Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 272
Filter
1.
Neurotox Res ; 42(3): 28, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38842585

ABSTRACT

Parkinson's disease with dementia (PDD) is a neurological disorder that clinically and neuropathologically overlaps with Parkinson's disease (PD) and Alzheimer's disease (AD). Although it is assumed that alpha-synuclein ( α -Syn), amyloid beta (A ß ), and the protein Tau might synergistically induce cholinergic neuronal degeneration, presently the pathological mechanism of PDD remains unclear. Therefore, it is essential to delve into the cellular and molecular aspects of this neurological entity to identify potential targets for prevention and treatment strategies. Cholinergic-like neurons (ChLNs) were exposed to rotenone (ROT, 10 µ M) for 24 h. ROT provokes loss of Δ Ψ m , generation of reactive oxygen species (ROS), phosphorylation of leucine-rich repeated kinase 2 (LRRK2 at Ser935) concomitantly with phosphorylation of α -synuclein ( α -Syn, Ser129), induces accumulation of intracellular A ß (iA ß ), oxidized DJ-1 (Cys106), as well as phosphorylation of TAU (Ser202/Thr205), increases the phosphorylation of c-JUN (Ser63/Ser73), and increases expression of proapoptotic proteins TP53, PUMA, and cleaved caspase 3 (CC3) in ChLNs. These neuropathological features resemble those reproduced in presenilin 1 (PSEN1) E280A ChLNs. Interestingly, anti-oxidant and anti-amyloid cannabidiol (CBD), JNK inhibitor SP600125 (SP), TP53 inhibitor pifithrin- α (PFT), and LRRK2 kinase inhibitor PF-06447475 (PF475) significantly diminish ROT-induced oxidative stress (OS), proteinaceous, and cell death markers in ChLNs compared to naïve ChLNs. In conclusion, ROT induces p- α -Syn, iA ß , p-Tau, and cell death in ChLNs, recapitulating the neuropathology findings in PDD. Our report provides an excellent in vitro model to test for potential therapeutic strategies against PDD. Our data suggest that ROT induces a neuropathologic phenotype in ChLNs similar to that caused by the mutation PSEN1 E280A.


Subject(s)
Cholinergic Neurons , Rotenone , Rotenone/toxicity , Cholinergic Neurons/drug effects , Cholinergic Neurons/metabolism , Cholinergic Neurons/pathology , Animals , Parkinson Disease/pathology , Parkinson Disease/metabolism , alpha-Synuclein/metabolism , Dementia/pathology , Dementia/metabolism , Phenotype , Reactive Oxygen Species/metabolism , Humans , Cells, Cultured
2.
J Alzheimers Dis ; 99(2): 639-656, 2024.
Article in English | MEDLINE | ID: mdl-38728184

ABSTRACT

Background: Familial Alzheimer's disease (FAD) presenilin 1 E280A (PSEN 1 E280A) is characterized by functional impairment and the death of cholinergic neurons as a consequence of amyloid-ß (Aß) accumulation and abnormal phosphorylation of the tau protein. Currently, there are no available therapies that can cure FAD. Therefore, new therapies are urgently needed for treating this disease. Objective: To assess the effect of sildenafil (SIL) on cholinergic-like neurons (ChLNs) harboring the PSEN 1 E280A mutation. Methods: Wild-type (WT) and PSEN 1 E280A ChLNs were cultured in the presence of SIL (25µM) for 24 h. Afterward, proteinopathy, cell signaling, and apoptosis markers were evaluated via flow cytometry and fluorescence microscopy. Results: We found that SIL was innocuous toward WT PSEN 1 ChLNs but reduced the accumulation of intracellular Aß fragments by 87%, decreased the non-physiological phosphorylation of the protein tau at residue Ser202/Thr205 by 35%, reduced the phosphorylation of the proapoptotic transcription factor c-JUN at residue Ser63/Ser73 by 63%, decreased oxidized DJ-1 at Cys106-SO3 by 32%, and downregulated transcription factor TP53 (tumor protein p53), BH-3-only protein PUMA (p53 upregulated modulator of apoptosis), and cleaved caspase 3 (CC3) expression by 20%, 32%, and 22%, respectively, compared with untreated mutant ChLNs. Interestingly, SIL also ameliorated the dysregulation of acetylcholine-induced calcium ion (Ca2+) influx in PSEN 1 E280A ChLNs. Conclusions: Although SIL showed no antioxidant capacity in the oxygen radical absorbance capacity and ferric ion reducing antioxidant power assays, it might function as an anti-amyloid and antiapoptotic agent and functional neuronal enhancer in PSEN 1 E280A ChLNs. Therefore, the SIL has therapeutic potential for treating FAD.


Subject(s)
Alzheimer Disease , Cholinergic Neurons , Mutation , Presenilin-1 , Sildenafil Citrate , Presenilin-1/genetics , Alzheimer Disease/drug therapy , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Alzheimer Disease/metabolism , Cholinergic Neurons/drug effects , Cholinergic Neurons/metabolism , Cholinergic Neurons/pathology , Mutation/genetics , Animals , Sildenafil Citrate/pharmacology , Amyloid beta-Peptides/metabolism , Humans , Cells, Cultured , Mice , tau Proteins/metabolism , tau Proteins/genetics , Phosphorylation/drug effects , Phenotype
3.
Hear Res ; 447: 109025, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38733712

ABSTRACT

Cortical acetylcholine (ACh) release has been linked to various cognitive functions, including perceptual learning. We have previously shown that cortical cholinergic innervation is necessary for accurate sound localization in ferrets, as well as for their ability to adapt with training to altered spatial cues. To explore whether these behavioral deficits are associated with changes in the response properties of cortical neurons, we recorded neural activity in the primary auditory cortex (A1) of anesthetized ferrets in which cholinergic inputs had been reduced by making bilateral injections of the immunotoxin ME20.4-SAP in the nucleus basalis (NB) prior to training the animals. The pattern of spontaneous activity of A1 units recorded in the ferrets with cholinergic lesions (NB ACh-) was similar to that in controls, although the proportion of burst-type units was significantly lower. Depletion of ACh also resulted in more synchronous activity in A1. No changes in thresholds, frequency tuning or in the distribution of characteristic frequencies were found in these animals. When tested with normal acoustic inputs, the spatial sensitivity of A1 neurons in the NB ACh- ferrets and the distribution of their preferred interaural level differences also closely resembled those found in control animals, indicating that these properties had not been altered by sound localization training with one ear occluded. Simulating the animals' previous experience with a virtual earplug in one ear reduced the contralateral preference of A1 units in both groups, but caused azimuth sensitivity to change in slightly different ways, which may reflect the modest adaptation observed in the NB ACh- group. These results show that while ACh is required for behavioral adaptation to altered spatial cues, it is not required for maintenance of the spectral and spatial response properties of A1 neurons.


Subject(s)
Acoustic Stimulation , Auditory Cortex , Basal Forebrain , Ferrets , Animals , Auditory Cortex/metabolism , Auditory Cortex/physiopathology , Basal Forebrain/metabolism , Sound Localization , Acetylcholine/metabolism , Male , Cholinergic Neurons/metabolism , Cholinergic Neurons/pathology , Auditory Pathways/physiopathology , Auditory Pathways/metabolism , Female , Immunotoxins/toxicity , Basal Nucleus of Meynert/metabolism , Basal Nucleus of Meynert/physiopathology , Basal Nucleus of Meynert/pathology , Neurons/metabolism , Auditory Threshold , Adaptation, Physiological , Behavior, Animal
4.
Int J Mol Sci ; 25(9)2024 May 03.
Article in English | MEDLINE | ID: mdl-38732223

ABSTRACT

Alzheimer's disease (AD) is characterized by a loss of neurons in the cortex and subcortical regions. Previously, we showed that the progressive degeneration of subcortical monoaminergic (MAergic) neurons seen in human AD is recapitulated in the APPswe/PS1ΔE9 (APP/PS) transgenic mouse model. Because degeneration of cholinergic (Ach) neurons is also a prominent feature of AD, we examined the integrity of the Ach system in the APP/PS model. The overall density of Ach fibers is reduced in APP/PS1 mice at 12 and 18 months of age but not at 4 months of age. Analysis of basal forebrain Ach neurons shows no loss of Ach neurons in the APP/PS model. Thus, since MAergic systems show overt cell loss at 18 months of age, the Ach system is less vulnerable to neurodegeneration in the APP/PS1 model. We also examined whether the proximity to Aß deposition affected the degeneration of Ach and 5-HT afferents. We found that the areas closer to the edges of compact Aß deposits exhibit a more severe loss of afferents than the areas that are more distal to Aß deposits. Collectively, the results indicate that the APP/PS model recapitulates the degeneration of multiple subcortical neurotransmitter systems, including the Ach system. In addition, the results indicate that Aß deposits cause global as well as local toxicity to subcortical afferents.


Subject(s)
Alzheimer Disease , Amyloid beta-Protein Precursor , Cholinergic Neurons , Disease Models, Animal , Plaque, Amyloid , Presenilin-1 , Animals , Humans , Mice , Alzheimer Disease/pathology , Alzheimer Disease/metabolism , Alzheimer Disease/genetics , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Cholinergic Neurons/metabolism , Cholinergic Neurons/pathology , Mice, Transgenic , Plaque, Amyloid/pathology , Plaque, Amyloid/metabolism , Presenilin-1/genetics , Presenilin-1/metabolism
5.
Cell Rep ; 43(4): 113999, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38554281

ABSTRACT

Motor neuron (MN) demise is a hallmark of several neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). Post-transcriptional gene regulation can control RNA's fate, and defects in RNA processing are critical determinants of MN degeneration. N6-methyladenosine (m6A) is a post-transcriptional RNA modification that controls diverse aspects of RNA metabolism. To assess the m6A requirement in MNs, we depleted the m6A methyltransferase-like 3 (METTL3) in cells and mice. METTL3 depletion in embryonic stem cell-derived MNs has profound and selective effects on survival and neurite outgrowth. Mice with cholinergic neuron-specific METTL3 depletion display a progressive decline in motor behavior, accompanied by MN loss and muscle denervation, culminating in paralysis and death. Reader proteins convey m6A effects, and their silencing phenocopies METTL3 depletion. Among the m6A targets, we identified transactive response DNA-binding protein 43 (TDP-43) and discovered that its expression is under epitranscriptomic control. Thus, impaired m6A signaling disrupts MN homeostasis and triggers neurodegeneration conceivably through TDP-43 deregulation.


Subject(s)
Cholinergic Neurons , Methyltransferases , Neuromuscular Diseases , Animals , Humans , Mice , Adenosine/metabolism , Adenosine/analogs & derivatives , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/pathology , Amyotrophic Lateral Sclerosis/genetics , Cholinergic Neurons/metabolism , Cholinergic Neurons/pathology , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Methyltransferases/metabolism , Methyltransferases/genetics , Motor Neurons/metabolism , Motor Neurons/pathology , Neuromuscular Diseases/metabolism , Neuromuscular Diseases/pathology
6.
Cell Mol Gastroenterol Hepatol ; 17(6): 907-921, 2024.
Article in English | MEDLINE | ID: mdl-38272444

ABSTRACT

BACKGROUND & AIMS: Intestinal inflammation is associated with loss of enteric cholinergic neurons. Given the systemic anti-inflammatory role of cholinergic innervation, we hypothesized that enteric cholinergic neurons similarly possess anti-inflammatory properties and may represent a novel target to treat inflammatory bowel disease. METHODS: Mice were fed 2.5% dextran sodium sulfate (DSS) for 7 days to induce colitis. Cholinergic enteric neurons, which express choline acetyltransferase (ChAT), were focally ablated in the midcolon of ChAT::Cre;R26-iDTR mice by local injection of diphtheria toxin before colitis induction. Activation of enteric cholinergic neurons was achieved using ChAT::Cre;R26-ChR2 mice, in which ChAT+ neurons express channelrhodopsin-2, with daily blue light stimulation delivered via an intracolonic probe during the 7 days of DSS treatment. Colitis severity, ENS structure, and smooth muscle contractility were assessed by histology, immunohistochemistry, quantitative polymerase chain reaction, organ bath, and electromyography. In vitro studies assessed the anti-inflammatory role of enteric cholinergic neurons on cultured muscularis macrophages. RESULTS: Ablation of ChAT+ neurons in DSS-treated mice exacerbated colitis, as measured by weight loss, colon shortening, histologic inflammation, and CD45+ cell infiltration, and led to colonic dysmotility. Conversely, optogenetic activation of enteric cholinergic neurons improved colitis, preserved smooth muscle contractility, protected against loss of cholinergic neurons, and reduced proinflammatory cytokine production. Both acetylcholine and optogenetic cholinergic neuron activation in vitro reduced proinflammatory cytokine expression in lipopolysaccharide-stimulated muscularis macrophages. CONCLUSIONS: These findings show that enteric cholinergic neurons have an anti-inflammatory role in the colon and should be explored as a potential inflammatory bowel disease treatment.


Subject(s)
Choline O-Acetyltransferase , Cholinergic Neurons , Colitis , Dextran Sulfate , Disease Models, Animal , Optogenetics , Animals , Colitis/pathology , Colitis/chemically induced , Cholinergic Neurons/pathology , Cholinergic Neurons/metabolism , Optogenetics/methods , Mice , Choline O-Acetyltransferase/metabolism , Choline O-Acetyltransferase/genetics , Dextran Sulfate/toxicity , Enteric Nervous System/pathology , Inflammation/pathology , Colon/pathology , Colon/innervation , Macrophages/metabolism , Macrophages/immunology , Muscle, Smooth/pathology , Muscle, Smooth/metabolism , Male
7.
Brain ; 147(5): 1799-1808, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38109781

ABSTRACT

Most individuals with Parkinson's disease experience cognitive decline. Mounting evidence suggests this is partially caused by cholinergic denervation due to α-synuclein pathology in the cholinergic basal forebrain. Alpha-synuclein deposition causes inflammation, which can be measured with free water fraction, a diffusion MRI-derived metric of extracellular water. Prior studies have shown an association between basal forebrain integrity and cognition, cholinergic levels and cognition, and basal forebrain volume and acetylcholine, but no study has directly investigated whether basal forebrain physiology mediates the relationship between acetylcholine and cognition in Parkinson's disease. We investigated the relationship between these variables in a cross-sectional analysis of 101 individuals with Parkinson's disease. Cholinergic levels were measured using fluorine-18 fluoroethoxybenzovesamicol (18F-FEOBV) PET imaging. Cholinergic innervation regions of interest included the medial, lateral capsular and lateral perisylvian regions and the hippocampus. Brain volume and free water fraction were quantified using T1 and diffusion MRI, respectively. Cognitive measures included composites of attention/working memory, executive function, immediate memory and delayed memory. Data were entered into parallel mediation analyses with the cholinergic projection areas as predictors, cholinergic basal forebrain volume and free water fraction as mediators and each cognitive domain as outcomes. All mediation analyses controlled for age, years of education, levodopa equivalency dose and systolic blood pressure. The basal forebrain integrity metrics fully mediated the relationship between lateral capsular and lateral perisylvian acetylcholine and attention/working memory, and partially mediated the relationship between medial acetylcholine and attention/working memory. Basal forebrain integrity metrics fully mediated the relationship between medial, lateral capsular and lateral perisylvian acetylcholine and free water fraction. For all mediations in attention/working memory and executive function, the free water mediation was significant, while the volume mediation was not. The basal forebrain integrity metrics fully mediated the relationship between hippocampal acetylcholine and delayed memory and partially mediated the relationship between lateral capsular and lateral perisylvian acetylcholine and delayed memory. The volume mediation was significant for the hippocampal and lateral perisylvian models, while free water fraction was not. Free water fraction in the cholinergic basal forebrain mediated the relationship between acetylcholine and attention/working memory and executive function, while cholinergic basal forebrain volume mediated the relationship between acetylcholine in temporal regions in memory. These findings suggest that these two metrics reflect different stages of neurodegenerative processes and add additional evidence for a relationship between pathology in the basal forebrain, acetylcholine denervation and cognitive decline in Parkinson's disease.


Subject(s)
Basal Forebrain , Cognition , Parkinson Disease , Humans , Basal Forebrain/pathology , Basal Forebrain/diagnostic imaging , Basal Forebrain/metabolism , Male , Female , Aged , Parkinson Disease/diagnostic imaging , Parkinson Disease/pathology , Parkinson Disease/metabolism , Middle Aged , Cross-Sectional Studies , Cognition/physiology , Acetylcholine/metabolism , Positron-Emission Tomography , Cholinergic Neurons/pathology , Neuropsychological Tests
8.
FASEB J ; 37(6): e22944, 2023 06.
Article in English | MEDLINE | ID: mdl-37191946

ABSTRACT

Basal forebrain cholinergic neuron (BFCN) degeneration is a hallmark of Down syndrome (DS) and Alzheimer's disease (AD). Current therapeutics in these disorders have been unsuccessful in slowing disease progression, likely due to poorly understood complex pathological interactions and dysregulated pathways. The Ts65Dn trisomic mouse model recapitulates both cognitive and morphological deficits of DS and AD, including BFCN degeneration and has shown lifelong behavioral changes due to maternal choline supplementation (MCS). To test the impact of MCS on trisomic BFCNs, we performed laser capture microdissection to individually isolate choline acetyltransferase-immunopositive neurons in Ts65Dn and disomic littermates, in conjunction with MCS at the onset of BFCN degeneration. We utilized single population RNA sequencing (RNA-seq) to interrogate transcriptomic changes within medial septal nucleus (MSN) BFCNs. Leveraging multiple bioinformatic analysis programs on differentially expressed genes (DEGs) by genotype and diet, we identified key canonical pathways and altered physiological functions within Ts65Dn MSN BFCNs, which were attenuated by MCS in trisomic offspring, including the cholinergic, glutamatergic and GABAergic pathways. We linked differential gene expression bioinformatically to multiple neurological functions, including motor dysfunction/movement disorder, early onset neurological disease, ataxia and cognitive impairment via Ingenuity Pathway Analysis. DEGs within these identified pathways may underlie aberrant behavior in the DS mice, with MCS attenuating the underlying gene expression changes. We propose MCS ameliorates aberrant BFCN gene expression within the septohippocampal circuit of trisomic mice through normalization of principally the cholinergic, glutamatergic, and GABAergic signaling pathways, resulting in attenuation of underlying neurological disease functions.


Subject(s)
Alzheimer Disease , Basal Forebrain , Down Syndrome , Mice , Animals , Down Syndrome/genetics , Down Syndrome/metabolism , Mice, Transgenic , Basal Forebrain/metabolism , Basal Forebrain/pathology , Cholinergic Neurons/metabolism , Cholinergic Neurons/pathology , Alzheimer Disease/metabolism , Disease Models, Animal , Choline/metabolism , Dietary Supplements
9.
Alcohol Clin Exp Res (Hoboken) ; 47(3): 470-485, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36799290

ABSTRACT

BACKGROUND: Adolescent intermittent ethanol (AIE) exposure causes long-term changes in the brain and behavior of adult male rodents, including persistent induction of innate immune pathways, reductions in hippocampal neurogenic and forebrain cholinergic neuronal markers, and reversal learning deficits. The current study tests the hypothesis that proinflammatory induction mediates AIE-induced (1) loss of adult neurogenesis (i.e., doublecortin (DCX) expressing immature neurons), (2) reductions in forebrain and hippocampal cholinergic markers, and (3) reversal learning deficits. METHODS: Male and female rats underwent AIE (5.0 g/kg/day ethanol or water, i.g., 2 day-on/2 day-off from postnatal day (PND) 25-54), followed by a 2-week regimen of the anti-inflammatory compound indomethacin (4.0 g/kg/day, PND 56-69) or vehicle, after which one cohort was euthanized for immunohistochemical markers (PND 70) and the second underwent the Morris water maze to assess reversal learning. RESULTS: AIE reduced adult (PND 70) DCX+ immunoreactivity (IR) and increased hippocampal expression of the innate immune signal's high-mobility group box protein 1 (HMGB1 + IR) and cyclooxygenase-2 (COX-2 + IR) in adult male and female rats. AIE also reduced choline acetyltransferase (ChAT+IR) in the basal forebrain and co-labeling of hippocampal vesicular acetylcholine transporter (VAChT+) cholinergic terminals on DCX + IR neurons. Indomethacin treatment after AIE restored molecular endpoints to control levels and rescued AIE-induced reversal learning deficits in the Morris water maze in both sexes. Of note, indomethacin produced several adverse effects selectively in control conditions, highlighting the uniquely beneficial effect of indomethacin in AIE rats. CONCLUSIONS: These data suggest that in males and females, (1) AIE persistent neuroimmune induction mediates both the loss of adult hippocampal DCX and loss of basal forebrain cholinergic neurons and their innervation to hippocampal targets, and (2) anti-inflammatory indomethacin treatment following AIE that restores these persistent molecular pathologies also restores spatial reversal learning deficits.


Subject(s)
Ethanol , Indomethacin , Rats , Animals , Male , Female , Ethanol/pharmacology , Indomethacin/pharmacology , Indomethacin/metabolism , Reversal Learning , Hippocampus , Prosencephalon , Cholinergic Neurons/metabolism , Cholinergic Neurons/pathology , Neurogenesis , Cholinergic Agents/metabolism , Cholinergic Agents/pharmacology , Immunity, Innate , Maze Learning
10.
Neurobiol Aging ; 117: 24-32, 2022 09.
Article in English | MEDLINE | ID: mdl-35640461

ABSTRACT

Degeneration of cholinergic neurons in the basal forebrain (BF) contributes to cognitive impairment in Alzheimer's disease (AD) and other disorders. Atrophy of BF volume measured by structural MRI is thought to represent the loss of cholinergic neurons in this structure. As there are multiple types of neurons in the BF as well as glia and axons, whether this MRI measure actually reflects the change of cholinergic neurons has not been verified. In this study, we assessed BF cholinergic neuron number by histological counts and compared with the volume measurements by in vivo MRI in 3xTg mice, a model of familial AD. Both manual and template-based segmentation revealed atrophy of the medial septum (MS), consistent with a significant reduction in cholinergic neuron number. However, MRI-measured volume reduction did not correlate with the reduced cholinergic neuron number. To directly test whether specific loss of cholinergic neurons results in BF atrophy, we selectively ablated the cholinergic neurons in the MS. However, no detectable change in MRI volume was observed between lesioned and unlesioned mice. The results indicate that although loss of cholinergic neurons within the BF likely contributes to volume loss, this volume change cannot be taken as a direct biomarker of cholinergic neuron number.


Subject(s)
Alzheimer Disease , Basal Forebrain , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/pathology , Animals , Atrophy/pathology , Basal Forebrain/diagnostic imaging , Basal Forebrain/pathology , Cholinergic Agents , Cholinergic Neurons/pathology , Disease Models, Animal , Magnetic Resonance Imaging/methods , Mice
11.
Neurobiol Dis ; 162: 105563, 2022 01.
Article in English | MEDLINE | ID: mdl-34838668

ABSTRACT

Degeneration of basal forebrain cholinergic neurons (BFCNs) in the nucleus basalis of Meynert (NBM) and vertical diagonal band (VDB) along with their connections is a key pathological event leading to memory impairment in Alzheimer's disease (AD). Aberrant neurotrophin signaling via Trks and the p75 neurotrophin receptor (p75NTR) contributes importantly to BFCN dystrophy. While NGF/TrkA signaling has received the most attention in this regard, TrkB and TrkC signaling also provide trophic support to BFCNs and these receptors may be well located to preserve BFCN connectivity. We previously identified a small molecule TrkB/TrkC ligand, LM22B-10, that promotes cell survival and neurite outgrowth in vitro and activates TrkB/TrkC signaling in the hippocampus of aged mice when given intranasally, but shows poor oral bioavailability. An LM22B-10 derivative, PTX-BD10-2, with improved oral bioavailability has been developed and this study examined its effects on BFCN atrophy in the hAPPLond/Swe (APPL/S) AD mouse model. Oral delivery of PTX-BD10-2 was started after appreciable amyloid and cholinergic pathology was present to parallel the clinical context, as most AD patients start treatment at advanced pathological stages. PTX-BD10-2 restored cholinergic neurite integrity in the NBM and VDB, and reduced NBM neuronal atrophy in symptomatic APPL/S mice. Dystrophy of cholinergic neurites in BF target regions, including the cortex, hippocampus, and amygdala, was also reduced with treatment. Finally, PTX-BD10-2 reduced NBM tau pathology and improved the survival of cholinergic neurons derived from human induced pluripotent stem cells (iPSCs) after amyloid-ß exposure. These data provide evidence that targeting TrkB and TrkC signaling with PTX-BD10-2 may be an effective disease-modifying strategy for combating cholinergic dysfunction in AD. The potential for clinical translation is further supported by the compound's reduction of AD-related degenerative processes that have progressed beyond early stages and its neuroprotective effects in human iPSC-derived cholinergic neurons.


Subject(s)
Alzheimer Disease , Induced Pluripotent Stem Cells , Alzheimer Disease/pathology , Animals , Atrophy/pathology , Cholinergic Neurons/pathology , Humans , Induced Pluripotent Stem Cells/pathology , Mice , Nerve Growth Factors , Receptor, trkC , Receptors, Nerve Growth Factor
12.
Biochem Biophys Res Commun ; 586: 114-120, 2022 01 01.
Article in English | MEDLINE | ID: mdl-34839189

ABSTRACT

Prepulse inhibition (PPI) is a neurophysiological finding that is decreased in schizophrenia patients and has been used in pathophysiology studies of schizophrenia and the development of antipsychotic drugs. PPI is affected by several drugs including amphetamine, ketamine, and nicotinic agents, and it is reported that several brain regions and modulatory neurotransmitters are involved in PPI. Here we showed that mice with IRSp53 deletion in each dopaminergic, cholinergic, oxytocinergic, and serotoninergic modulatory neurons showed a decrease in PPI. Other than PPI, there were no other behavioral changes among IRSp53 deletion mice. Through this study, we could reconfirm that dysfunction of each modulatory neuron such as dopamine, acetylcholine, oxytocin, and serotonin can result in PPI impairment, and it should be considered that PPI could be broadly affected by changes in one of a certain kind of modulatory neurons.


Subject(s)
Brain/metabolism , Cholinergic Neurons/metabolism , Dopaminergic Neurons/metabolism , Nerve Tissue Proteins/genetics , Prepulse Inhibition , Serotonergic Neurons/metabolism , Acetylcholine/metabolism , Animals , Brain/pathology , Brain Mapping , Cholinergic Neurons/pathology , Dopamine/metabolism , Dopaminergic Neurons/pathology , Gene Deletion , Genes, Reporter , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Mice , Mice, Knockout , Nerve Tissue Proteins/deficiency , Noise , Oxytocin/metabolism , Reflex, Startle , Serotonergic Neurons/pathology , Serotonin/metabolism
13.
Parkinsonism Relat Disord ; 93: 43-49, 2021 12.
Article in English | MEDLINE | ID: mdl-34784526

ABSTRACT

INTRODUCTION: The postural instability gait difficulty motor subtype of patients with Parkinson's disease (PIGD-PD) has been associated with more severe cognitive pathology and a higher risk on dementia compared to the tremor-dominant subtype (TD-PD). Here, we investigated whether the microstructural integrity of the cholinergic projections from the nucleus basalis of Meynert (NBM) was different between these clinical subtypes. METHODS: Diffusion-weighted imaging data of 98 newly-diagnosed unmedicated PD patients (44 TD-PD and 54 PIGD-PD subjects) and 10 healthy controls, were analysed using diffusion tensor imaging, focusing on the white matter tracts associated with cholinergic projections from the NBM (NBM-WM) as the tract-of-interest. Quantitative tract-based and voxel-based analyses were performed using FA and MD as the estimates of white matter integrity. RESULTS: Voxel-based analyses indicated significantly lower FA in the frontal part of the medial and lateral NBM-WM tract of both hemispheres of PIGD-PD compared to TD-PD. Relative to healthy control, several clusters with significantly lower FA were observed in the frontolateral NBM-WM tract of both disease groups. Furthermore, significant correlations between the severity of the axial and gait impairment and NBM-WM FA and MD were found, which were partially mediated by NBM-WM state on subjects' attentional performance. CONCLUSIONS: The PIGD-PD subtype shows a loss of microstructural integrity of the NBM-WM tract, which suggests that a loss of cholinergic projections in this PD subtype already presents in de novo PD patients.


Subject(s)
Gait Disorders, Neurologic/pathology , Gait , Parkinson Disease/pathology , Postural Balance , Sensation Disorders/pathology , Aged , Attention , Basal Nucleus of Meynert/pathology , Case-Control Studies , Cholinergic Neurons/pathology , Diffusion Magnetic Resonance Imaging , Diffusion Tensor Imaging , Female , Gait Disorders, Neurologic/etiology , Gait Disorders, Neurologic/psychology , Humans , Male , Middle Aged , Parkinson Disease/complications , Parkinson Disease/psychology , Posture , Sensation Disorders/etiology , Sensation Disorders/psychology , White Matter/pathology
14.
Parkinsonism Relat Disord ; 90: 27-32, 2021 09.
Article in English | MEDLINE | ID: mdl-34348192

ABSTRACT

INTRODUCTION: Impaired olfaction and reduced cholinergic nucleus 4 (Ch4) volume both predict greater cognitive decline in Parkinson's disease (PD). We examined the relationship between olfaction, longitudinal change in cholinergic basal forebrain nuclei and their target regions, and cognition in early PD. METHODS: We analyzed a cohort of 97 PD participants from the Parkinson's Progression Markers Initiative with brain MRIs at baseline, 1 year, 2 years, and 4 years. Using probabilistic maps, regional grey matter density (GMD) was calculated for Ch4, cholinergic nuclei 1, 2, and 3 (Ch123), and their target regions. RESULTS: Baseline University of Pennsylvania Smell Identification Test score correlated with change in GMD of all regions of interest (all p < 0.05). Rate of change of Ch4 GMD was correlated with rate of change of Ch123 (p = 0.034), cortex (p = 0.001), and amygdala GMD (p < 0.001), but not hippocampus GMD (p = 0.38). Rate of change of Ch123 GMD was correlated with rate of change of cortex (p = 0.001) and hippocampus (p < 0.001), but not amygdala GMD (p = 0.133). In a linear regression model including change in GMD of all regions of interest and age as predictors, change in cortex GMD (߈slope= 38.2; 95 % CI: [0.47, 75.9]) and change in hippocampus GMD (߈slope= 24.8; 95 % CI: [0.80, 48.8]) were significant predictors of Montreal Cognitive Assessment score change over time. CONCLUSION: Impaired olfaction is associated with degeneration of the cholinergic basal forebrain and bilateral cortex, amygdala, and hippocampus in PD. The relationship between impaired olfaction and cognitive decline may be mediated by greater atrophy of the cortex and hippocampus.


Subject(s)
Basal Forebrain/pathology , Cognition , Parkinson Disease/diagnostic imaging , Parkinson Disease/pathology , Smell , Aged , Amygdala/diagnostic imaging , Amygdala/pathology , Basal Forebrain/diagnostic imaging , Cholinergic Neurons/pathology , Female , Frontal Lobe/diagnostic imaging , Frontal Lobe/pathology , Geriatric Assessment , Gray Matter/diagnostic imaging , Gray Matter/pathology , Hippocampus/diagnostic imaging , Hippocampus/pathology , Humans , Longitudinal Studies , Magnetic Resonance Imaging , Male , Mental Status and Dementia Tests , Organ Size , Parkinson Disease/physiopathology
15.
Cells ; 10(7)2021 07 06.
Article in English | MEDLINE | ID: mdl-34359879

ABSTRACT

Cerebral ischemia and its sequelae, which include memory impairment, constitute a leading cause of disability worldwide. Micro-RNAs (miRNA) are evolutionarily conserved short-length/noncoding RNA molecules recently implicated in adaptive/maladaptive neuronal responses to ischemia. Previous research independently implicated the miRNA-132/212 cluster in cholinergic signaling and synaptic transmission, and in adaptive/protective mechanisms of neuronal responses to hypoxia. However, the putative role of miRNA-132/212 in the response of synaptic transmission to ischemia remained unexplored. Using hippocampal slices from female miRNA-132/212 double-knockout mice in an established electrophysiological model of ischemia, we here describe that miRNA-132/212 gene-deletion aggravated the deleterious effect of repeated oxygen-glucose deprivation insults on synaptic transmission in the dentate gyrus, a brain region crucial for learning and memory functions. We also examined the effect of miRNA-132/212 gene-deletion on the expression of key mediators in cholinergic signaling that are implicated in both adaptive responses to ischemia and hippocampal neural signaling. miRNA-132/212 gene-deletion significantly altered hippocampal AChE and mAChR-M1, but not α7-nAChR or MeCP2 expression. The effects of miRNA-132/212 gene-deletion on hippocampal synaptic transmission and levels of cholinergic-signaling elements suggest the existence of a miRNA-132/212-dependent adaptive mechanism safeguarding the functional integrity of synaptic functions in the acute phase of cerebral ischemia.


Subject(s)
Base Sequence , Brain Ischemia/genetics , Dentate Gyrus/metabolism , MicroRNAs/genetics , Sequence Deletion , Acetylcholine/metabolism , Acetylcholinesterase/genetics , Acetylcholinesterase/metabolism , Animals , Brain Ischemia/metabolism , Brain Ischemia/pathology , Cholinergic Neurons/drug effects , Cholinergic Neurons/metabolism , Cholinergic Neurons/pathology , Dentate Gyrus/pathology , Excitatory Postsynaptic Potentials/physiology , Female , GPI-Linked Proteins/genetics , GPI-Linked Proteins/metabolism , Gene Expression Regulation , Glucose/deficiency , Glucose/pharmacology , Mice , Mice, Inbred C57BL , Mice, Knockout , MicroRNAs/metabolism , Microtomy , Oxygen/pharmacology , Patch-Clamp Techniques , Receptor, Muscarinic M1/genetics , Receptor, Muscarinic M1/metabolism , Synaptic Transmission , Tissue Culture Techniques
16.
Cells ; 10(7)2021 07 20.
Article in English | MEDLINE | ID: mdl-34359997

ABSTRACT

The noradrenergic theory of Cognitive Reserve (Robertson, 2013-2014) postulates that the upregulation of the locus coeruleus-noradrenergic system (LC-NA) originating in the brainstem might facilitate cortical networks involved in attention, and protracted activation of this system throughout the lifespan may enhance cognitive stimulation contributing to reserve. To test the above-mentioned theory, a study was conducted on a sample of 686 participants (395 controls, 156 mild cognitive impairment, 135 Alzheimer's disease) investigating the relationship between LC volume, attentional performance and a biological index of brain maintenance (BrainPAD-an objective measure, which compares an individual's structural brain health, reflected by their voxel-wise grey matter density, to the state typically expected at that individual's age). Further analyses were carried out on reserve indices including education and occupational attainment. Volumetric variation across groups was also explored along with gender differences. Control analyses on the serotoninergic (5-HT), dopaminergic (DA) and cholinergic (Ach) systems were contrasted with the noradrenergic (NA) hypothesis. The antithetic relationships were also tested across the neuromodulatory subcortical systems. Results supported by Bayesian modelling showed that LC volume disproportionately predicted higher attentional performance as well as biological brain maintenance across the three groups. These findings lend support to the role of the noradrenergic system as a key mediator underpinning the neuropsychology of reserve, and they suggest that early prevention strategies focused on the noradrenergic system (e.g., cognitive-attentive training, physical exercise, pharmacological and dietary interventions) may yield important clinical benefits to mitigate cognitive impairment with age and disease.


Subject(s)
Adrenergic Neurons/pathology , Alzheimer Disease/diagnostic imaging , Cognitive Dysfunction/diagnostic imaging , Cognitive Reserve/physiology , Gray Matter/diagnostic imaging , Locus Coeruleus/diagnostic imaging , Nerve Net/diagnostic imaging , Aged , Alzheimer Disease/pathology , Alzheimer Disease/physiopathology , Attention/physiology , Bayes Theorem , Case-Control Studies , Cholinergic Neurons/pathology , Cognitive Dysfunction/pathology , Cognitive Dysfunction/physiopathology , Dopaminergic Neurons/pathology , Educational Status , Exercise/physiology , Female , Gray Matter/pathology , Gray Matter/physiopathology , Humans , Locus Coeruleus/pathology , Locus Coeruleus/physiopathology , Magnetic Resonance Imaging , Male , Middle Aged , Models, Neurological , Nerve Net/pathology , Nerve Net/physiopathology , Neuroimaging , Organ Size , Serotonergic Neurons/pathology , Sex Factors
17.
J Neurosci ; 41(38): 8088-8101, 2021 09 22.
Article in English | MEDLINE | ID: mdl-34380764

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is an adult-onset neurodegenerative disease with progressive motor neuron death, where patients usually die within 5 years of diagnosis. Previously, we showed that the C-boutons, which are large cholinergic synapses to motor neurons that modulate motor neuron activity, are necessary for behavioral compensation in mSOD1G93A mice, a mouse model for ALS. We reasoned that, since the C-boutons likely increase the excitability of surviving motor neurons to compensate for motor neuron loss during ALS disease progression, then amplitude modulation through the C-boutons likely increases motor neuron stress and worsens disease progression. By comparing male and female mSOD1G93A mice to mSOD1G93A mice with genetically silenced C-boutons [mSOD1G93A ; Dbx1::cre; ChATfl/fl (mSOD1G93A/Coff )], we show that the C-boutons do not influence the humane end point of mSOD1G93A mice; however, our histologic analysis shows that C-bouton silencing significantly improves fast-twitch muscle innervation over time. Using immunohistology, we also show that the C-boutons are active in a task-dependent manner, and that symptomatic mSOD1G93A mice show significantly higher C-bouton activity than wild-type mice during low-intensity walking. Last, by using behavioral analysis, we provide evidence that C-bouton silencing in combination with swimming is beneficial for the behavioral capabilities of mSOD1G93A mice. Our observations suggest that manipulating the C-boutons in combination with a modulatory-targeted training program may therefore be beneficial for ALS patients and could result in improved mobility and quality of life.SIGNIFICANCE STATEMENT Despite decades of research on amyotrophic lateral sclerosis (ALS), there have been little improvements in treatments and therapies. We sought to better understand how the activation of C-boutons, which are large cholinergic modulatory synapses on motor neurons, change and affect the disease as it progresses. When these C-boutons are genetically silenced and exercises designed to otherwise activate the C-boutons are frequently performed in ALS model mice, the mice perform better than their untreated counterparts over time. C-bouton-targeted therapies could therefore be beneficial for ALS patients and could result in improved mobility and quality of life.


Subject(s)
Amyotrophic Lateral Sclerosis/pathology , Cholinergic Neurons/pathology , Motor Neurons/pathology , Synapses/pathology , Amyotrophic Lateral Sclerosis/genetics , Animals , Disease Models, Animal , Disease Progression , Female , Male , Mice , Mice, Transgenic , Superoxide Dismutase-1/genetics
18.
Nutrients ; 13(8)2021 Aug 23.
Article in English | MEDLINE | ID: mdl-34445062

ABSTRACT

Allium hookeri (AH) is a medicinal food that has been used in Southeast Asia for various physiological activities. The objective of this study was to investigate the activation of the cholinergic system and the anti-neuroinflammation effects of AH on scopolamine-induced memory impairment in mice. Scopolamine (1 mg/kg body weight, i.p.) impaired the performance of the mice on the Y-maze test, passive avoidance test, and water maze test. However, the number of error actions was reduced in the AH groups supplemented with leaf and root extracts from AH. AH treatment improved working memory and avoidance times against electronic shock, increased step-through latency, and reduced the time to reach the escape zone in the water maze test. AH significantly improved the cholinergic system by decreasing acetylcholinesterase activity, and increasing acetylcholine concentration. The serum inflammatory cytokines (IL-1ß, IL-6, and IFN-γ) increased by scopolamine treatment were regulated by the administration of AH extracts. Overexpression of NF-κB signaling and cytokines in liver tissue due to scopolamine were controlled by administration of AH extracts. AH also significantly decreased Aß and caspase-3 expression but increased NeuN and ChAT. The results suggest that AH extracts improve cognitive effects, and the root extracts are more effective in relieving the scopolamine-induced memory impairment. They have neuroprotective effects and reduce the development of neuroinflammation.


Subject(s)
Allium , Anti-Inflammatory Agents/pharmacology , Brain/drug effects , Cholinergic Neurons/drug effects , Cognition/drug effects , Cognitive Dysfunction/drug therapy , Cytokines/blood , Inflammation Mediators/blood , Memory Disorders/drug therapy , Memory/drug effects , Nootropic Agents/pharmacology , Plant Extracts/pharmacology , Acetylcholine/blood , Acetylcholinesterase/blood , Allium/chemistry , Animals , Behavior, Animal/drug effects , Brain/metabolism , Brain/pathology , Cholinergic Neurons/metabolism , Cholinergic Neurons/pathology , Cognitive Dysfunction/chemically induced , Cognitive Dysfunction/metabolism , Cognitive Dysfunction/psychology , Disease Models, Animal , GPI-Linked Proteins/blood , Male , Maze Learning/drug effects , Memory Disorders/chemically induced , Memory Disorders/metabolism , Memory Disorders/psychology , Mice, Inbred C57BL , Plant Extracts/isolation & purification , Plant Leaves , Plant Roots , Scopolamine
19.
Sci Rep ; 11(1): 13589, 2021 06 30.
Article in English | MEDLINE | ID: mdl-34193944

ABSTRACT

Social behaviour is a complex construct that is reported to include several components of social approach, interaction and recognition memory. Alzheimer's disease (AD) is mainly characterized by progressive dementia and is accompanied by cognitive impairments, including a decline in social ability. The cholinergic system is a potential constituent for the neural mechanisms underlying social behaviour, and impaired social ability in AD may have a cholinergic basis. However, the involvement of cholinergic function in social behaviour has not yet been fully understood. Here, we performed a selective elimination of cholinergic cell groups in the basal forebrain in mice to examine the role of cholinergic function in social interaction and social recognition memory by using the three-chamber test. Elimination of cholinergic neurons in the medial septum (MS) and vertical diagonal band of Broca (vDB) caused impairment in social interaction, whereas ablating cholinergic neurons in the nucleus basalis magnocellularis (NBM) impaired social recognition memory. These impairments were restored by treatment with cholinesterase inhibitors, leading to cholinergic system activation. Our findings indicate distinct roles of MS/vDB and NBM cholinergic neurons in social interaction and social recognition memory, suggesting that cholinergic dysfunction may explain social ability deficits associated with AD symptoms.


Subject(s)
Alzheimer Disease/metabolism , Basal Forebrain/metabolism , Behavior, Animal , Cholinergic Neurons/metabolism , Memory , Social Behavior , Social Interaction , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Alzheimer Disease/physiopathology , Animals , Basal Forebrain/pathology , Basal Forebrain/physiopathology , Cholinergic Neurons/pathology , Mice , Mice, Transgenic
20.
Neurobiol Aging ; 106: 37-44, 2021 10.
Article in English | MEDLINE | ID: mdl-34233212

ABSTRACT

Cholinergic degeneration is a key feature of dementia in neurodegenerative conditions including Alzheimer's disease (AD) and Parkinson's disease (PD). Quantitative electro-encephalography (EEG) metrics are altered in both conditions from early stages, and recent research in people with Lewy body and AD dementia suggests these changes may be associated with atrophy in cholinergic basal forebrain nuclei (cBF). To determine if these relationships exist in predementia stages of neurodegenerative conditions, we studied resting-state EEG and in vivo cBF volumes in 31 people with PD (without dementia), 21 people with mild cognitive impairment (MCI), and 21 age-matched controls. People with PD showed increased power in slower frequencies and reduced alpha reactivity compared to controls. Volumes of cholinergic cell clusters corresponding to the medial septum and vertical and horizontal limb of the diagonal band, and the posterior nucleus basalis of Meynert, correlated positively with; alpha reactivity in people with PD (p< 0.01); and pre-alpha power in people with MCI (p< 0.05). These results suggest that alpha reactivity and pre-alpha power are related to changes in cBF volumes in MCI and PD without dementia.


Subject(s)
Basal Forebrain/pathology , Cholinergic Neurons/pathology , Cognitive Dysfunction/pathology , Cognitive Dysfunction/physiopathology , Electroencephalography , Parkinson Disease/pathology , Parkinson Disease/physiopathology , Aged , Atrophy , Basal Forebrain/cytology , Basal Forebrain/diagnostic imaging , Cognitive Dysfunction/diagnosis , Female , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Organ Size , Parkinson Disease/diagnosis
SELECTION OF CITATIONS
SEARCH DETAIL
...