Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Biochim Biophys Acta ; 981(1): 77-84, 1989 May 19.
Article in English | MEDLINE | ID: mdl-2541791

ABSTRACT

Guinea pig liver microsomal membranes were cholesterol-enriched by feeding guinea pigs a high-cholesterol diet. Cholesterol enrichment as well as partial lipid removal of normal native microsomes by acetone-butanol extraction resulted in 40-50% loss in activity of the glucose-6-phosphate phosphohydrolase (G-6-Pase) (EC 3.1.3.9) enzyme system. The activity was restored by supplementation of microsomal total phospholipid (PL) and its phosphatidylcholine (PC) species but not with microsomal neutral lipids, cholesterol, phosphatidylethanolamine, phosphatidylinositol, phosphatidylserine, sphingomyelin or diphosphatidylglycerol (cardiolipin). The activity was decreased by sodium deoxycholate but enhanced by dimethylsulfoxide. Egg-yolk PC and asolectin influenced the activity of the enzyme to the same extent as microsomal PC did. Lipid depletion and cholesterol produced an increase in Km while the Vmax was lowered. The non-linearity in the Arrhenius plot of the native microsomes was lost on lipid removal and cholesterol enrichment. The energy of activation (Ea) calculated from the continuous line was found to be lowered to the level that was observed above the break points in intact microsomes. Addition of microsomal PC to the assay system decreased the Km of the enzymatic reaction in native membranes, in partially lipid-depleted and cholesterol-enriched membranes, but did not alter the Vmax values and only marginally influenced the non-linear relationship of the Arrhenius expression of temperature dependence. The ability of immature rat liver phospholipid exchange protein to introduce alien PL into microsomal membrane was used to study the lipid dependence of G-6-Pase. Protein-catalyzed and detergent (cholate)-mediated membrane PL exchange for egg-yolk PC from the PC/cholesterol unilamellar liposomes resulted in substantial loss of enzyme activity. The discrepancies in the influence of PC on G-6-Pase were interpreted by assuming that the enzyme was a two-component system, a surface-located substrate transporter unit and a membrane integral catalytic phosphohydrolase unit. The lipid microenvironment and PL requirement in particular, could be different for the two components, although they represented a single functional unit at the time of enzymatic reaction.


Subject(s)
Cholesterol, Dietary/administration & dosage , Glucose-6-Phosphatase/metabolism , Membrane Lipids/physiology , Microsomes, Liver/enzymology , Phosphatidylcholines/physiology , Animals , Cholesterol, Dietary/physiology , Enzyme Activation/drug effects , Glucose-6-Phosphatase/antagonists & inhibitors , Guinea Pigs , Kinetics , Lipid Bilayers/physiology , Male , Membrane Fluidity/drug effects , Microsomes, Liver/drug effects , Microsomes, Liver/physiology , Phosphatidylcholines/pharmacology , Phospholipids/physiology , Temperature
2.
J Biol Chem ; 264(12): 6863-9, 1989 Apr 25.
Article in English | MEDLINE | ID: mdl-2708346

ABSTRACT

Hepatic regulatory oxysterols were analyzed to determine which oxysterols were present in livers of mice fed a cholesterol-free diet and whether repression of 3-hydroxy-3-methylglutaryl-CoA reductase following cholesterol feeding was accompanied by an increase in one or more oxysterols. Analysis of free and esterified sterols from mice fed a cholesterol-free diet resulted in the identification and quantitation of six regulatory oxysterols: 24-hydroxycholesterol, 25-hydroxycholesterol, 26-hydroxycholesterol, 7 alpha-hydroxycholesterol, 7 beta-hydroxycholesterol, and 7-ketocholesterol. Following the addition of cholesterol to the diet for 1 or 2 nights, hepatic 3-hydroxy-3-methylglutaryl-CoA reductase activity declined and the levels of oxysterols, especially those of the side-chain-hydroxylated sterols, increased. Total 3-hydroxy-3-methylglutaryl-CoA reductase repressor units attributable to identified free oxysterols increased 2.5- and 6-fold after 1 and 2 nights, respectively, of cholesterol feeding. The amounts of esterified 24-, 25-, and 26-hydroxycholesterol also increased, with the increase in esterified 24-hydroxycholesterol being the greatest. The 24-hydroxycholesterol was predominantly the 24S epimer and the 26-hydroxycholesterol was predominantly the 25R epimer, indicating enzymatic catalysis of their formation. The observed correlation between increased levels of regulatory oxysterols and repression of 3-hydroxy-3-methylglutaryl-CoA reductase in cholesterol-fed mice is consistent with a hypothesis that intracellular oxysterol metabolites regulate the level of the reductase.


Subject(s)
Cholesterol, Dietary/physiology , Hydroxycholesterols/physiology , Hydroxymethylglutaryl CoA Reductases/metabolism , Liver/enzymology , Animals , Chromatography , Enzyme Repression , Mice , Mice, Inbred C3H
SELECTION OF CITATIONS
SEARCH DETAIL