Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 7.207
Filter
1.
Carbohydr Polym ; 339: 122251, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38823918

ABSTRACT

In this study, the disulfide-linked hyaluronic acid (HA) hydrogels were optimised for potential application as a scaffold in tissue engineering through the Quality by Design (QbD) approach. For this purpose, HA was first modified by incorporating the cysteine moiety into the HA backbone, which promoted the formation of disulfide cross-linked HA hydrogel at physiological pH. Utilising a Design of Experiments (DoE) methodology, the critical factors to achieve stable biomaterials, i.e. the degree of HA substitution, HA molecular weight, and coupling agent ratio, were explored. To establish a design space, the DoE was performed with 65 kDa, 138 kDa and 200 kDa HA and variable concentrations of coupling agent to optimise conditions to obtain HA hydrogel with improved rheological properties. Thus, HA hydrogel with a 12 % degree of modification, storage modulus of ≈2321 Pa and loss modulus of ≈15 Pa, was achieved with the optimum ratio of coupling agent. Furthermore, biocompatibility assessments in C28/I2 chondrocyte cells demonstrated the non-toxic nature of the hydrogel, underscoring its potential for tissue regeneration. Our findings highlight the efficacy of the QbD approach in designing HA hydrogels with tailored properties for biomedical applications.


Subject(s)
Biocompatible Materials , Chondrocytes , Disulfides , Hyaluronic Acid , Hydrogels , Rheology , Tissue Engineering , Hyaluronic Acid/chemistry , Hydrogels/chemistry , Hydrogels/chemical synthesis , Disulfides/chemistry , Chondrocytes/drug effects , Chondrocytes/cytology , Biocompatible Materials/chemistry , Biocompatible Materials/chemical synthesis , Tissue Engineering/methods , Tissue Scaffolds/chemistry , Animals , Cell Line , Cell Survival/drug effects , Humans , Hydrogen-Ion Concentration
2.
Sci Rep ; 14(1): 10182, 2024 05 03.
Article in English | MEDLINE | ID: mdl-38702382

ABSTRACT

Progressive cartilage deterioration leads to chronic inflammation and loss of joint function, causing osteoarthritis (OA) and joint disease. Although symptoms vary among individuals, the disease can cause severe pain and permanent disability, and effective therapies are urgently needed. Human Adipose-Derived Stem Cells (ADSCs) may differentiate into chondrocytes and are promising for treating OA. Moreover, recent studies indicate that electromagnetic fields (EMFs) could positively affect the chondrogenic differentiation potential of ADSCs. In this work, we investigated the impact of EMFs with frequencies of 35 Hertz and 58 Hertz, referred to as extremely low frequency-EMFs (ELF-EMFs), on the chondrogenesis of ADSCs, cultured in both monolayer and 3D cell micromasses. ADSC cultures were daily stimulated for 36 min with ELF-EMFs or left unstimulated, and the progression of the differentiation process was evaluated by morphological analysis, extracellular matrix deposition, and gene expression profiling of chondrogenic markers. In both culturing conditions, stimulation with ELF-EMFs did not compromise cell viability but accelerated chondrogenesis by enhancing the secretion and deposition of extracellular matrix components at earlier time points in comparison to unstimulated cells. This study showed that, in an appropriate chondrogenic microenvironment, ELF-EMFs enhance chondrogenic differentiation and may be an important tool for supporting and accelerating the treatment of OA through autologous adipose stem cell therapy.


Subject(s)
Adipose Tissue , Cell Differentiation , Chondrogenesis , Electromagnetic Fields , Mesenchymal Stem Cells , Humans , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Adipose Tissue/cytology , Cells, Cultured , Chondrocytes/cytology , Chondrocytes/metabolism , Extracellular Matrix/metabolism , Cell Survival/radiation effects
3.
PLoS One ; 19(5): e0297947, 2024.
Article in English | MEDLINE | ID: mdl-38768116

ABSTRACT

In various biological systems, analyzing how cell behaviors are coordinated over time would enable a deeper understanding of tissue-scale response to physiologic or superphysiologic stimuli. Such data is necessary for establishing both normal tissue function and the sequence of events after injury that lead to chronic disease. However, collecting and analyzing these large datasets presents a challenge-such systems are time-consuming to process, and the overwhelming scale of data makes it difficult to parse overall behaviors. This problem calls for an analysis technique that can quickly provide an overview of the groups present in the entire system and also produce meaningful categorization of cell behaviors. Here, we demonstrate the application of an unsupervised method-the Variational Autoencoder (VAE)-to learn the features of cells in cartilage tissue after impact-induced injury and identify meaningful clusters of chondrocyte behavior. This technique quickly generated new insights into the spatial distribution of specific cell behavior phenotypes and connected specific peracute calcium signaling timeseries with long term cellular outcomes, demonstrating the value of the VAE technique.


Subject(s)
Cartilage, Articular , Chondrocytes , Cartilage, Articular/cytology , Chondrocytes/cytology , Animals , Cluster Analysis , Calcium Signaling
4.
Sci Rep ; 14(1): 11765, 2024 05 23.
Article in English | MEDLINE | ID: mdl-38782958

ABSTRACT

In vitro use of articular cartilage on an organ-on-a-chip (OOAC) via microfluidics is challenging owing to the dense extracellular matrix (ECM) composed of numerous protein moieties and few chondrocytes, which has limited proliferation potential and microscale translation. Hence, this study proposes a novel approach for using a combination of biopolymers and decellularised ECM (dECM) as a bioink additive in the development of scalable OOAC using a microfluidic platform. The bioink was tested with native chondrocytes and mesenchymal stem cell-induced chondrocytes using biopolymers of alginate and chitosan composite hydrogels. Two-dimensional (2D) and three-dimensional (3D) biomimetic tissue construction approaches have been used to characterise the morphology and cellular marker expression (by histology and confocal laser scanning microscopy), viability (cell viability dye using flow cytometry), and genotypic expression of ECM-specific markers (by quantitative PCR). The results demonstrated that the bioink had a significant impact on the increase in phenotypic and genotypic expression, with a statistical significance level of p < 0.05 according to Student's t-test. The use of a cell-laden biopolymer as a bioink optimised the niche conditions for obtaining hyaline-type cartilage under culture conditions, paving the way for testing mechano-responsive properties and translating these findings to a cartilage-on-a-chip microfluidics system.


Subject(s)
Alginates , Cartilage, Articular , Chitosan , Chondrocytes , Extracellular Matrix , Tissue Engineering , Chitosan/chemistry , Alginates/chemistry , Cartilage, Articular/metabolism , Cartilage, Articular/cytology , Animals , Extracellular Matrix/metabolism , Chondrocytes/metabolism , Chondrocytes/cytology , Tissue Engineering/methods , Biopolymers/chemistry , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Tissue Scaffolds/chemistry , Lab-On-A-Chip Devices , Hydrogels/chemistry , Cells, Cultured , Cell Survival , Microphysiological Systems
5.
Cells ; 13(9)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38727280

ABSTRACT

Regenerative medicine harnesses stem cells' capacity to restore damaged tissues and organs. In vitro methods employing specific bioactive molecules, such as growth factors, bio-inductive scaffolds, 3D cultures, co-cultures, and mechanical stimuli, steer stem cells toward the desired differentiation pathways, mimicking their natural development. Chondrogenesis presents a challenge for regenerative medicine. This intricate process involves precise modulation of chondro-related transcription factors and pathways, critical for generating cartilage. Cartilage damage disrupts this process, impeding proper tissue healing due to its unique mechanical and anatomical characteristics. Consequently, the resultant tissue often forms fibrocartilage, which lacks adequate mechanical properties, posing a significant hurdle for effective regeneration. This review comprehensively explores studies showcasing the potential of amniotic mesenchymal stem cells (AMSCs) and amniotic epithelial cells (AECs) in chondrogenic differentiation. These cells exhibit innate characteristics that position them as promising candidates for regenerative medicine. Their capacity to differentiate toward chondrocytes offers a pathway for developing effective regenerative protocols. Understanding and leveraging the innate properties of AMSCs and AECs hold promise in addressing the challenges associated with cartilage repair, potentially offering superior outcomes in tissue regeneration.


Subject(s)
Amnion , Cell Differentiation , Chondrogenesis , Humans , Amnion/cytology , Animals , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Epithelial Cells/cytology , Epithelial Cells/metabolism , Chondrocytes/cytology , Chondrocytes/metabolism , Regenerative Medicine/methods , Tissue Engineering/methods
6.
J Nanobiotechnology ; 22(1): 300, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38816719

ABSTRACT

BACKGROUND: Extracellular vesicles (EVs) derived from human adipose-derived mesenchymal stem cells (hADSCs) have shown great therapeutic potential in plastic and reconstructive surgery. However, the limited production and functional molecule loading of EVs hinder their clinical translation. Traditional two-dimensional culture of hADSCs results in stemness loss and cellular senescence, which is unfavorable for the production and functional molecule loading of EVs. Recent advances in regenerative medicine advocate for the use of three-dimensional culture of hADSCs to produce EVs, as it more accurately simulates their physiological state. Moreover, the successful application of EVs in tissue engineering relies on the targeted delivery of EVs to cells within biomaterial scaffolds. METHODS AND RESULTS: The hADSCs spheroids and hADSCs gelatin methacrylate (GelMA) microspheres are utilized to produce three-dimensional cultured EVs, corresponding to hADSCs spheroids-EVs and hADSCs microspheres-EVs respectively. hADSCs spheroids-EVs demonstrate excellent production and functional molecule loading compared with hADSCs microspheres-EVs. The upregulation of eight miRNAs (i.e. hsa-miR-486-5p, hsa-miR-423-5p, hsa-miR-92a-3p, hsa-miR-122-5p, hsa-miR-223-3p, hsa-miR-320a, hsa-miR-126-3p, and hsa-miR-25-3p) and the downregulation of hsa-miR-146b-5p within hADSCs spheroids-EVs show the potential of improving the fate of remaining ear chondrocytes and promoting cartilage formation probably through integrated regulatory mechanisms. Additionally, a quick and innovative pipeline is developed for isolating chondrocyte homing peptide-modified EVs (CHP-EVs) from three-dimensional dynamic cultures of hADSCs spheroids. CHP-EVs are produced by genetically fusing a CHP at the N-terminus of the exosomal surface protein LAMP2B. The CHP + LAMP2B-transfected hADSCs spheroids were cultured with wave motion to promote the secretion of CHP-EVs. A harvesting method is used to enable the time-dependent collection of CHP-EVs. The pipeline is easy to set up and quick to use for the isolation of CHP-EVs. Compared with nontagged EVs, CHP-EVs penetrate the biomaterial scaffolds and specifically deliver the therapeutic miRNAs to the remaining ear chondrocytes. Functionally, CHP-EVs show a major effect on promoting cell proliferation, reducing cell apoptosis and enhancing cartilage formation in remaining ear chondrocytes in the M1 macrophage-infiltrated microenvironment. CONCLUSIONS: In summary, an innovative pipeline is developed to obtain CHP-EVs from three-dimensional dynamic culture of hADSCs spheroids. This pipeline can be customized to increase EVs production and functional molecule loading, which meets the requirements for regulating remaining ear chondrocyte fate in the M1 macrophage-infiltrated microenvironment.


Subject(s)
Chondrocytes , Extracellular Vesicles , Mesenchymal Stem Cells , Peptides , Spheroids, Cellular , Humans , Chondrocytes/metabolism , Chondrocytes/cytology , Extracellular Vesicles/metabolism , Spheroids, Cellular/metabolism , Spheroids, Cellular/cytology , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Peptides/chemistry , Peptides/metabolism , MicroRNAs/metabolism , MicroRNAs/genetics , Macrophages/metabolism , Macrophages/cytology , Cells, Cultured , Microspheres , Tissue Engineering/methods , Cell Culture Techniques, Three Dimensional/methods , Cellular Microenvironment , Ear Cartilage/metabolism , Adipose Tissue/cytology , Adipose Tissue/metabolism , Cell Differentiation
7.
J Biomed Mater Res B Appl Biomater ; 112(6): e35433, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38817048

ABSTRACT

Ex vivo tissue engineering is an effective therapeutic approach for the treatment of severe cartilage diseases that require tissue replenishment or replacement. This strategy demands scaffolds that are durable enough for long-term cell culture to form artificial tissue. Additionally, such scaffolds must be biocompatible to prevent the transplanted matrix from taking a toll on the patient's body. From the viewpoint of structure and bio-absorbability, a ß-tricalcium phosphate (ß-TCP) fiber scaffold (ßTFS) is expected to serve as a good scaffold for tissue engineering. However, the fragility and high solubility of ß-TCP fibers make this matrix unsuitable for long-term cell culture. To solve this problem, we developed an alginate-coated ß-TCP fiber scaffold (ßTFS-Alg). To assess cell proliferation and differentiation in the presence of ßTFS-Alg, we characterized ATDC5 cells, a chondrocyte-like cell line, when grown in this matrix. We found that alginate coated the surface of ßTFS fiber and suppressed the elution of Ca2+ from ß-TCP fibers. Due to the decreased solubility of ßTFS-Alg compared with ß-TCP, the former provided an improved scaffold for long-term cell culture. Additionally, we observed superior cell proliferation and upregulation of chondrogenesis marker genes in ATDC5 cells cultured in ßTFS-Alg. These results suggest that ßTFS-Alg is suitable for application in tissue culture.


Subject(s)
Alginates , Calcium Phosphates , Tissue Scaffolds , Calcium Phosphates/chemistry , Calcium Phosphates/pharmacology , Alginates/chemistry , Tissue Scaffolds/chemistry , Cell Proliferation , Mice , Glucuronic Acid/chemistry , Animals , Hexuronic Acids/chemistry , Coated Materials, Biocompatible/chemistry , Coated Materials, Biocompatible/pharmacology , Cell Line , Chondrocytes/cytology , Chondrocytes/metabolism , Tissue Engineering , Materials Testing , Cell Differentiation , Humans , Cell Culture Techniques
8.
Int J Biol Macromol ; 270(Pt 1): 132126, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38723805

ABSTRACT

Articular cartilage is an avascular and almost acellular tissue with limited self-regenerating capabilities. Although injectable hydrogels have garnered a lot of attention as a promising treatment, a biocompatible hydrogel with adequate mechanical properties is yet to be created. In this study, an interpenetrating network hydrogel comprised of chitosan and silk fibroin was created through electrostatic and hydrophobic bonds, respectively. The polymeric network of the scaffold combined an effective microenvironment for cell activity with enhanced mechanical properties to address the current issues in cartilage scaffolds. Furthermore, microspheres (MS) were utilized for a controlled release of methylprednisolone acetate (MPA), around ~75 % after 35 days. The proposed scaffolds demonstrated great mechanical stability with ~0.047 MPa compressive moduli and ~145 kPa compressive strength. Moreover, the degradation rate of the samples (~45 % after 35 days) was optimized to match neo-cartilage formation. Furthermore, the use of natural biomaterials yielded good biocompatibility with ~76 % chondrocyte viability after 7 days. According to gross observation after 12 weeks the defect site of the treated groups was filled with minimally discernible boundary. These results were confirmed by histopathology assays were the treated groups showed higher chondrocyte count and collagen type II expression.


Subject(s)
Cartilage, Articular , Chitosan , Fibroins , Hydrogels , Microspheres , Regeneration , Chitosan/chemistry , Fibroins/chemistry , Animals , Regeneration/drug effects , Hydrogels/chemistry , Cartilage, Articular/drug effects , Tissue Scaffolds/chemistry , Chondrocytes/drug effects , Chondrocytes/cytology , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Tissue Engineering/methods , Rabbits , Cell Survival/drug effects , Injections , Methylprednisolone Acetate/chemistry
9.
Connect Tissue Res ; 65(3): 237-252, 2024 May.
Article in English | MEDLINE | ID: mdl-38739041

ABSTRACT

PURPOSE/AIM OF STUDY: During the development of the vertebrate skeleton, the progressive differentiation and maturation of chondrocytes from mesenchymal progenitors is precisely coordinated by multiple secreted factors and signaling pathways. The WNT signaling pathway has been demonstrated to play a major role in chondrogenesis. However, the identification of secreted factors that fine-tune WNT activity has remained elusive. Here, in this study, we have identified PI15 (peptidase inhibitor 15, protease Inhibitor 15, SugarCrisp), a member of the CAP (cysteine rich secretory proteins, antigen 5, and pathogenesis related 1 proteins) protein superfamily, as a novel secreted WNT antagonist dynamically upregulated during chondrocyte differentiation. MATERIALS AND METHODS: ATDC5 cells, C3H10T1/2 micromass cultures and primary chondrocyte cells were used as in vitro models of chondrogenesis. PI15 levels were stably depleted or overexpressed by viral shRNA or expression vectors. Chondrogenesis was evaluated by qPCR gene expression analysis and Alcian blue staining. Protein interactions were determined by coimmunoprecipitation assays. RESULTS AND CONCLUSIONS: shRNA-mediated knockdown of PI15 in ATDC5 cells, C3H10T1/2 cells or primary chondrocytes inhibits chondrogenesis, whereas the overexpression of PI15 strongly enhances chondrogenic potential. Mechanistically, PI15 binds to the LRP6 WNT co-receptor and blocks WNT-induced LRP6 phosphorylation, thus repressing WNT-induced transcriptional activity and alleviating the inhibitory effect of WNT signaling on chondrogenesis. Altogether, our findings suggest that PI15 acts as a key regulator of chondrogenesis and unveils a mechanism through which chondrocyte-derived molecules can modulate WNT activity as differentiation proceeds, thereby creating a positive feedback loop that further drives differentiation.


Subject(s)
Cell Differentiation , Chondrocytes , Chondrogenesis , Wnt Signaling Pathway , Chondrocytes/metabolism , Chondrocytes/drug effects , Chondrocytes/cytology , Cell Differentiation/drug effects , Animals , Wnt Signaling Pathway/drug effects , Mice , Chondrogenesis/drug effects , Cell Line , Low Density Lipoprotein Receptor-Related Protein-6/metabolism
10.
Acta Biomater ; 179: 106-120, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38561072

ABSTRACT

The reconstruction of posterior lamellar eyelid defects remains a significant challenge in clinical practice due to anatomical complexity, specialized function, and aesthetic concerns. The ideal substitute for the posterior lamellar should replicate the native tarsoconjunctival tissue, providing both mechanical support for the eyelids and a smooth surface for the globe after implantation. In this study, we present an innovative approach utilizing tissue-engineered cartilage (TEC) grafts generated from rabbit auricular chondrocytes and a commercialized type I collagen sponge to reconstruct critical-sized posterior lamellar defects in rabbits. The TEC grafts demonstrated remarkable mechanical strength and maintained a stable cartilaginous phenotype both in vitro and at 6 months post-implantation in immunodeficient mice. When employed as autografts to reconstruct tarsal plate defects in rabbits' upper eyelids, these TEC grafts successfully restored normal eyelid morphology, facilitated smooth eyelid movement, and preserved the histological structure of the conjunctival epithelium. When applied in bilayered tarsoconjunctival defect reconstruction, these TEC grafts not only maintained the normal contour of the upper eyelid but also supported conjunctival epithelial cell migration and growth from the defect margin towards the centre. These findings highlight that auricular chondrocyte-based TEC grafts hold great promise as potential candidates for clinical posterior lamellar reconstruction. STATEMENT OF SIGNIFICANCE: The complex structure and function of the posterior lamellar eyelid continue to be significant challenges for clinical reconstructive surgeries. In this study, we utilized autologous auricular chondrocyte-based TEC grafts for posterior lamellar eyelid reconstruction in a preclinical rabbit model. The TEC grafts exhibited native cartilaginous histomorphology and comparable mechanical strength to those of the native human tarsal plate. In rabbit models with either tarsal plate defects alone or bilayered tarsoconjunctival defects, TEC grafts successfully restored the normal eyelid contour and movement, as well as supported preservation and growth of conjunctival epithelium. This is the first study to demonstrate autologous TEC grafts can be employed for repairing tarsal plate defects, thereby offering an alternative therapeutic approach for treating posterior lamellar defects in clinic settings.


Subject(s)
Eyelids , Animals , Rabbits , Plastic Surgery Procedures/methods , Tissue Engineering/methods , Cartilage , Transplantation, Autologous , Chondrocytes/transplantation , Chondrocytes/cytology
11.
Dev Biol ; 512: 1-10, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38657748

ABSTRACT

Precise regulation of gene expression is of utmost importance during cell fate specification. DNA methylation is a key epigenetic mechanism that plays a significant role in the regulation of cell fate by recruiting repression proteins or inhibiting the binding of transcription factors to DNA to regulate gene expression. Limb development is a well-established model for understanding cell fate decisions, and the formation of skeletal elements is coordinated through a sequence of events that control chondrogenesis spatiotemporally. It has been established that epigenetic control participates in cartilage maturation. However, further investigation is required to determine its role in the earliest stages of chondrocyte differentiation. This study investigates how the DNA methylation environment affects cell fate divergence during the early chondrogenic events. Our research has shown for the first time that inhibiting DNA methylation in interdigital tissue with 5-azacytidine results in the formation of an ectopic digit. This discovery suggested that DNA methylation dynamics could regulate the fate of cells between chondrogenesis and cell death during autopod development. Our in vitro findings indicate that DNA methylation at the early stages of chondrogenesis is integral in regulating condensation by controlling cell adhesion and proapoptotic genes. As a result, the dynamics of methylation and demethylation are crucial in governing chondrogenesis and cell death during different stages of limb chondrogenesis.


Subject(s)
Cell Differentiation , Chondrocytes , Chondrogenesis , DNA Methylation , Extremities , DNA Methylation/genetics , Chondrogenesis/genetics , Animals , Extremities/embryology , Cell Differentiation/genetics , Chondrocytes/metabolism , Chondrocytes/cytology , Azacitidine/pharmacology , Gene Expression Regulation, Developmental , Chick Embryo , Epigenesis, Genetic , Apoptosis/genetics
12.
BMC Biotechnol ; 24(1): 25, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38689309

ABSTRACT

The reconstruction of a stable, nipple-shaped cartilage graft that precisely matches the natural nipple in shape and size on the contralateral side is a clinical challenge. While 3D printing technology can efficiently and accurately manufacture customized complex structures, it faces limitations due to inadequate blood supply, which hampers the stability of nipple-shaped cartilage grafts produced using this technology. To address this issue, we employed a biodegradable biomaterial, Poly(lactic-co-glycolic acid) (PLGA), loaded with Cell-Free Fat Extract (Ceffe). Ceffe has demonstrated the ability to promote angiogenesis and cell proliferation, making it an ideal bio-ink for bioprinting precise nipple-shaped cartilage grafts. We utilized the Ceffe/PLGA scaffold to create a porous structure with a precise nipple shape. This scaffold exhibited favorable porosity and pore size, ensuring stable shape maintenance and satisfactory biomechanical properties. Importantly, it could release Ceffe in a sustained manner. Our in vitro results confirmed the scaffold's good biocompatibility and its ability to promote angiogenesis, as evidenced by supporting chondrocyte proliferation and endothelial cell migration and tube formation. Furthermore, after 8 weeks of in vivo culture, the Ceffe/PLGA scaffold seeded with chondrocytes regenerated into a cartilage support structure with a precise nipple shape. Compared to the pure PLGA group, the Ceffe/PLGA scaffold showed remarkable vascular formation, highlighting the beneficial effects of Ceffe. These findings suggest that our designed Ceffe/PLGA scaffold with a nipple shape represents a promising strategy for precise nipple-shaped cartilage regeneration, laying a foundation for subsequent nipple reconstruction.


Subject(s)
Cartilage , Chondrocytes , Polylactic Acid-Polyglycolic Acid Copolymer , Printing, Three-Dimensional , Tissue Engineering , Tissue Scaffolds , Tissue Scaffolds/chemistry , Animals , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Tissue Engineering/methods , Chondrocytes/cytology , Cartilage/cytology , Cartilage/growth & development , Cell Proliferation/drug effects , Biocompatible Materials/chemistry , Rabbits , Porosity , Polyglycolic Acid/chemistry , Neovascularization, Physiologic/drug effects
13.
Acta Biomater ; 179: 220-233, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38554890

ABSTRACT

An effective treatment for the irregular partial-thickness cartilage defect in the early stages of osteoarthritis (OA) is lacking. Cartilage tissue engineering is effective for treating full-thickness cartilage defects with limited area. In this study, we designed an injectable multifunctional poly(lactic-co-glycolic acid) (PLGA) microsphere to repair partial-thickness cartilage defects. The microsphere was grafted with an E7 peptide after loading the microsphere with kartogenin (KGN) and modifying the outer layer through dopamine self-polymerization. The microsphere could adhere to the cartilage defect, recruit synovial mesenchymal stem cells (SMSCs) in situ, and stimulate their differentiation into chondrocytes after injection into the articular cavity. Through in vivo and in vitro experiments, we demonstrated the ability of multifunctional microspheres to adhere to cartilage matrix, recruit SMSCs, and promote their differentiation into cartilage. Following treatment, the cartilage surface of the model group with partial-thickness cartilage defect showed smooth recovery, and the glycosaminoglycan content remained normal; the untreated control group showed significant progression of OA. The microsphere, a framework for cartilage tissue engineering, promoted the expression of SMSCs involved in cartilage repair while adapting to cell migration and growth. Thus, for treating partial-thickness cartilage defects in OA, this innovative carrier system based on stem cell therapy can potentially improve therapeutic outcomes. STATEMENT OF SIGNIFICANCE: Mesenchymal stem cells (MSCs) therapy is effective in the repair of cartilage injury. However, because of the particularity of partial-thickness cartilage injury, it is difficult to recruit enough seed cells in situ, and there is a lack of suitable scaffolds for cell migration and growth. Here, we developed polydopamine surface-modified PLGA microspheres (PMS) containing KGN and E7 peptides. The adhesion ability of the microspheres is facilitated by the polydopamine layer wrapped in them; thus, the microspheres can adhere to the injured cartilage and recruit MSCs, thereby promoting their differentiation into chondrocytes and accomplishing cartilage repair. The multifunctional microspheres can be used as a safe and potential method to treat partial-thickness cartilage defects in OA.


Subject(s)
Anilides , Mesenchymal Stem Cells , Microspheres , Polylactic Acid-Polyglycolic Acid Copolymer , Animals , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Rabbits , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Cell Differentiation/drug effects , Phthalic Acids/chemistry , Phthalic Acids/pharmacology , Cartilage, Articular/pathology , Polyglycolic Acid/chemistry , Lactic Acid/chemistry , Injections , Extracellular Matrix/metabolism , Chondrocytes/cytology , Chondrocytes/metabolism , Tissue Engineering/methods
14.
J Forensic Sci ; 69(3): 1094-1101, 2024 May.
Article in English | MEDLINE | ID: mdl-38491758

ABSTRACT

The aim of the present study was to investigate the effects of time, temperature, and burial in a natural environment on the viability of chondrocytes in porcine femoral condyles using confocal laser scanning microscopy. Hind trotters from 10 pigs were buried or left unburied. Samples were collected daily and stained with a combination of vital dyes (calcein-AM and ethidium homodimer-1). The chondrocytes showed an intense staining corresponding to their vitality. In the first 3 days, viability decreased slowly and showed no statistical difference between buried and unburied samples. After the first 3 days, it decreased rapidly, with the viability of the buried samples being 66% on day 4, decreasing to 25% on day 8 and to 16% on day 10, while in the unburied samples it decreased to 43% on day 4, 13% on day 8 and 5% on day 10. Our results indicate a time, temperature, and burial dependent decrease in chondrocyte viability and suggest the use of chondrocyte viability as a marker for estimating PMI in both the natural environment and in animals, as well as its potential use in humans.


Subject(s)
Burial , Cartilage, Articular , Cell Survival , Chondrocytes , Microscopy, Confocal , Postmortem Changes , Temperature , Animals , Chondrocytes/cytology , Cartilage, Articular/cytology , Swine , Time Factors , Seasons , Forensic Pathology , Fluorescent Dyes , Femur/cytology
15.
Biotechnol Lett ; 46(3): 483-495, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38523201

ABSTRACT

OBJECTIVES: We genetically modified dedifferentiated chondrocytes (DCs) using lentiviral vectors and adenoviral vectors encoding TGF-ß3 (referred to as transgenic groups below) and encapsulated these DCs in the microcavitary hydrogel and investigated the combinational effect on redifferentiation of the genetically manipulated DCs. RESULTS: The Cell Counting Kit-8 data indicated that both transgenic groups exhibited significantly higher cell viability in the first week but inferior cell viability in the subsequent timepoints compared with those of the control group. Real-time polymerase chain reaction and western blot analysis results demonstrated that both transgenic groups had a better effect on redifferentiation to some extent, as evidenced by higher expression levels of chondrogenic genes, suggesting the validity of combination with transgenic DCs and the microcavitary hydrogel on redifferentiation. Although transgenic DCs with adenoviral vectors presented a superior extent of redifferentiation, they also expressed greater levels of the hypertrophic gene type X collagen. It is still worth further exploring how to deliver TGF-ß3 more efficiently and optimizing the appropriate parameters, including concentration and duration. CONCLUSIONS: The results demonstrated the better redifferentiation effect of DCs with the combinational use of transgenic TGF-ß3 and a microcavitary alginate hydrogel and implied that DCs would be alternative seed cells for cartilage tissue engineering due to their easily achieved sufficient cell amounts through multiple passages and great potential to redifferentiate to produce cartilaginous extracellular matrix.


Subject(s)
Cell Differentiation , Chondrocytes , Transforming Growth Factor beta3 , Chondrocytes/cytology , Chondrocytes/metabolism , Transforming Growth Factor beta3/genetics , Transforming Growth Factor beta3/pharmacology , Genetic Vectors/genetics , Hydrogels/chemistry , Animals , Cell Survival , Cells, Cultured , Adenoviridae/genetics , Lentivirus/genetics , Cell Dedifferentiation/genetics , Tissue Engineering/methods
16.
FEBS Lett ; 598(8): 935-944, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38553249

ABSTRACT

Chondrocyte differentiation is crucial for cartilage formation. However, the complex processes and mechanisms coordinating chondrocyte proliferation and differentiation remain incompletely understood. Here, we report a novel function of the adaptor protein Gulp1 in chondrocyte differentiation. Gulp1 expression is upregulated during chondrogenic differentiation. Gulp1 knockdown in chondrogenic ATDC5 cells reduces the expression of chondrogenic and hypertrophic marker genes during differentiation. Furthermore, Gulp1 knockdown impairs cell growth arrest during chondrocyte differentiation and reduces the expression of the cyclin-dependent kinase inhibitor p21. The activation of the TGF-ß/SMAD2/3 pathway, which is associated with p21 expression in chondrocytes, is impaired in Gulp1 knockdown cells. Collectively, these results demonstrate that Gulp1 contributes to cell growth arrest and chondrocyte differentiation by modulating the TGF-ß/SMAD2/3 pathway.


Subject(s)
Cell Differentiation , Chondrocytes , Chondrogenesis , Cyclin-Dependent Kinase Inhibitor p21 , Signal Transduction , Smad2 Protein , Smad3 Protein , Transforming Growth Factor beta , Animals , Mice , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Cell Cycle Checkpoints/genetics , Cell Line , Cell Proliferation , Chondrocytes/metabolism , Chondrocytes/cytology , Chondrogenesis/genetics , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Cyclin-Dependent Kinase Inhibitor p21/genetics , Gene Knockdown Techniques , Smad2 Protein/metabolism , Smad2 Protein/genetics , Smad3 Protein/metabolism , Smad3 Protein/genetics , Transforming Growth Factor beta/metabolism
17.
J Biol Chem ; 300(4): 107158, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38479598

ABSTRACT

Single-cell RNA-seq has led to novel designations for mesenchymal cells associated with bone as well as multiple designations for what appear to be the same cell type. The main goals of this study were to increase the amount of single-cell RNA sequence data for osteoblasts and osteocytes, to compare cells from the periosteum to those inside bone, and to clarify the major categories of cell types associated with murine bone. We created an atlas of murine bone-associated cells by harmonizing published datasets with in-house data from cells targeted by Osx1-Cre and Dmp1-Cre driver strains. Cells from periosteal bone were analyzed separately from those isolated from the endosteum and trabecular bone. Over 100,000 mesenchymal cells were mapped to reveal 11 major clusters designated fibro-1, fibro-2, chondrocytes, articular chondrocytes, tenocytes, adipo-Cxcl12 abundant reticular (CAR), osteo-CAR, preosteoblasts, osteoblasts, osteocytes, and osteo-X, the latter defined in part by periostin expression. Osteo-X, osteo-CAR, and preosteoblasts were closely associated with osteoblasts at the trabecular bone surface. Wnt16 was expressed in multiple cell types from the periosteum but not in cells from endocortical or cancellous bone. Fibro-2 cells, which express markers of stem cells, localized to the periosteum but not trabecular bone in adult mice. Suppressing bone remodeling eliminated osteoblasts and altered gene expression in preosteoblasts but did not change the abundance or location of osteo-X or osteo-CAR cells. These results provide a framework for identifying bone cell types in murine single-cell RNA-seq datasets and suggest that osteoblast progenitors reside near the surface of remodeling bone.


Subject(s)
Mesenchymal Stem Cells , Osteoblasts , Osteocytes , Periosteum , Animals , Mice , Chondrocytes/metabolism , Chondrocytes/cytology , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Osteoblasts/metabolism , Osteoblasts/cytology , Osteocytes/metabolism , Osteocytes/cytology , Periosteum/cytology , Periosteum/metabolism , Single-Cell Analysis , Mice, Inbred C57BL
18.
In Vitro Cell Dev Biol Anim ; 60(4): 343-353, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38504085

ABSTRACT

MicroRNAs (miRNAs) play an important role in articular cartilage damage in osteoarthritis (OA). However, the biological role of miRNAs in the chondrogenic differentiation of bone marrow mesenchymal stem cell (BMSC) remains largely unclear. Rabbit bone marrow mesenchymal stem cells (rBMSCs) were isolated, cultured, and identified. Afterwards, rBMSCs were induced to chondrogenic differentiation, examined by Alcian Blue staining. Differentially expressed miRNAs were identified in rBMSCs between induced and non-induced groups by miRNA sequencing analysis, part of which was validated via PCR assay. Cell viability and apoptosis were assessed by CCK-8 assay and Hoechst staining. Saffron O staining was utilized to assess chondrocyte hyperplasia. The expression of specific chondrogenic markers, including COL2A1, SOX9, Runx2, MMP-13, Aggrecan, and BMP-2, were measured at mRNA and protein levels. The association between beta-transducin repeat containing E3 ubiquitin protein ligase (BTRC) and miR-10a-5p in the miRNA family from rabbit (ocu-miR-10a-5p) was determined by luciferase reporter assay. A total of 76 differentially expressed miRNAs, including 52 downregulated and 24 upregulated miRNAs, were identified in rBMSCs from the induced group. Inhibition of ocu-miR-10a-5p suppressed rBMSC viability and chondrogenic differentiation, as well as downregulated the expression of ß-catenin, SOX9, COL2A1, MMP-13, and Runx2. BTRC was predicted and confirmed as a target of ocu-miR-10a-5p. Overexpression of BTRC rescued the promoting impacts of overexpressed ocu-miR-10a-5p on chondrogenic differentiation of rBMSCs and ß-catenin expression. Taken together, our data suggested that ocu-miR-10a-5p facilitated rabbit BMSC survival and chondrogenic differentiation by activating Wnt/ß-catenin signaling through BTRC.


Subject(s)
Cell Differentiation , Chondrogenesis , Mesenchymal Stem Cells , MicroRNAs , Wnt Signaling Pathway , Animals , Rabbits , MicroRNAs/genetics , MicroRNAs/metabolism , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Cell Differentiation/genetics , Chondrogenesis/genetics , Wnt Signaling Pathway/genetics , Chondrocytes/metabolism , Chondrocytes/cytology , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Apoptosis/genetics , Cell Survival , beta Catenin/metabolism , beta Catenin/genetics , Base Sequence , Gene Expression Regulation
19.
Adv Mater ; 36(21): e2308126, 2024 May.
Article in English | MEDLINE | ID: mdl-38533956

ABSTRACT

The behavior of tissue resident cells can be influenced by the spatial arrangement of cellular interactions. Therefore, it is of significance to precisely control the spatial organization of various cells within multicellular constructs. It remains challenging to construct a versatile multicellular scaffold with ordered spatial organization of multiple cell types. Herein, a modular multicellular tissue engineering scaffold with ordered spatial distribution of different cell types is constructed by assembling varying cell-laden modules. Interestingly, the modular scaffolds can be disassembled into individual modules to evaluate the specific contribution of each cell type in the system. Through assembling cell-laden modules, the macrophage-mesenchymal stem cell (MSC), endothelial cell-MSC, and chondrocyte-MSC co-culture models are successfully established. The in vitro results indicate that the intercellular cross-talk can promote the proliferation and differentiation of each cell type in the system. Moreover, MSCs in the modular scaffolds may regulate the behavior of chondrocytes through the nuclear factor of activated T-Cells (NFAT) signaling pathway. Furthermore, the modular scaffolds loaded with co-cultured chondrocyte-MSC exhibit enhanced regeneration ability of osteochondral tissue, compared with other groups. Overall, this work offers a promising strategy to construct a multicellular tissue engineering scaffold for the systematic investigation of intercellular cross-talk and complex tissue engineering.


Subject(s)
Cell Differentiation , Chondrocytes , Coculture Techniques , Mesenchymal Stem Cells , Tissue Engineering , Tissue Scaffolds , Tissue Engineering/methods , Tissue Scaffolds/chemistry , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Chondrocytes/cytology , Chondrocytes/metabolism , Animals , Mice , Cell Proliferation , Humans , NFATC Transcription Factors/metabolism , Macrophages/cytology , Macrophages/metabolism , RAW 264.7 Cells , Signal Transduction
20.
Tissue Eng Part A ; 30(9-10): 415-425, 2024 May.
Article in English | MEDLINE | ID: mdl-38323554

ABSTRACT

Expansion of chondrocytes presents a major obstacle in the cartilage regeneration procedure, such as matrix-induced autologous chondrocyte implantation. Dedifferentiation of chondrocytes during the expansion process leads to the emergence of a fibrotic (chondrofibrotic) phenotype that decreases the chondrogenic potential of the implanted cells. We aim to (1) determine the extent that chromatin architecture of H3K27me3 and H3K9me3 remodels during dedifferentiation and persists after the transfer to a three-dimensional (3D) culture; and (2) to prevent this persistent remodeling to enhance the chondrogenic potential of expanded bovine chondrocytes, used as a model system. Chromatin architecture remodeling of H3K27me3 and H3K9me3 was observed at 0 population doublings, 8 population doublings, and 16 population doublings (PD16) in a two-dimensional (2D) culture and after encapsulation of the expanded chondrocytes in a 3D hydrogel culture. Chondrocytes were treated with inhibitors of epigenetic modifiers (epigenetic priming) for PD16 and then encapsulated in 3D hydrogels. Chromatin architecture of chondrocytes and gene expression were evaluated before and after encapsulation. We observed a change in chromatin architecture of epigenetic modifications H3K27me3 and H3K9me3 during chondrocyte dedifferentiation. Although inhibiting enzymes that modify H3K27me3 and H3K9me3 did not alter the dedifferentiation process in 2D culture, applying these treatments during the 2D expansion did increase the expression of select chondrogenic genes and protein deposition of type II collagen when transferred to a 3D environment. Overall, we found that epigenetic priming of expanded bovine chondrocytes alters the cell fate when chondrocytes are later encapsulated into a 3D environment, providing a potential method to enhance the success of cartilage regeneration procedures.


Subject(s)
Chondrocytes , Chondrogenesis , Epigenesis, Genetic , Animals , Chondrocytes/metabolism , Chondrocytes/cytology , Cattle , Chondrogenesis/drug effects , Histones/metabolism , Cells, Cultured , Cell Dedifferentiation/drug effects , Cell Proliferation/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...