Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Sci Rep ; 10(1): 12710, 2020 07 29.
Article in English | MEDLINE | ID: mdl-32728104

ABSTRACT

Plant-parasitic nematodes pose a significant threat to agriculture causing annual yield losses worth more than 100 billion US$. Nematode control often involves the use of nematicides, but many of them including non-selective fumigants have been phased out, particularly due to ecotoxicological concerns. Thus new control strategies are urgently needed. Spirotetramat (SPT) is used as phloem-mobile systemic insecticide targeting acetyl-CoA carboxylase (ACC) of pest insects and mites upon foliar application. However, in nematodes the mode of action of SPT and its effect on their development have not been studied so far. Our studies revealed that SPT known to be activated in planta to SPT-enol acts as a developmental inhibitor of the free-living nematode Caenorhabditis elegans and the plant-parasitic nematode Heterodera schachtii. Exposure to SPT-enol leads to larval arrest and disruption of the life cycle. Furthermore, SPT-enol inhibits nematode ACC activity, affects storage lipids and fatty acid composition. Silencing of H. schachtii ACC by RNAi induced similar phenotypes and thus mimics the effects of SPT-enol, supporting the conclusion that SPT-enol acts on nematodes by inhibiting ACC. Our studies demonstrated that the inhibition of de novo lipid biosynthesis by interfering with nematode ACC is a new nematicidal mode of action addressed by SPT, a well-known systemic insecticide for sucking pest control.


Subject(s)
Acetyl-CoA Carboxylase/genetics , Antinematodal Agents/pharmacology , Aza Compounds/pharmacology , Chromadorea/growth & development , Spiro Compounds/pharmacology , Acetyl-CoA Carboxylase/antagonists & inhibitors , Animals , Caenorhabditis elegans/drug effects , Caenorhabditis elegans/growth & development , Caenorhabditis elegans/metabolism , Chromadorea/drug effects , Chromadorea/metabolism , Fatty Acids/metabolism , Helminth Proteins/antagonists & inhibitors , Helminth Proteins/genetics , Larva/drug effects , Larva/growth & development , Larva/metabolism , Life Cycle Stages/drug effects , Tylenchoidea/drug effects , Tylenchoidea/growth & development , Tylenchoidea/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...