Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 985
Filter
1.
J Health Popul Nutr ; 43(1): 59, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38711145

ABSTRACT

BACKGROUND: Choline, an indispensable nutrient, plays a pivotal role in various physiological processes. The available evidence regarding the nexus between dietary choline intake and health outcomes, encompassing cardiovascular disease (CVD), cancer, and all-cause mortality, is limited and inconclusive. This study aimed to comprehensively explore the relationship between dietary choline intake and the aforementioned health outcomes in adults aged > 20 years in the U.S. METHODS: This study utilized data from the National Health and Nutrition Examination Survey between 2011 and 2018. Dietary choline intake was evaluated using two 24-h dietary recall interviews. CVD and cancer status were determined through a combination of standardized medical status questionnaires and self-reported physician diagnoses. Mortality data were gathered from publicly available longitudinal Medicare and mortality records. The study utilized survey-weighted logistic and Cox regression analyses to explore the associations between choline consumption and health outcomes. Restricted cubic spline (RCS) analysis was used for dose‒response estimation and for testing for nonlinear associations. RESULTS: In our study of 14,289 participants (mean age 48.08 years, 47.71% male), compared with those in the lowest quintile (Q1), the adjusted odds ratios (ORs) of CVD risk in the fourth (Q4) and fifth (Q5) quintiles of choline intake were 0.70 (95% CI 0.52, 0.95) and 0.65 (95% CI 0.47, 0.90), respectively (p for trend = 0.017). Each 100 mg increase in choline intake was associated with a 9% reduced risk of CVD. RCS analysis revealed a linear correlation between choline intake and CVD risk. Moderate choline intake (Q3) was associated with a reduced risk of mortality, with an HR of 0.75 (95% CI 0.60-0.94) compared with Q1. RCS analysis demonstrated a significant nonlinear association between choline intake and all-cause mortality (P for nonlinearity = 0.025). The overall cancer prevalence association was nonsignificant, except for colon cancer, where each 100 mg increase in choline intake indicated a 23% reduced risk. CONCLUSION: Elevated choline intake demonstrates an inverse association with CVD and colon cancer, while moderate consumption exhibits a correlated reduction in mortality. Additional comprehensive investigations are warranted to elucidate the broader health implications of choline.


Subject(s)
Cardiovascular Diseases , Choline , Diet , Neoplasms , Nutrition Surveys , Humans , Choline/administration & dosage , Male , Female , Cardiovascular Diseases/mortality , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/prevention & control , Middle Aged , United States/epidemiology , Neoplasms/mortality , Neoplasms/epidemiology , Adult , Prevalence , Diet/statistics & numerical data , Aged , Mortality , Cause of Death
2.
Nutrients ; 16(9)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38732511

ABSTRACT

Prenatal alcohol exposure (AE) affects cognitive development. However, it is unclear whether prenatal AE influences the metabolic health of offspring and whether postnatal AE exacerbates metabolic deterioration resulting from prenatal AE. Choline is a semi-essential nutrient that has been demonstrated to mitigate the cognitive impairment of prenatal AE. This study investigated how maternal choline supplementation (CS) may modify the metabolic health of offspring with prenatal and postnatal AE (AE/AE). C57BL/6J female mice were fed either a Lieber-DeCarli diet with 1.4% ethanol between embryonic day (E) 9.5 and E17.5 or a control diet. Choline was supplemented with 4 × concentrations versus the control throughout pregnancy. At postnatal week 7, offspring mice were exposed to 1.4% ethanol for females and 3.9% ethanol for males for 4 weeks. AE/AE increased hepatic triglyceride accumulation in male offspring only, which was normalized by prenatal CS. Prenatal CS also improved glucose tolerance compared to AE/AE animals. AE/AE suppressed hepatic gene expression of peroxisome proliferator activated receptor alpha (Ppara) and low-density lipoprotein receptor (Ldlr), which regulate fatty acid catabolism and cholesterol reuptake, respectively, in male offspring. However, these changes were not rectified by prenatal CS. In conclusion, AE/AE led to an increased risk of steatosis and was partially prevented by prenatal CS in male mice.


Subject(s)
Choline , Dietary Supplements , Ethanol , Liver , Mice, Inbred C57BL , Prenatal Exposure Delayed Effects , Animals , Female , Pregnancy , Choline/administration & dosage , Male , Liver/metabolism , Liver/drug effects , Mice , Fatty Liver/prevention & control , Fatty Liver/etiology , Triglycerides/metabolism , PPAR alpha/metabolism , Receptors, LDL/genetics , Receptors, LDL/metabolism , Glucose Intolerance/prevention & control , Lipid Metabolism/drug effects
3.
BMC Public Health ; 24(1): 1460, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38822299

ABSTRACT

BACKGROUND: The role of diet choline in atherosclerotic cardiovascular disease (ASCVD) is uncertain. Findings from animal experiments are contradictory while there is a lack of clinical investigations. This study aimed to investigate the association between choline intake and ASCVD based on individuals from the National Health and Nutrition Examination Survey (NHANES) database. METHODS: This cross-sectional study was conducted in 5525 individuals from the NHANES between 2011 and 2018. Participants were categorized into the ASCVD (n = 5015) and non-ASCVD (n = 510) groups. Univariable and multivariable-adjusted regression analyses were employed to investigate the relationship between diet choline and pertinent covariates. Logistic regression analysis and restricted cubic spline analysis were used to evaluate the association between choline intake and ASCVD. RESULTS: ASCVD participants had higher choline intake compared to those without ASCVD. In the higher tertiles of choline intake, there was a greater proportion of males, married individuals, highly educated individuals, and those with increased physical activity, but a lower proportion of smokers and drinkers. In the higher tertiles of choline intake, a lower proportion of individuals had a history of congestive heart failure and stroke. After adjusting for age, gender, race, ethnicity, and physical activity, an inverse association between choline intake and heart disease, stroke, and ASCVD was found. A restricted cubic spline analysis showed a mirrored J-shaped relationship between choline and ASCVD, stroke and congestive heart failure in males. There was no association between dietary choline and metabolic syndrome. CONCLUSION: An inverse association was observed between choline intake and ASVCD among U.S. adults. Further large longitudinal studies are needed to test the causal relationship of choline and ASVCD.


Subject(s)
Atherosclerosis , Choline , Diet , Nutrition Surveys , Humans , Choline/administration & dosage , Male , Female , Cross-Sectional Studies , Middle Aged , United States/epidemiology , Atherosclerosis/epidemiology , Diet/statistics & numerical data , Adult , Aged , Cardiovascular Diseases/epidemiology
4.
Clin Nutr ; 43(6): 1503-1515, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38729079

ABSTRACT

BACKGROUND & AIMS: Nonalcoholic fatty liver disease (NAFLD) is related to muscle loss, but the precise mechanism underlying this association remains unclear. The aim of the present study was thus to determine the influence of maternal fatty liver and dietary choline deficiency during pregnancy and/or lactation periods on the skeletal muscle gene expression profile among 24-day-old male rat offspring. METHODS: Histological examination of skeletal muscle tissue specimens obtained from offspring of dams suffering from fatty liver, provided with proper choline intake during pregnancy and lactation (NN), fed a choline-deficient diet during both periods (DD), deprived of choline only during pregnancy (DN), or only during lactation (ND), was performed. The global transcriptome pattern was assessed using a microarray approach (Affymetrix® Rat Gene 2.1 ST Array Strip). The relative expression of selected genes was validated by real-time PCR (qPCR). RESULTS: Morphological differences in fat accumulation in skeletal muscle related to choline supply were observed. The global gene expression profile was consistent with abnormal morphological changes. Mettl21c gene was overexpressed in all choline-deficient groups compared to the NN group, while two genes, Cdkn1a and S100a4, were downregulated. Processes of protein biosynthesis were upregulated, and processes related to cell proliferation and lipid metabolism were inhibited in DD, DN, and ND groups compared to the NN group. CONCLUSIONS: Prenatal and early postnatal exposure to fatty liver and dietary choline deficiency leads to changes in the transcriptome profile in skeletal muscle of 24-day old male rat offspring and is associated with muscle damage, but the mechanism of it seems to be different at different developmental stages of life. Adequate choline intake during pregnancy and lactation can prevent severe muscle disturbance in the progeny of females suffering from fatty liver.


Subject(s)
Choline Deficiency , Choline , Lactation , Muscle, Skeletal , Prenatal Exposure Delayed Effects , Transcriptome , Animals , Female , Pregnancy , Muscle, Skeletal/metabolism , Male , Rats , Choline/administration & dosage , Maternal Nutritional Physiological Phenomena , Rats, Wistar , Diet , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/etiology
5.
Sci Rep ; 14(1): 11366, 2024 05 18.
Article in English | MEDLINE | ID: mdl-38762543

ABSTRACT

Placental leptin may impact foetal development. Maternal overnutrition has been linked to increased plasma leptin levels and adverse effects on offspring, whereas choline, an essential nutrient for foetal development, has shown promise in mitigating some negative impacts of maternal obesity. Here, we investigate whether a maternal obesogenic diet alters foetal growth and leptin levels in the foetal stomach, amniotic fluid (AF), and placenta in late gestation and explore the potential modulating effects of maternal choline supplementation. Female rats were fed a control (CD) or a western diet (WD) four weeks before mating and during gestation, half of them supplemented with choline (pregnancy days 11-17). Leptin levels (in foetal stomach, AF, and placenta) and leptin gene expression (in placenta) were assessed on gestation days 20 and 21. At day 20, maternal WD feeding resulted in greater leptin levels in foetal stomach, placenta, and AF. The increased AF leptin levels were associated with a premature increase in foetal weight in both sexes. Maternal choline supplementation partially prevented these alterations, but effects differed in CD dams, causing increased AF leptin levels and greater weight in male foetuses at day 20. Maternal choline supplementation effectively mitigates premature foetal overgrowth induced by an obesogenic diet, potentially linked to increased AF leptin levels. Further research is needed to explore the sex-specific effects.


Subject(s)
Amniotic Fluid , Choline , Dietary Supplements , Leptin , Animals , Female , Leptin/blood , Leptin/metabolism , Pregnancy , Choline/administration & dosage , Amniotic Fluid/metabolism , Rats , Male , Placenta/metabolism , Placenta/drug effects , Fetal Development/drug effects , Obesity/metabolism , Obesity/etiology , Fetal Weight/drug effects , Rats, Sprague-Dawley , Diet, Western/adverse effects
6.
J Nutr ; 154(6): 1936-1944, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38582387

ABSTRACT

BACKGROUND: Phosphatidylcholine (PC) derived from eggs has been shown to beneficially modulate T cell response and intestinal permeability under the context of a high-fat diet. OBJECTIVES: The objective of this study was to determine whether there is a differential effect of plant and animal-derived sources of PC on immune function. METHODS: Four-week-old male Wistar rats were randomly assigned to consume 1 of 4 diets (n = 10/group) for 12 wk, all containing 1.5 g of total choline/kg of diet but differing in choline forms: 1-Control Low-Fat [CLF, 20% fat, 100% free choline (FC)]; 2-Control High-Fat (CHF, 50% fat, 100% FC); 3-High-Fat Egg-derived PC (EPC, 50% fat, 100% Egg-PC); 4-High-Fat Soy-derived PC (SPC, 50% fat, 100% Soy-PC). Immune cell functions and phenotypes were measured in splenocytes by ex vivo cytokine production after mitogen stimulation and flow cytometry, respectively. RESULTS: The SPC diet increased splenocyte IL-2 production after PMA+I stimulation compared with the CHF diet. However, the SPC group had a lower proportion of splenocytes expressing the IL-2 receptor (CD25+, P < 0.05). After PMA+I stimulation, feeding EPC normalized splenocyte production of IL-10 relative to the CLF diet, whereas SPC did not (P < 0.05). In mesenteric lymph node lymphocytes, the SPC diet group produced more IL-2 and TNF-α after PMA+I stimulation than the CHF diet, whereas the EPC diet group did not. CONCLUSIONS: Our results suggest that both egg- and soy-derived PC may attenuate high-fat diet-induced T cell dysfunction. However, egg-PC enhances, to a greater extent, IL-10, a cytokine involved in promoting the resolution phase of inflammation, whereas soy-PC appears to elicit a greater effect on gut-associated immune responses.


Subject(s)
Diet, High-Fat , Phosphatidylcholines , Rats, Wistar , Spleen , Animals , Male , Rats , Spleen/drug effects , Spleen/immunology , Eggs , Dietary Fats/pharmacology , Glycine max/chemistry , Interleukin-2/metabolism , Cytokines/metabolism , Choline/pharmacology , Choline/administration & dosage
7.
Nutrients ; 16(8)2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38674900

ABSTRACT

We aimed to investigate the associations between maternal intake of folate, vitamin B12, B6, B2, methionine, choline, phosphatidylcholine and betaine during the period surrounding pregnancy and offspring weight outcomes from birth to early adulthood. These associations were examined among 2454 mother-child pairs from the Nurses' Health Study II and Growing Up Today Study. Maternal energy-adjusted nutrient intakes were derived from food frequency questionnaires. Birth weight, body size at age 5 and repeated BMI measurements were considered. Overweight/obesity was defined according to the International Obesity Task Force (<18 years) and World Health Organization guidelines (18+ years). Among other estimands, we report relative risks (RRs) for offspring ever being overweight with corresponding 95% confidence intervals across quintiles of dietary factors, with the lowest quintile as the reference. In multivariate-adjusted models, higher maternal intakes of phosphatidylcholine were associated with a higher risk of offspring ever being overweight (RRQ5vsQ1 = 1.16 [1.01-1.33] p-trend: 0.003). The association was stronger among offspring born to mothers with high red meat intake (high red meat RRQ5vsQ1 = 1.50 [1.14-1.98], p-trend: 0.001; low red meat RRQ5vsQ1 = 1.05 [0.87-1.27], p-trend: 0.46; p-interaction = 0.13). Future studies confirming the association between a higher maternal phosphatidylcholine intake during pregnancy and offspring risk of being overweight or obese are needed.


Subject(s)
Maternal Nutritional Physiological Phenomena , Overweight , Humans , Female , Pregnancy , Prospective Studies , Adult , Overweight/epidemiology , Diet/adverse effects , Risk Factors , Male , Obesity/epidemiology , Obesity/etiology , Child, Preschool , Body Mass Index , Choline/administration & dosage , Phosphatidylcholines , Prenatal Exposure Delayed Effects , Birth Weight
8.
Clin Nutr ; 43(6): 1216-1223, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38636347

ABSTRACT

BACKGROUND & AIMS: Both maternal metabolic dysregulation, e.g., gestational diabetes mellitus (GDM), and maternal supply of nutrients that participate in one-carbon (1C) metabolism, e.g., folate, choline, betaine, and vitamin B12, have been demonstrated to influence epigenetic modification such as DNA methylation, thereby exerting long-lasting impacts on growth and development of offspring. This study aimed to determine how maternal 1C nutrient intake was associated with DNA methylation and further, development of children, as well as whether maternal GDM status modified the association in a prospective cohort. METHODS: In this study, women with (n = 18) and without (n = 20) GDM were recruited at 25-33 weeks gestation. Detailed dietary intake data was collected by 3-day 24-h dietary recall and nutrient levels in maternal blood were also assessed at enrollment. The maternal-child dyads were invited to participate in a 2-year follow-up during which anthropometric measurement and the Bayley Scales of Infant and Toddler Development™ Screening Test (Third Edition) were conducted on children. The association between maternal 1C nutrients and children's developmental outcomes was analyzed with a generalized linear model controlling for maternal GDM status. RESULTS: We found that children born to mothers with GDM had lower scores in the language domain of the Bayley test (p = 0.049). Higher maternal food folate and choline intakes were associated with better language scores in children (p = 0.01 and 0.025, respectively). Higher maternal food folate intakes were also associated with better cognitive scores in children (p = 0.002). Higher 1C nutrient intakes during pregnancy were associated with lower body weight of children at 2 years of age (p < 0.05). However, global DNA methylation of children's buccal cells was not associated with any maternal 1C nutrients. CONCLUSIONS: In conclusion, higher 1C nutrient intake during pregnancy was associated with lower body weight and better neurodevelopmental outcomes of children. This may help overcome the lower language scores seen in GDM-affected children in this cohort. Studies in larger cohorts and with a longer follow-up duration are needed to further delineate the relationship between prenatal 1C nutrient exposure, especially in GDM-affected pregnancies, and offspring health outcomes.


Subject(s)
Child Development , Diabetes, Gestational , Humans , Female , Pregnancy , Prospective Studies , Child Development/physiology , Follow-Up Studies , Adult , Child, Preschool , DNA Methylation , Choline/administration & dosage , Choline/blood , Prenatal Exposure Delayed Effects , Male , Folic Acid/blood , Folic Acid/administration & dosage , Maternal Nutritional Physiological Phenomena , Diet/statistics & numerical data , Diet/methods , Infant , Vitamin B 12/blood , Vitamin B 12/administration & dosage , Betaine/administration & dosage , Betaine/blood
9.
Clin Nutr ; 43(6): 1353-1362, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38677046

ABSTRACT

BACKGROUND AND AIMS: There is a lack of evidence on dietary intake of methyl donor nutrients with metabolic health status and related biomarkers. Thus, this study aimed to assess the relation between methyl donor nutrients intake and metabolic health status with regarding the interactive roles of brain-derived neurotrophic factor (BDNF) and adropin in Iranian adults. METHODS: This cross-sectional survey was conducted among 527 Iranian adults (45.7% female) selected by multistage cluster random-sampling method. A validated food frequency questionnaire was used to evaluate participants' dietary intake. Metabolic unhealthy status was defined by Wildman criteria as having ≥ 2 of hyperglycemia, hypertriglyceridemia, hypo-HDL-cholesterolemia, hypertension, chronic inflammation, and insulin resistance. Concentrations of metabolic parameters, BDNF and adropin were determined using fasting blood samples. RESULTS: An inverse association was found between methyl donor nutrients intake and metabolically unhealthy status in multivariable-adjusted model (ORT3 vs. T1 = 0.30; 95%CI: 0.12-0.75). This association was especially significant among overweight/obese adults and was stronger in women. Additionally, consumption of vitamin B6 and choline was separately related to reduced odds of metabolically unhealthy status. Methyl donor intake was not significantly related to low BDNF (ORT3 vs. T1 = 0.93; 95%CI: 0.60-1.44) and adropin (ORT3 vs. T1 = 0.71; 95%CI: 0.44-1.15). However, the interaction between high methyl donor nutrients intake and high BDNF was related to lower odds of metabolically unhealthy status in multivariable-adjusted model (ORMDNS∗BDNF = 0.27; 95%CI: 0.11-0.67). CONCLUSION: Higher intake of methyl donor nutrients, alone and in interaction with BDNF levels, was associated with decreased odds of metabolically unhealthy status in Iranian adults.


Subject(s)
Brain-Derived Neurotrophic Factor , Humans , Brain-Derived Neurotrophic Factor/blood , Female , Male , Cross-Sectional Studies , Adult , Iran , Middle Aged , Blood Proteins/metabolism , Blood Proteins/analysis , Intercellular Signaling Peptides and Proteins/blood , Diet/statistics & numerical data , Diet/methods , Biomarkers/blood , Health Status , Choline/blood , Choline/administration & dosage
10.
Br J Nutr ; 131(11): 1926-1933, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38443195

ABSTRACT

Methyl donor micronutrients might affect muscle strength via DNA methylation. We aimed to evaluate the combined relationship of dietary methyl donor micronutrients containing betaine, choline, methionine, vitamin B12, vitamin B6 and folate on muscle strength. This cross-sectional study was conducted on 267 subjects including 113 men and 154 women. Dietary intake of micronutrients was assessed utilising a validated 168-item semi-quantitative FFQ, and methyl donor micronutrient score (MDMS) was calculated. The muscle strength of the participants was measured using a digital handgrip dynamometer. The association was determined using linear regression analysis. The mean age of participants was 36·8 ± 13·2 years. After taking into account potential confounding variables, there was no significant association between dietary methyl donor micronutrient score (MDMS) and the mean left-hand muscle strength (ß: 0·07, se: 0·05, P = 0·07); however, the changes were significant in the mean right-hand muscle strength (ß: 0·09, se: 0·04, P = 0·03). There was also a significant positive relationship between mean muscle strength and methyl donors' intake after fully adjusting for potential confounders (ß: 0·08, se: 0·04, P = 0·04). In conclusion, our findings revealed that higher dietary methyl donor micronutrient consumption is associated with enhanced muscle strength. As a result, advice on a higher intake of methyl donor-rich foods including grains, nuts, dairy products and seafood might be recommended by dietitians as a general guideline to adhere to. Additional prospective studies are needed to confirm the findings.


Subject(s)
Diet , Folic Acid , Micronutrients , Muscle Strength , Humans , Female , Male , Cross-Sectional Studies , Adult , Micronutrients/administration & dosage , Middle Aged , Folic Acid/administration & dosage , Betaine/administration & dosage , Hand Strength/physiology , Methionine/administration & dosage , Choline/administration & dosage , Vitamin B 12/administration & dosage , Young Adult , Vitamin B 6/administration & dosage
11.
SEMERGEN, Soc. Esp. Med. Rural Gen. (Ed. Impr.) ; 50(1): [e102089], ene.- feb. 2024. tab
Article in Spanish | IBECS | ID: ibc-229441

ABSTRACT

El embarazo es uno de los momentos más importantes y difíciles por los que transcurre una mujer a lo largo de su vida. Supone un periodo de grandes necesidades de macro y micronutrientes para satisfacer las demandas del feto en desarrollo y evitar carencias, para así obtener el mejor resultado posible. Hoy en día, la mayoría de mujeres embarazadas o planeando estarlo conocen la importancia de obtener la cantidad requerida de ciertos tipos de nutrientes (proteínas, grasas, folato, etc.), así como evitar ciertos compuestos (alcohol, tabaco, fármacos, etc.) para evitar posibles complicaciones durante el embarazo. En los últimos años, con la mayor evidencia científica disponible, se ha ido demostrando como algunos de estos nutrientes podrían tener un papel más relevante del que se creía en el resultado óptimo del embarazo, siendo uno de estos nutrientes la colina. La suplementación con colina durante el embarazo ha demostrado ser un tratamiento no farmacológico capaz de mejorar cualidades tanto físicas (crecimiento) como mentales (memoria) del nuevo individuo. La colina se conoce como un nutriente esencial desde 1998 y varios estudios han demostrado su efectividad en modelos de roedores. La existencia de recientes publicaciones que versan sobre su aplicación en humanos hace necesaria la realización de una revisión sistemática. En esta revisión sistemática de la evidencia científica disponible desde el año 2012 hasta la actualidad que versa sobre la aplicación de un mayor consumo de colina mediante suplementación como tratamiento para mejorar los resultados del embarazo, su objetivo principal es determinar los efectos que puede tener en la cognición de los niños una intervención nutricional mediante suplementación de colina en madres embarazadas (AU)


Pregnancy is one of the most important and difficult moments that a woman goes through throughout her life. It is a period of great need for macro and micronutrients to meet the demands of the developing fetus and avoid deficiencies, in order to obtain the best possible result. Nowadays, most women who are pregnant or planning to become pregnant know the importance of getting the required amount of certain types of nutrients (proteins, fats, folate, etc.), as well as avoiding certain compounds (alcohol, tobacco, drugs, etc.) to avoid possible complications during pregnancy. In recent years, with the greatest scientific evidence available, it has been shown how some of these nutrients could have a more relevant role than previously believed in the optimal outcome of pregnancy. One of these nutrients being choline. Choline supplementation during pregnancy has been shown to be a non-pharmacological treatment capable of improving both physical (growth) and mental (memory) qualities of the new individual. Choline has been known as an essential nutrient since 1998 and several studies have shown its effectiveness in rodent models. The existence of recent publications that deal with its application in humans makes it necessary to carry out a systematic review. In this systematic review of the scientific evidence available from 2012 to the present that deals with the application of a higher intake of choline through supplementation as a treatment to improve pregnancy outcomes, its main objetive is to determine the effects that a nutritional intervention through choline supplementation in pregnant mothers can have on children's cognition (AU)


Subject(s)
Humans , Female , Pregnancy , Infant, Newborn , Dietary Supplements , Choline/administration & dosage , Lipotropic Agents/administration & dosage
12.
Appl Physiol Nutr Metab ; 49(6): 868-873, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38320263

ABSTRACT

There is concern that during a low-risk pregnancy, women are consuming more than recommended (400 µg/day) supplemental folic acid and may not meet recommendations for other nutrients. The objective of this study was to determine folic acid supplement use and dietary folate intakes in the second trimester (week 18) of pregnancy in women (n = 2996) in the Canadian CHILD cohort study. Vitamin B12 and choline intakes were also assessed because they are metabolically related to folate. The majority of participants (71.6%) were consuming a daily prenatal supplement. Twenty-eight percent of women (n = 847) reported consuming a folic acid supplement and of these women, 45.3% had daily supplemental folic acid intakes above the upper intake level (UL; 1000 µg/day). Daily dietary folate intakes were (mean (SD)) 575 (235) DFE µg/day. In contrast, only 24.8% of women met the dietary choline adequate intake (AI) recommendation (AI ≥ 450 mg/day) with a mean (SD) intake of 375 (151) mg/day. Further understanding of the impact of supplemental folic acid intake above the UL and low choline intake during pregnancy requires further investigation.


Subject(s)
Choline , Dietary Supplements , Folic Acid , Pregnancy Trimester, Second , Humans , Female , Folic Acid/administration & dosage , Choline/administration & dosage , Pregnancy , Canada , Adult , Cohort Studies , Recommended Dietary Allowances , Vitamin B 12/administration & dosage , Diet , Maternal Nutritional Physiological Phenomena
13.
Lipids Health Dis ; 22(1): 75, 2023 Jun 20.
Article in English | MEDLINE | ID: mdl-37340479

ABSTRACT

BACKGROUND: Choline, as a neurotransmitter acetylcholine precursor, is reportedly associated with cognitive function. Although there are several cohort and animal studies on choline-containing foods and cognitive function, only a few interventional studies were reported. Egg yolk is a rich source of different choline-containing chemical forms, such as phosphatidylcholine (PC), lysophosphatidylcholine (LPC), and α-glycerophosphocholine (α-GPC). This study aimed to investigate the effect of consuming 300 mg of egg yolk choline per day on cognitive function of Japanese adults. METHODS: A 12-week, randomized, double-blind, placebo-controlled, parallel-group study was conducted in 41 middle-aged and elderly males and females (43.9% female) aged ≥ 60 years and ≤ 80 years without dementia. Participants were randomly assigned to placebo and choline groups. The choline group received a supplement containing egg yolk choline (300 mg/day), and the placebo group received an egg yolk supplement free from choline for 12 weeks. Assessments of Cognitrax, Trail Making Tests (TMT) part A and B, the MOS 36-Item Short-Form Health Survey (SF-36), the Simplified Japanese Version of the WHO-Five Well-Being Index (WHO-5), and plasma choline levels were performed before and 6 and 12 weeks after supplement intake. In the present study, 19 subjects (9 in the placebo group and 10 in the choline group) were excluded due to the violation of the discontinuation criteria or participant compliance, and 41 subjects were analyzed. RESULTS: The change amount of verbal memory scores and verbal memory test-correct hit (delay) was significantly higher in the choline group than in the placebo group at baseline-6 and baseline-12 weeks. The plasma free choline level was significantly higher in the choline group compared with the placebo group at 6 weeks. Conversely, the choline group showed significantly lower Cognitrax processing speed scores, symbol digit coding testing correct responses, and SF-36 physical quality of life summary scores compared to the placebo group at 6 weeks. CONCLUSIONS: The results suggested that continued 300 mg/day intake of egg yolk choline improved verbal memory, which is a part of cognitive functions. To confirm the observed effects of egg yolk choline, more well-designed and large-scale studies are warranted. TRIAL REGISTRATION: Study protocols were pre-registered in the Clinical Trials Registration System (UMIN-CTR) (UMIN 000045050).


Subject(s)
Choline , Cognition , Egg Yolk , Female , Humans , Male , Choline/administration & dosage , Double-Blind Method , East Asian People , Quality of Life , Middle Aged , Aged
14.
J Hum Nutr Diet ; 35(4): 701-712, 2022 08.
Article in English | MEDLINE | ID: mdl-35668704

ABSTRACT

BACKGROUND: Choline and its metabolites apppear to have relationships with body mass index (BMI), body fat, and body weight, but the research results have proved inconsistent. We thus investigated the associations of plasma levels of trimethylamine N-oxide (TMAO), choline, and betaine with anthropometric measurements, including modulatory effects of genetics and diet. METHODS: The study was performed on a group of 421 adults, aged 20-40 years, who had been recruited in Poland. Plasma concentrations of choline, betaine, and TMAO were determined using reverse-phase ultra-high-performance liquid chromatography electrospray ionisation mass spectrometry. The following polymorphisms were genotyped using TaqMan probes: rs180113 (MTHFR), rs70991108 (DHFR), rs2236225 (MTHFD1), and rs7946 and rs12325817 (PEMT). We employed multivariate linear regression to examine the associations between anthropometric measurements, one-carbon metabolism metabolites, and genotypes. RESULTS: Higher plasma choline was associated with higher BMI (ß = 0.17; p < 0.01), body weight (ß = 0.11; p < 0.05), body fat mass (FM) (ß = 0.10; p < 0.05), and waist circumference (WC) (ß = 0.14; p < 0.01), whereas higher choline intake was associated with lower body FM (ß = -0.14; p < 0.01) and lower WC (ß = -0.12; p < 0.01). After stratification by sex, plasma betaine was found to be associated with lower BMI (ß = -0.20; p < 0.05) and body weight (ß = -0.16; p < 0.05) in men only, whereas choline intake was associated with lower body FM (ß = -0.19; p < 0.05) and waist-to-hip ratio (WHR) (ß = -0.19; p < 0.05) and MTHFR CC genotype was associated with WHR (ß = 0.15; p < 0.05) in women only. CONCLUSIONS: Higher plasma betaine and higher dietary choline are associated with lower FM and body weight, whereas higher plasma choline is positively associated with body weight status and adiposity. Moreover, these associations appear to be sex-specific.


Subject(s)
Betaine , Choline , Methylenetetrahydrofolate Reductase (NADPH2) , Adult , Betaine/blood , Body Mass Index , Body Weight , Choline/administration & dosage , Choline/blood , Diet , Female , Humans , Male , Methylenetetrahydrofolate Reductase (NADPH2)/genetics , Sex Factors , Waist Circumference
15.
Nutrients ; 14(2)2022 Jan 08.
Article in English | MEDLINE | ID: mdl-35057441

ABSTRACT

Few studies on humans have comprehensively evaluated the intake composition of methyl-donor nutrients (MDNs: choline, betaine, and folate) in relation to visceral obesity (VOB)-related hepatic steatosis (HS), the hallmark of non-alcoholic fatty liver diseases. In this case-control study, we recruited 105 patients with HS and 104 without HS (controls). HS was diagnosed through ultrasound examination. VOB was measured using a whole-body analyzer. MDN intake was assessed using a validated quantitative food frequency questionnaire. After adjustment for multiple HS risk factors, total choline intake was the most significant dietary determinant of HS in patients with VOB (Beta: -0.41, p = 0.01). Low intake of choline (<6.9 mg/kg body weight), betaine (<3.1 mg/kg body weight), and folate (<8.8 µg/kg body weight) predicted increased odds ratios (ORs) of VOB-related HS (choline: OR: 22, 95% confidence interval [CI]: 6.5-80; betaine: OR: 14, 95% CI: 4.4-50; and folate: OR: 19, 95% CI: 5.2-74). Combined high intake of choline and betaine, but not folate, was associated with an 81% reduction in VOB-related HS (OR: 0.19, 95% CI: 0.05-0.69). Our data suggest that the optimal intake of choline and betaine can minimize the risk of VOB-related HS in a threshold-dependent manner.


Subject(s)
Betaine/administration & dosage , Choline/administration & dosage , Fatty Liver/prevention & control , Folic Acid/administration & dosage , Obesity, Abdominal/complications , Adiposity , Aged , Biomarkers/blood , Body Composition , Case-Control Studies , Diet Records , Eating , Fatty Liver/blood , Fatty Liver/diagnostic imaging , Fatty Liver/etiology , Female , Humans , Male , Middle Aged , Obesity/blood , Obesity, Abdominal/blood , Obesity, Abdominal/diagnosis , Odds Ratio , Taiwan , Ultrasonography
16.
Nutrients ; 14(2)2022 Jan 15.
Article in English | MEDLINE | ID: mdl-35057545

ABSTRACT

Women's nutritional status during pregnancy can have long-term effects on children's brains and cognitive development. Folate and choline are methyl-donor nutrients and are important for closure of the neural tube during fetal development. They have also been associated with brain and cognitive development in children. Animal studies have observed that prenatal folate and choline supplementation is associated with better cognitive outcomes in offspring and that these nutrients may have interactive effects on brain development. Although some human studies have reported associations between maternal folate and choline levels and child cognitive outcomes, results are not consistent, and no human studies have investigated the potential interactive effects of folate and choline. This lack of consistency could be due to differences in the methods used to assess folate and choline levels, the gestational trimester at which they were measured, and lack of consideration of potential confounding variables. This narrative review discusses and critically reviews current research examining the associations between maternal levels of folate and choline during pregnancy and brain and cognitive development in children. Directions for future research that will increase our understanding of the effects of these nutrients on children's neurodevelopment are discussed.


Subject(s)
Brain/growth & development , Child Development , Choline/blood , Cognition , Folic Acid/blood , Prenatal Nutritional Physiological Phenomena , Animals , Child , Child, Preschool , Choline/administration & dosage , Female , Fetal Development , Folic Acid/administration & dosage , Humans , Infant , Male , Mice , Nutritional Status , Pregnancy , Surveys and Questionnaires , Vitamins/administration & dosage
17.
Nutrients ; 14(2)2022 Jan 15.
Article in English | MEDLINE | ID: mdl-35057548

ABSTRACT

Maternal dietary micronutrients and omega-3 fatty acids support development of the fetal and neonatal immune system. Whether supplementation is similarly beneficial for the mother during gestation has received limited attention. A scoping review of human trials was conducted looking for evidence of biochemical, genomic, and clinical effects of supplementation on the maternal immune system. The authors explored the literature on PubMed, Cochrane Library, and Web of Science databases from 2010 to the present day using PRISMA-ScR methodology. Full-length human trials in English were searched for using general terms and vitamin A, B12, C, D, and E; choline; iodine; iron; selenium; zinc; and docosahexaenoic/eicosapentaenoic acid. Of 1391 unique articles, 36 were eligible for inclusion. Diverse biochemical and epigenomic effects of supplementation were identified that may influence innate and adaptive immunity. Possible clinical benefits were encountered in malaria, HIV infections, anemia, Type 1 diabetes mellitus, and preventing preterm delivery. Only limited publications were identified that directly explored maternal immunity in pregnancy and the effects of micronutrients. None provided a holistic perspective. It is concluded that supplementation may influence biochemical aspects of the maternal immune response and some clinical outcomes, but the evidence from this review is not sufficient to justify changes to current guidelines.


Subject(s)
Fatty Acids, Omega-3/administration & dosage , Immune System/drug effects , Maternal Health , Micronutrients/administration & dosage , Prenatal Nutritional Physiological Phenomena , Adult , Anemia/immunology , Choline/administration & dosage , Diabetes Mellitus, Type 1/immunology , Dietary Supplements , Female , HIV Infections/immunology , Humans , Iodine/administration & dosage , Iron/administration & dosage , Mothers , Pregnancy , Selenium/administration & dosage , Trace Elements/administration & dosage , Vitamins/administration & dosage , Zinc/administration & dosage
18.
Elife ; 112022 01 24.
Article in English | MEDLINE | ID: mdl-35072627

ABSTRACT

Obesity has repeatedly been linked to reorganization of the gut microbiome, yet to this point obesity therapeutics have been targeted exclusively toward the human host. Here, we show that gut microbe-targeted inhibition of the trimethylamine N-oxide (TMAO) pathway protects mice against the metabolic disturbances associated with diet-induced obesity (DIO) or leptin deficiency (Lepob/ob). Small molecule inhibition of the gut microbial enzyme choline TMA-lyase (CutC) does not reduce food intake but is instead associated with alterations in the gut microbiome, improvement in glucose tolerance, and enhanced energy expenditure. We also show that gut microbial CutC inhibition is associated with reorganization of host circadian control of both phosphatidylcholine and energy metabolism. This study underscores the relationship between microbe and host metabolism and provides evidence that gut microbe-derived trimethylamine (TMA) is a key regulator of the host circadian clock. This work also demonstrates that gut microbe-targeted enzyme inhibitors have potential as anti-obesity therapeutics.


Subject(s)
Choline/analogs & derivatives , Circadian Rhythm/drug effects , Gastrointestinal Microbiome/drug effects , Obesity/metabolism , Animals , Choline/administration & dosage , Choline/metabolism , Diet, High-Fat , Enzyme Inhibitors/pharmacology , Leptin/deficiency , Lyases/drug effects , Male , Methylamines/metabolism , Mice , Mice, Inbred C57BL , Obesity/genetics , Obesity/microbiology
19.
FASEB J ; 36(1): e22054, 2022 01.
Article in English | MEDLINE | ID: mdl-34962672

ABSTRACT

Numerous rodent studies demonstrate developmental programming of offspring cognition by maternal choline intake, with prenatal choline deprivation causing lasting adverse effects and supplemental choline producing lasting benefits. Few human studies have evaluated the effect of maternal choline supplementation on offspring cognition, with none following children to school age. Here, we report results from a controlled feeding study in which pregnant women were randomized to consume 480 mg choline/d (approximately the Adequate Intake [AI]) or 930 mg choline/d during the 3rd trimester. Sustained attention was assessed in the offspring at age 7 years (n = 20) using a signal detection task that showed benefits of maternal choline supplementation in a murine model. Children in the 930 mg/d group showed superior performance (vs. 480 mg/d group) on the primary endpoint (SAT score, p = .02) and a superior ability to maintain correct signal detections (hits) across the 12-min session (p = .02), indicative of improved sustained attention. This group difference in vigilance decrement varied by signal duration (p = .04). For the briefest (17 ms) signals, the 480 mg/d group showed a 22.9% decline in hits across the session compared to a 1.5% increase in hits for the 930 mg/d group (p = .04). The groups did not differ in vigilance decrement for 29 or 50 ms signals. This pattern suggests an enhanced ability to sustain perceptual amplification of a brief low-contrast visual signal by children in the 930 mg/d group. This inference of improved sustained attention by the 930 mg/d group is strengthened by the absence of group differences for false alarms, omissions, and off-task behaviors. This pattern of results indicates that maternal 3rd trimester consumption of the choline AI for pregnancy (vs. double the AI) produces offspring with a poorer ability to sustain attention-reinforcing concerns that, on average, choline consumption by pregnant women is approximately 70% of the AI.


Subject(s)
Attention/drug effects , Child Development/drug effects , Choline/administration & dosage , Dietary Supplements , Maternal Nutritional Physiological Phenomena , Pregnancy Trimester, Third , Animals , Child , Child, Preschool , Double-Blind Method , Female , Follow-Up Studies , Humans , Infant , Infant, Newborn , Male , Mice , Pregnancy
20.
Surgery ; 171(1): 55-62, 2022 01.
Article in English | MEDLINE | ID: mdl-34340823

ABSTRACT

BACKGROUND: Primary hyperparathyroidism historically necessitated bilateral neck exploration to remove abnormal parathyroid tissue. Improved localization allows for focused parathyroidectomy with lower complication risks. Recently, positron emission tomography using radiolabeled 18F-fluorocholine demonstrated high accuracy in detecting these lesions, but its cost-effectiveness has not been studied in the United States. METHODS: A decision tree modeled patients who underwent parathyroidectomy for primary hyperparathyroidism using single preoperative localization modalities: (1) positron emission tomography using radiolabeled 18F-fluorocholine, (2) 4-dimensional computed tomography, (3) ultrasound, and (4) sestamibi single photon emission computed tomography (SPECT). All patients underwent either focused parathyroidectomy versus bilateral neck exploration, with associated cost ($) and clinical outcomes measured in quality-adjusted life-years gained. Model parameters were informed by literature review and Medicare costs. Incremental cost-utility ratios were calculated in US dollars/quality-adjusted life-years gained, with a willingness-to-pay threshold set at $100,000/quality-adjusted life-year. One-way, 2-way, and threshold sensitivity analyses were performed. RESULTS: Positron emission tomography using radiolabeled 18F-fluorocholine gained the most quality-adjusted life-years (23.9) and was the costliest ($2,096), with a total treatment cost of $11,245 or $470/quality-adjusted life-year gained. Sestamibi single photon emission computed tomography and ultrasound were dominated strategies. Compared with 4-dimentional computed tomography, the incremental cost-utility ratio for positron emission tomography using radiolabeled 18F-fluorocholine was $91,066/quality-adjusted life-year gained in our base case analysis, which was below the willingness-to-pay threshold. In 1-way sensitivity analysis, the incremental cost-utility ratio was sensitive to test accuracy, positron emission tomography using radiolabeled 18F-fluorocholine price, postoperative complication probabilities, proportion of bilateral neck exploration patients needing overnight hospitalization, and life expectancy. CONCLUSION: Our model elucidates scenarios in which positron emission tomography using radiolabeled 18F-fluorocholine can potentially be a cost-effective imaging option for primary hyperparathyroidism in the United States. Further investigation is needed to determine the maximal cost-effectiveness for positron emission tomography using radiolabeled 18F-fluorocholine in selected populations.


Subject(s)
Cost-Benefit Analysis/statistics & numerical data , Hyperparathyroidism, Primary/diagnosis , Parathyroid Glands/diagnostic imaging , Parathyroid Neoplasms/diagnosis , Positron-Emission Tomography/economics , Choline/administration & dosage , Choline/analogs & derivatives , Choline/economics , Fluorine Radioisotopes/administration & dosage , Fluorine Radioisotopes/economics , Four-Dimensional Computed Tomography/economics , Humans , Hyperparathyroidism, Primary/economics , Hyperparathyroidism, Primary/etiology , Hyperparathyroidism, Primary/surgery , Medicare/economics , Medicare/statistics & numerical data , Models, Economic , Parathyroid Glands/pathology , Parathyroid Glands/surgery , Parathyroid Neoplasms/complications , Parathyroid Neoplasms/economics , Parathyroid Neoplasms/surgery , Parathyroidectomy , Positron Emission Tomography Computed Tomography/economics , Positron-Emission Tomography/methods , Preoperative Care/economics , Preoperative Care/methods , Quality-Adjusted Life Years , Radiopharmaceuticals/administration & dosage , Radiopharmaceuticals/economics , Sensitivity and Specificity , Technetium Tc 99m Sestamibi/administration & dosage , Technetium Tc 99m Sestamibi/economics , Ultrasonography/economics , United States
SELECTION OF CITATIONS
SEARCH DETAIL
...