to both bile ducts and hepatocytes. This process is often accompanied by inflammation. Cucumis melo L is a folk traditional herb for the treatment of cholestasis. Cucurbitacin B (CuB), an important active ingredient in Cucumis melo L, has significant anti-inflamamatory effects and plays an important role in diseases such as neuroinflammation, skin inflammation, and chronic hepatitis. Though numerous studies have confirmed the significant therapeutic effect of CuB on liver diseases, the impact of CuB on CLI remains uncertain. Consequently, the objective of this investigation is to elucidate the therapeutic properties and potential molecular mechanisms underlying the effects of CuB on CLI. AIM OF THE STUDY: The aim of this paper was to investigate the potential protective mechanism of CuB against CLI. METHODS: First, the corresponding targets of CuB were obtained through the SwissTargetPrediction and SuperPre online platforms. Second, the DisGeNET database, GeneCards database, and OMIM database were utilized to screen therapeutic targets for CLI. Then, protein-protein interaction (PPI) was determined using the STRING 11.5 data platform. Next, the OmicShare platform was employed for the purpose of visualizing the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. The molecular docking technique was then utilized to evaluate the binding affinity existing between potential targets and CuB. Subsequently, the impacts of CuB on the LO2 cell injury model induced by Lithocholic acid (LCA) and the CLI model induced by 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) were determined by evaluating inflammation in both in vivo and in vitro settings. The potential molecular mechanism was explored by real-time quantitative polymerase chain reaction (RT-qPCR) and western blot (WB) techniques. RESULTS: A total of 122 CuB targets were collected and high affinity targets were identified through the PPI network, namely TLR4, STAT3, HIF1A, and NFKB1. GO and KEGG analyses indicated that the treatment of CLI with CuB chiefly involved the inflammatory pathway. In vitro study results showed that CuB alleviated LCA-induced LO2 cell damage. Meanwhile, CuB reduced elevated AST and ALT levels and the release of inflammatory factors in LO2 cells induced by LCA. In vivo study results showed that CuB could alleviate DDC-induced pathological changes in mouse liver, inhibit the activity of serum transaminase, and suppress the liver and systemic inflammatory reaction of mice. Mechanically, CuB downregulated the IL-6, STAT3, and HIF-1α expression and inhibited STAT3 phosphorylation. CONCLUSION: By combining network pharmacology with in vivo and in vitro experiments, the results of this study suggested that CuB prevented the inflammatory response by inhibiting the IL-6/STAT3/HIF-1α signaling pathway, thereby demonstrating potential protective and therapeutic effects on CLI. These results establish a scientific foundation for the exploration and utilization of natural medicines for CLI.


Subject(s)
Cholestasis , Cucumis melo , Drugs, Chinese Herbal , Triterpenes , Animals , Mice , Interleukin-6 , Molecular Docking Simulation , Network Pharmacology , Liver , Cholestasis/chemically induced , Cholestasis/drug therapy , Inflammation
18.
Biol Pharm Bull ; 46(12): 1810-1819, 2023.
Article in English | MEDLINE | ID: mdl-38044100

ABSTRACT

Yinzhihuang (YZH), a traditional Chinese medicine prescription, was widely used to treat cholestasis. Cholestatic liver injury limited the use of the immunosuppressive drug cyclosporine A (CsA) in preventing organ rejection after solid organ transplantation. Clinical evidences suggested that YZH could enhance bile acids and bilirubin clearance, providing a potential therapeutic strategy against CsA-induced cholestasis. Nevertheless, it remains unclear whether YZH can effectively alleviate CsA-induced cholestatic liver injury, as well as the molecular mechanisms responsible for its hepatoprotective effects. The purpose of the present study was to investigate the hepatoprotective effects of YZH on CsA-induced cholestatic liver injury and explore its molecular mechanisms in vivo and vitro. The results demonstrated that YZH significantly improved the CsA-induced cholestatic liver injury and reduced the level of liver function markers in serum of Sprague-Dawley (SD) rats. Targeted protein and gene analysis indicated that YZH increased bile acids and bilirubin efflux into bile through the regulation of multidrug resistance-associated protein 2 (Mrp2), bile salt export pump (Bsep), sodium taurocholate cotransporting polypeptide (Ntcp) and organic anion transporting polypeptide 2 (Oatp2) transport systems, as well as upstream nuclear receptors farnesoid X receptor (Fxr). Moreover, YZH modulated enzymes involved in bile acids synthesis and bilirubin metabolism including Cyp family 7 subfamily A member 1 (Cyp7a1) and uridine 5'-diphosphate (UDP) glucuronosyltransferase family 1 member A1 (Ugt1a1). Furthermore, the active components geniposidic acid, baicalin and chlorogenic acid exerted regulated metabolic enzymes and transporters in LO2 cells. In conclusion, YZH may prevent CsA-induced cholestasis by regulating the transport systems, metabolic enzymes, and upstream nuclear receptors Fxr to restore bile acid and bilirubin homeostasis. These findings highlight the potential of YZH as a therapeutic intervention for CsA-induced cholestasis and open avenues for further research into its clinical applications.


Subject(s)
Cholestasis , Cyclosporine , Rats , Animals , Cyclosporine/adverse effects , Rats, Sprague-Dawley , Liver/metabolism , Cholestasis/chemically induced , Cholestasis/drug therapy , Cholestasis/metabolism , Membrane Transport Proteins/metabolism , Bile Acids and Salts/metabolism , Receptors, Cytoplasmic and Nuclear/metabolism , Bilirubin/metabolism
19.
Arch Toxicol ; 97(11): 2969-2981, 2023 11.
Article in English | MEDLINE | ID: mdl-37603094

ABSTRACT

Drug-induced intrahepatic cholestasis (DIC) is a main type of hepatic toxicity that is challenging to predict in early drug development stages. Preclinical animal studies often fail to detect DIC in humans. In vitro toxicogenomics assays using human liver cells have become a practical approach to predict human-relevant DIC. The present study was set up to identify transcriptomic signatures of DIC by applying machine learning algorithms to the Open TG-GATEs database. A total of nine DIC compounds and nine non-DIC compounds were selected, and supervised classification algorithms were applied to develop prediction models using differentially expressed features. Feature selection techniques identified 13 genes that achieved optimal prediction performance using logistic regression combined with a sequential backward selection method. The internal validation of the best-performing model showed accuracy of 0.958, sensitivity of 0.941, specificity of 0.978, and F1-score of 0.956. Applying the model to an external validation set resulted in an average prediction accuracy of 0.71. The identified genes were mechanistically linked to the adverse outcome pathway network of DIC, providing insights into cellular and molecular processes during response to chemical toxicity. Our findings provide valuable insights into toxicological responses and enhance the predictive accuracy of DIC prediction, thereby advancing the application of transcriptome profiling in designing new approach methodologies for hazard identification.


Subject(s)
Adverse Outcome Pathways , Chemical and Drug Induced Liver Injury , Cholestasis , Animals , Humans , Cholestasis/chemically induced , Cholestasis/genetics , Chemical and Drug Induced Liver Injury/genetics , Machine Learning
20.
J Biomed Inform ; 145: 104465, 2023 09.
Article in English | MEDLINE | ID: mdl-37541407

ABSTRACT

BACKGROUND: Adverse outcome pathway (AOP) networks are versatile tools in toxicology and risk assessment that capture and visualize mechanisms driving toxicity originating from various data sources. They share a common structure consisting of a set of molecular initiating events and key events, connected by key event relationships, leading to the actual adverse outcome. AOP networks are to be considered living documents that should be frequently updated by feeding in new data. Such iterative optimization exercises are typically done manually, which not only is a time-consuming effort, but also bears the risk of overlooking critical data. The present study introduces a novel approach for AOP network optimization of a previously published AOP network on chemical-induced cholestasis using artificial intelligence to facilitate automated data collection followed by subsequent quantitative confidence assessment of molecular initiating events, key events, and key event relationships. METHODS: Artificial intelligence-assisted data collection was performed by means of the free web platform Sysrev. Confidence levels of the tailored Bradford-Hill criteria were quantified for the purpose of weight-of-evidence assessment of the optimized AOP network. Scores were calculated for biological plausibility, empirical evidence, and essentiality, and were integrated into a total key event relationship confidence value. The optimized AOP network was visualized using Cytoscape with the node size representing the incidence of the key event and the edge size indicating the total confidence in the key event relationship. RESULTS: This resulted in the identification of 38 and 135 unique key events and key event relationships, respectively. Transporter changes was the key event with the highest incidence, and formed the most confident key event relationship with the adverse outcome, cholestasis. Other important key events present in the AOP network include: nuclear receptor changes, intracellular bile acid accumulation, bile acid synthesis changes, oxidative stress, inflammation and apoptosis. CONCLUSIONS: This process led to the creation of an extensively informative AOP network focused on chemical-induced cholestasis. This optimized AOP network may serve as a mechanistic compass for the development of a battery of in vitro assays to reliably predict chemical-induced cholestatic injury.


Subject(s)
Adverse Outcome Pathways , Cholestasis , Humans , Artificial Intelligence , Cholestasis/chemically induced , Risk Assessment , Data Collection
SELECTION OF CITATIONS
SEARCH DETAIL
...