Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33.277
Filter
1.
J Chromatogr A ; 1728: 465034, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-38824842

ABSTRACT

Covalent organic frameworks (COFs) are featured with large specific surface areas, good thermal stability, and abundant pores. These properties are exactly what the sorbents used for extraction or adsorption of interest substances are desired with. While, the low density and hydrophobicity of COFs often makes them difficult to be dispersed evenly and recovered from the aqueous solution. Magnetic covalent organic frameworks (MCOFs) inherit magnetic property of the magnetic particles and porous structure of COFs. They have improved dispersity in aqueous solution and phase separation can be rapidly achieved via external magnetic fields. This review summarized the synthesis strategies for MCOFs, and their application in trace environmental organic pollutants analysis by chromatography techniques. The selection of COFs types and modification with active groups for a certain adsorption purpose is discussed, along with the exploration of adsorption mechanisms, which is beneficial for the design and synthesis of MCOFs.


Subject(s)
Environmental Pollutants , Metal-Organic Frameworks , Adsorption , Metal-Organic Frameworks/chemistry , Environmental Pollutants/analysis , Environmental Pollutants/chemistry , Organic Chemicals/chemistry , Hydrophobic and Hydrophilic Interactions , Porosity , Chromatography/methods
2.
Se Pu ; 42(6): 533-543, 2024 Jun.
Article in Chinese | MEDLINE | ID: mdl-38845514

ABSTRACT

Antibody drugs are becoming increasingly popular in disease diagnosis, targeted therapy, and immunoprevention owing to their characteristics of high targeting ability, strong specificity, low toxicity, and mild side effects. The demand for antibody drugs is steadily increasing, and their production scale is expanding. Upstream cell culture technology has been greatly improved by the high-capacity production of monoclonal antibodies. However, the downstream purification of antibodies presents a bottleneck in the production process. Moreover, the purification cost of antibodies is extremely high, accounting for approximately 50%-80% of the total cost of antibody production. Chromatographic technology, given its selectivity and high separation efficiency, is the main method for antibody purification. This process usually involves three stages: antibody capture, intermediate purification, and polishing. Different chromatographic techniques, such as affinity chromatography, ion-exchange chromatography, hydrophobic interaction chromatography, mixed-mode chromatography, and temperature-responsive chromatography, are used in each stage. Affinity chromatography, mainly protein A affinity chromatography, is applied for the selective capture and purification of antibodies from raw biofluids or harvested cell culture supernatants. Other chromatographic techniques, such as ion-exchange chromatography, hydrophobic interaction chromatography, and mixed-mode chromatography, are used for intermediate purification and antibody polishing. Affinity biomimetic chromatography and hydrophobic charge-induction chromatography can produce antibodies with purities comparable with those obtained through protein A chromatography, by employing artificial chemical/short peptide ligands with good selectivity, high stability, and low cost. Temperature-responsive chromatography is a promising technique for the separation and purification of antibodies. In this technique, antibody capture and elution is controlled by simply adjusting the column temperature, which greatly eliminates the risk of antibody aggregation and inactivation under acidic elution conditions. The combination of different chromatographic methods to improve separation selectivity and achieve effective elution under mild conditions is another useful strategy to enhance the yield and quality of antibodies. This review provides an overview of recent advances in the field of antibody purification using chromatography and discusses future developments in this technology.


Subject(s)
Chromatography, Affinity , Antibodies/isolation & purification , Antibodies/chemistry , Antibodies, Monoclonal/isolation & purification , Antibodies, Monoclonal/chemistry , Chromatography/methods , Chromatography, Affinity/methods , Chromatography, Ion Exchange/methods , Hydrophobic and Hydrophilic Interactions
3.
Curr Protoc ; 4(6): e1068, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38837274

ABSTRACT

Adeno-associated virus (AAV) vectors can efficiently transduce exogenous genes into various tissues in vivo. Owing to their convenience, high efficiency, long-term stable gene expression, and minimal side effects, AAV vectors have become one of the gold standards for investigating gene functions in vivo, especially in non-clinical studies. However, challenges persist in efficiently preparing a substantial quantity of high-quality AAV vectors. Commercial AAV vectors are typically associated with high costs. Further, in-laboratory production is hindered by the lack of specific laboratory equipment, such as ultracentrifuges. Therefore, a simple, quick, and scalable preparation method for AAV vectors is needed for proof-of-concept experiments. Herein, we present an optimized method for producing and purifying high-quality AAV serotype 9 (AAV9) vectors using standard laboratory equipment and chromatography. Using ceramic hydroxyapatite as a mixed-mode chromatography medium can markedly increase the quality of purified AAV vectors. Basic Protocols and optional methods for evaluating purified AAV vectors are also described. © 2024 The Author(s). Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Production of AAV9 vectors in 293EB cells Basic Protocol 2: Concentration and buffer exchange of AAV9 vectors from 293EB cell culture supernatants using tangential flow filtration Basic Protocol 3: Purification of AAV9 vectors from TFF samples using ceramic hydroxyapatite chromatography Basic Protocol 4: Analysis of the purified AAV9 vectors.


Subject(s)
Ceramics , Dependovirus , Durapatite , Genetic Vectors , Serogroup , Dependovirus/genetics , Dependovirus/isolation & purification , Genetic Vectors/isolation & purification , Genetic Vectors/genetics , Humans , Ceramics/chemistry , Durapatite/chemistry , Chromatography/methods , HEK293 Cells
4.
J Chromatogr A ; 1727: 465008, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-38788402

ABSTRACT

A critical factor for automated method development in chromatography is the maximization or minimization of an objective function describing the quality (and speed) of the separation. In chromatography, this function is commonly referred to as a chromatographic response function (CRF). Many CRFs have previously been introduced, but many have unfavourable properties such as featuring multiple optima, insufficient discriminatory power, and a too strong dependence on the weight factors needed to balance resolution and time penalty components. To overcome these problems, the present study introduces a new type of CRF wherein the relative weight of the time penalty term is a self-adaptive function of the separation quality. The ability to unambiguously identify the optimal gradient settings of this newly proposed CRF is compared to that of some of the most frequently used CRFs in a study covering 100 randomly composed in silico samples. Doing so, the new CRF is found to flawlessly lead to the correct solution (=linear gradient parameters providing the highest resolution in the shortest potential time) in 100 % of the cases, while the most frequently used literature CRFs were off-target for about 50 to 60 % of the samples, even when considering the availability of spectral peak shape data. Some slight alterations to the proposed CRF are introduced and discussed as well.


Subject(s)
Algorithms , Computer Simulation , Chromatography/methods , Automation
5.
Se Pu ; 42(5): 487-493, 2024 Apr 08.
Article in Chinese | MEDLINE | ID: mdl-38736393

ABSTRACT

The pharmaceutical analysis course is a three-dimensional knowledge network that connects several courses to form a new comprehensive knowledge node involving a large knowledge system and flexible knowledge structure. In this course, the subject of chromatography covers a wide range of topics. However, because accurate content is challenging to present, the teaching effect of this subject is poor. In this work, we sought to achieve the educational purpose of establishing morality and cultivating talent, as well as the goal of training highly skilled professionals, by taking the teaching of chromatography in the pharmaceutical analysis course as an example of transforming scientific research results into teaching resources. The resources obtained are integrated into the teaching process to provide innovative and scientific research ideas to students with the aim of not only helping them understand and master technical knowledge but also exercise their ability to raise and solve problems. Furthermore, we expound on how to introduce scientific development frontiers and formulate scientific problems through curriculum design. We also describe how our strategy can promote the teaching effect and achieve teaching objectives. Based on the characteristics of rapid knowledge update and equal emphasis on theory and practice in pharmaceutical analysis, the course is designed by introducing new advances in scientific development, formulating scientific problems, and adopting question- and problem-based learning methods for teaching. The teaching effect is then evaluated through diversified assessment, student feedback, and self-evaluation. The results show that the transformation of scientific research results into teaching resources plays a significant role in stimulating students' interest in learning, improving students' ability to solve problems, and achieving curriculum objectives, all of which greatly improve the teaching effect.


Subject(s)
Teaching , Chromatography , Curriculum , Humans
6.
PDA J Pharm Sci Technol ; 78(2): 157-168, 2024.
Article in English | MEDLINE | ID: mdl-38609154

ABSTRACT

The session provided an update on the application and mechanistic understanding of intensified unit operations (e.g., mixed mode depth filters, mixed mode AEX) since the last conference in 2019. One of the key gaps identified in the 2019 Viral Clearance Symposium session on the topic was for more investigation required to achieve a clear understanding of the molecular mechanisms of virus removal and the relevance of different moleculés interactions including resin, virus, and product. Further investigation into worst-case conditions for these unit operations is also warranted. One of the key outcomes from that 2019 discussion was also that multimodal anion exchangers can have robust and effective virus removal, depending on process and impurities-an observation that was recapitulated with more specific case studies and evidenced by broader application of these chromatographic resins in late-stage regulatory filings.


Subject(s)
Chromatography , Adsorption , Kinetics
7.
Sci Rep ; 14(1): 8714, 2024 04 15.
Article in English | MEDLINE | ID: mdl-38622266

ABSTRACT

Green, photosynthesizing plants can be proficiently used as cost-effective, single-use, fully biodegradable bioreactors for environmentally-friendly production of a variety of valuable recombinant proteins. Being near-infinitely scalable and most energy-efficient in generating biomass, plants represent profoundly valid alternatives to conventionally used stationary fermenters. To validate this, we produced a plastome-engineered tobacco bioreactor line expressing a recombinant variant of the protein A from Staphylococcus aureus, an affinity ligand widely useful in antibody purification processes, reaching accumulation levels up to ~ 250 mg per 1 kg of fresh leaf biomass. Chromatography resin manufactured from photosynthetically-sourced recombinant protein A ligand conjugated to agarose beads demonstrated the innate pH-driven ability to bind and elute IgG-type antibodies and allowed one-step efficient purification of functional monoclonal antibodies from the supernatants of the producing hybridomas. The results of this study emphasize the versatility of plant-based recombinant protein production and illustrate its vast potential in reducing the cost of diverse biotechnological applications, particularly the downstream processing and purification of monoclonal antibodies.


Subject(s)
Chromatography , Staphylococcal Protein A , Staphylococcal Protein A/chemistry , Ligands , Plants, Genetically Modified/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Antibodies, Monoclonal/metabolism , Immunoglobulin G/metabolism , Plant Proteins/metabolism , Chromatography, Affinity/methods
9.
Article in English | MEDLINE | ID: mdl-38640794

ABSTRACT

Chromatography is a robust and reliable separation method that can use various stationary phases to separate complex mixtures commonly seen in metabolomics. This review examines the types of chromatography and stationary phases that have been used in targeted or untargeted metabolomics with methods such as mass spectrometry (MS) and nuclear magnetic resonance (NMR) spectroscopy. General considerations for sample pretreatment and separations in metabolomics are considered, along with the various supports and separation formats for chromatography that have been used in such work. The types of liquid chromatography (LC) that have been most extensively used in metabolomics will be examined, such as reversed-phase liquid chromatography and hydrophilic liquid interaction chromatography. In addition, other forms of LC that have been used in more limited applications for metabolomics (e.g., ion-exchange, size-exclusion, and affinity methods) will be discussed to illustrate how these techniques may be utilized for new and future research in this field. Multidimensional LC methods are also discussed, as well as the use of gas chromatography and supercritical fluid chromatography in metabolomics. In addition, the roles of chromatography in NMR- vs. MS-based metabolomics are considered. Applications are given within the field of metabolomics for each type of chromatography, along with potential advantages or limitations of these separation methods.


Subject(s)
Chromatography , Metabolomics , Animals , Humans , Chromatography, Liquid/methods , Hydrophobic and Hydrophilic Interactions , Magnetic Resonance Spectroscopy/methods , Mass Spectrometry/methods , Metabolomics/methods , Chromatography/methods
10.
Molecules ; 29(8)2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38675651

ABSTRACT

Outer membrane vesicles (OMVs) are attractive for biomedical applications based on their intrinsic properties in relation to bacteria and vesicles. However, their widespread use is hampered by low yields and purities. In this study, EVscore47 multifunctional chromatography microspheres were synthesized and used to efficiently isolate functional OMVs from Escherichia coli. Through this technology, OMV loss can be kept to a minimum, and OMVs can be harvested using EVscore47 at 11-fold higher yields and ~13-fold higher purity than those achieved by means of ultracentrifugation. Based on the results presented here, we propose a novel EVscore47-based isolation of OMVs that is fast and scalable.


Subject(s)
Escherichia coli , Extracellular Vesicles , Microspheres , Extracellular Vesicles/chemistry , Extracellular Vesicles/metabolism , Bacterial Outer Membrane/metabolism , Bacterial Outer Membrane Proteins/chemistry , Ultracentrifugation , Chromatography/methods
11.
Molecules ; 29(8)2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38675682

ABSTRACT

Drug discovery is a challenging process, with many compounds failing to progress due to unmet pharmacokinetic criteria. Lipophilicity is an important physicochemical parameter that affects various pharmacokinetic processes, including absorption, metabolism, and excretion. This study evaluated the lipophilic properties of a library of ipsapirone derivatives that were previously synthesized to affect dopamine and serotonin receptors. Lipophilicity indices were determined using computational and chromatographic approaches. In addition, the affinity to human serum albumin (HSA) and phospholipids was assessed using biomimetic chromatography protocols. Quantitative Structure-Retention Relationship (QSRR) methodologies were used to determine the impact of theoretical descriptors on experimentally determined properties. A multiple linear regression (MLR) model was calculated to identify the most important features, and genetic algorithms (GAs) were used to assist in the selection of features. The resultant models showed commendable predictive accuracy, minimal error, and good concordance correlation coefficient values of 0.876, 0.149, and 0.930 for the validation group, respectively.


Subject(s)
Quantitative Structure-Activity Relationship , Humans , Serum Albumin, Human/chemistry , Algorithms , Linear Models , Molecular Structure , Phospholipids/chemistry , Hydrophobic and Hydrophilic Interactions , Chromatography/methods
12.
Mar Pollut Bull ; 202: 116354, 2024 May.
Article in English | MEDLINE | ID: mdl-38642479

ABSTRACT

In recent decades, the harmful algal blooms (HABs) caused by Prorocentrum minimum have caused serious environmental damage and economic losses. The detection of P. minimum plays an important role in warning the outbreak of P. minimum-forming HABs. By utilizing the powerful absorption of graphene oxide (GO) on short-stranded DNA, a GO-assisted nucleic acid chromatography strip (GO-NACS) was proposed here to achieve a highly sensitive, specific, intuitive, and convenient detection of P. minimum. In particular, this study used our previously reported conventional-NACS (C-NACS) as a control to evaluate the improvement of detection performance with the use of GO. The performance of GO-NACS was evaluated from the perspectives of specificity, sensitivity, stability, and practicality. The specificity test demonstrated that it had a high degree of specificity and did not display cross-reacting with non-target algal species. The sensitivity test with the genomic DNA indicated that it had a detection limit of 1.30 × 10-3 ng µL-1, representing a 10-fold higher sensitivity than C-NACS and a 100-fold higher sensitivity than agarose gel electrophoresis (AGE). The interference test with non-target algal species demonstrated that it had a good detection stability, and the interfering algal species had no obvious effect on the detection of P. minimum. The practicality test with simulated natural water samples showed that the cellular detection limit of GO-NACS was 6.8 cells mL-1, which was 10-fold and 100-fold lower than that of C-NACS and AGE, respectively. In conclusion, the established GO-NACS may offer a novel alternative technique for the detection of P. minimum while guaranteeing specificity and enhancing sensitivity without requiring extensive apparatus.


Subject(s)
Graphite , Harmful Algal Bloom , Graphite/chemistry , Environmental Monitoring/methods , Chromatography/methods , Nucleic Acids/analysis
13.
Methods Mol Biol ; 2744: 517-523, 2024.
Article in English | MEDLINE | ID: mdl-38683339

ABSTRACT

This rapid, equipment-free DNA isolation procedure using chromatography paper is a simple method that can be performed in less than 30 min and requires no wet lab experience. With minimal expense, it offers an affordable alternative for anyone wanting to explore biodiversity. It also provides an excellent option for use in classrooms or other activities that are time limited. The method works best for plants or lichens, producing stable DNA on Whatman® chromatography paper at room temperature, which can be eluted as needed.


Subject(s)
DNA Barcoding, Taxonomic , DNA Barcoding, Taxonomic/methods , DNA/isolation & purification , DNA/genetics , DNA, Plant/genetics , DNA, Plant/isolation & purification , Plants/genetics , Chromatography/methods , Lichens/genetics
14.
Se Pu ; 42(3): 275-281, 2024 Mar 08.
Article in Chinese | MEDLINE | ID: mdl-38503704

ABSTRACT

A non-invasive condensation collection-ion chromatography method was established for the determination of organic acids and anions including lactic acid, formic acid, acetic acid, pyruvic acid, chloride, nitrate, nitrite, and sulfate in the exhaled breath of humans. The breath exhaled was condensed and collected using a home-made exhaled breath condensation equipment. This equipment included a disposable mouthpiece as a blow-off port, one-way valve and flow meter, cold trap, disposable condensate collection tube placed in the cold trap, and gas outlet. A standard sampling procedure was used. Before collection, the collection temperature and sampling volume were set on the instrument control panel, and sampling was started when the cold-trap temperature dropped to the set value, while maintaining the balance. Subjects were required to gargle with pure water before sampling. During the sampling process, the subjects were required to inhale deeply until the lungs were full of gas and then exhale evenly through the air outlet. When the set volume was collected, the instrument made a prompt sound; then, the collection was immediately ended, the expiration time was recorded, and the average collection flow was calculated according to the expiration time and sampling volume. After collection, the disposable condensation collection tube was immediately taken out, sealed, and stored in the refrigerator at -20 ℃ away from light, and immediately used for further testing. The organic acids and anions in exhaled breath condensation (EBC) were filtered through a 0.22 µm membrane filter before injection and detected by ion chromatography with conductivity detection. Factors such as collection temperature and collection flow rate during condensation collection were optimized. The optimal cooling temperature was set at -15 ℃, and the optimal exhaled breath flow rate was set at 15 L/min. The mobile phase consisted of a mixture of sodium carbonate (1.5 mmol/L) and sodium bicarbonate (3 mmol/L). The flow rate was 0.8 mL/min, and the injection volume was 100 µL. An IC-SA3 column (250 mm×4.0 mm) was used, and the temperature was set at 45 ℃. An ICDS-40A electrodialysis suppressor was used, and the current was set at 150 mA. The linear ranges of the eight organic acids and anions were 0.1-10.0 mg/L; their correlation coefficients (r) were ≥0.9993. The limits of detection (LODs) for the eight organic acids and anions were 0.0017-0.0150 mg/L based on a signal-to-noise ratio of 3, and the limits of quantification (LOQs) were 0.0057-0.0500 mg/L based on a signal-to-noise ratio of 10. The intra-day precisions were 5.06%-6.33% (n=5), and the inter-day precisions were 5.37%-7.50% (n=5). This method was used to detect organic acids and anions in the exhaled breath of five healthy subjects. The contents of organic acids and anions in the exhaled breath were calculated. The content of lactic acid was relatively high, at 1.13-42.3 ng/L, and the contents of other seven organic acids and anions were 0.18-11.0 ng/L. During a 10 km-long run, the majority of organic acids and anions in the exhaled breath of five subjects first increased and then decreased. However, due to abnormal metabolism, the content changes of lactic acid, acetic acid, pyruvic acid and chloride in one subject were obviously different from others during exercise, showing a continuous rise. This method has the advantages of involving a simple sampling process and exhibiting good precision, few side effects, and no obvious discomfort or risk to the subjects. This study provides experimental ideas and a theoretical basis for future research on human metabolites.


Subject(s)
Chlorides , Pyruvic Acid , Humans , Anions , Lactic Acid/analysis , Chromatography , Acetates/analysis
15.
Article in Chinese | MEDLINE | ID: mdl-38538243

ABSTRACT

Objective: To establish a method for the determination of n-butylamine in the air of the workplace by ion chromatography. Methods: In February 2022, on-site sampling was carried out using an atmospheric sampler. N-butylamine was adsorbed by a neutral silica gel tube and then performed for qualitative and quantitative determination by ion chromatography after ultrasonic desorption with 10 mmol/L sulfuric acid solution. Results: The linear range of the method was 0.0375-100.0 µg/ml, the linear equation of the standard curve was y=0.0713x-0.0327, the correlation coefficient was 0.9992. The detection limit of the method was 11.25 µg/L, and the lower limit of quantification was 37.50 µg/L, the lowest quantitative concentration was 0.025 mg/m(3) (in term of sampling 7.5 L). The average desorption efficiency of the method was 91.50%-95.38%, the precision was 1.10%-2.30%, the standard recovery was 83.83%-100.02%, sampling efficiency was 100.00%. Conclusion: This method is fast, sensitive and accurate, and can be used for the determination of n-butylamine in the air of workplace.


Subject(s)
Air Pollutants, Occupational , Butylamines , Air Pollutants, Occupational/analysis , Chromatography/methods , Workplace
16.
Carbohydr Res ; 538: 109076, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38537364

ABSTRACT

Profiling of pectic arabinans and galactans by analysis of the released oligosaccharides after backbone cleavage provides information on the complexity of the polymer structure. In plants of the family Amaranthaceae, arabinan and galactan substitution with ferulates extends the polysaccharide complexity, changing its chemical properties. Knowledge of the ferulate environment is crucial to understand structure-function-relationships of feruloylated pectins. Here, we present an approach to separate enzymatically generated feruloylated and non-feruloylated arabino- and galactooligosaccharides, followed by deesterification and semiquantitative analysis by HPAEC-PAD using previously reported relative response factors. Application of this approach to sugar beet pectins and insoluble and soluble dietary fiber preparations of amaranth and quinoa suggests that ferulates are preferably incorporated into more complex structures, as nicely demonstrated for feruloylated galactans. Also, ferulate substitution appears to negatively affect enzymatic cleavage by using endo-enzymes. As a consequence, we were able to tentatively identify new feruloylated tri- and tetrasaccharides of galactans isolated from sugar beet pectins.


Subject(s)
Galactans , Pectins , Polysaccharides , Galactans/chemistry , Pectins/chemistry , Oligosaccharides/chemistry , Chromatography , Sugars
17.
Anal Chem ; 96(14): 5702-5710, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38538555

ABSTRACT

Glass nanopipets have been demonstrated to be a powerful tool for the sensing and discrimination of biomolecules, such as DNA strands with different lengths or configurations. Despite progress made in nanopipet-based sensors, it remains challenging to develop effective strategies that separate and sense in one operation. In this study, we demonstrate an agarose gel-filled nanopipet that enables hyphenated length-dependent separation and electrochemical sensing of short DNA fragments based on the electrokinetic flow of DNA molecules in the nanoconfined channel at the tip of the nanopipet. This nanoconfined electrokinetic chromatography (NEC) method is used to distinguish the mixture of DNA strands without labels, and the ionic current signals measured in real time show that the mixed DNA strands pass through the tip hole in order according to the molecular weight. With NEC, gradient separation and electrochemical measurement of biomolecules can be achieved simultaneously at the single-molecule level, which is further applied for programmable gene delivery into single living cells. Overall, NEC provides a multipurpose platform integrating separation, sensing, single-cell delivery, and manipulation, which may bring new insights into advanced bioapplication.


Subject(s)
DNA , Nanotechnology , DNA/chemistry , Nanotechnology/methods , Chromatography
18.
Ars pharm ; 65(2): 98-106, mar. 2024. tab
Article in Spanish | IBECS | ID: ibc-231946

ABSTRACT

Introducción: El bitartrato de epinefrina, también conocido como epinefrina, es un ingrediente farmacéutico importante en el tratamiento de diversas enfermedades, pero su medición precisa es esencial para garantizar la seguridad del medicamento. La Farmacopea de los Estados Unidos (USP) establece los estándares para su análisis, pero la elección del método afecta la precisión de las mediciones. Este estudio investiga cómo los diferentes métodos afectan la medición del bitartrato de epinefrina según las versiones USP-43 y USP-44, que tienen implicaciones significativas para la calidad y la regulación de los medicamentos en el campo. Método: Se eligieron el método volumétrico y el método cromatográfico para comparación. Se utilizaron muestras de epinefrina bitartrato de alta pureza que cumplían con los estándares de la USP-43 y USP-44.Resultados: Los resultados obtenidos por ambos métodos se comparan entre sí y se evalúan según los límites de especificación definidos por USP-43 y USP-44. Los valores obtenidos para algunos parámetros, como la concentración y la pureza del bitartrato de epinefrina, varían considerablemente entre los distintos métodos analíticos. Conclusiones: Este estudio destaca la importancia de una cuidadosa selección del método analítico al evaluar el bitartrato de epinefrina según las directrices USP-43 y USP-44. La elección de la tecnología afecta a los resultados y, por tanto, a la calidad y seguridad de los productos farmacéuticos que contienen esta sustancia. Se recomienda validar el método en cada laboratorio y comparar los resultados con los estándares USP. (AU)


Introduction: Epinephrine bitartrate, also known as epinephrine, is an important pharmaceutical ingredient in the treatment of various diseases, but its accurate measurement is essential to ensure the safety of the drug. The United States Pharmacopeia (USP) sets the standards for its analysis, but the choice of method affects the precision of the measurements. This study investigates how different methods affect the measurements of epinephrine bitartrate based on USP-43 and USP-44, which have significant implications for drug quality and regulation in the field. Method: The volumetric method and chromatographic method were chosen for comparison. High-purity epineph-rine bitartrate samples that met USP-43 and USP-44 standards were used. Results: The results obtained by both methods are compared with and evaluated according to the specification lim-its defined by USP-43 and USP-44. The values obtained for some parameters, such as the concentration and purity of epinephrine tartrate, vary considerably between the different analytical methods. Conclusions: This study highlights the importance of carefully selecting analytical methods when evaluating epi-nephrine tartrate according to USP-43 and USP-44 guidelines. The choice of technology affects the results and, therefore, the quality and safety of the pharmaceutical products containing this substance. It is recommended to validate the method in each laboratory and compare the results with USP standards. (AU)


Subject(s)
Epinephrine/pharmacology , Epinephrine/analysis , Titrimetry , Chromatography , Pharmacopoeias as Topic
19.
Environ Sci Pollut Res Int ; 31(18): 26984-26996, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38499929

ABSTRACT

The ubiquity and impact of pharmaceuticals and pesticides, as well as their residues in environmental compartments, particularly in water, have raised human and environmental health concerns. This emphasizes the need of developing sustainable methods for their removal. Solar-driven photocatalytic degradation has emerged as a promising approach for the chemical decontamination of water, sparking intensive scientific research in this field. Advancements in photocatalytic materials have driven the need for solar reactors that efficiently integrate photocatalysts for real-world water treatment. This study reports preliminary results from the development and evaluation of a solar system for TiO2-based photocatalytic degradation of intermittently flowing water contaminated with doxycycline (DXC), sulfamethoxazole (SMX), dexamethasone (DXM), and carbendazim (CBZ). The system consisted of a Fresnel-type UV solar concentrator that focused on the opening and focal point of a parabolic trough concentrator, within which tubular quartz glass reactors were fixed. Concentric springs coated with TiO2, arranged one inside the other, were fixed inside the quartz reactors. The reactors are connected to a raw water tank at the inlet and a check valve at the outlet. Rotating wheels at the collector base enable solar tracking in two axes. The substances (SMX, DXC, and CBZ) were dissolved in dechlorinated tap water at a concentration of 1.0 mg/L, except DXM (0.8 mg/L). The water underwent sequential batch (~ 3 L each, without recirculation) processing with retention times of 15, 30, 60, 90, and 120 min. After 15 min, the degradation rates were as follows: DXC 87%, SMX 35.5%, DXM 32%, and CBZ 31.8%. The system processed 101 L of water daily, simultaneously removing 870, 355, 256, and 318 µg/L of DXC, SMX, DXM, and CBZ, respectively, showcasing its potential for real-world chemical water decontamination application. Further enhancements that enable continuous-flow operation and integrate highly effective adsorbents and photocatalytic materials can significantly enhance system performance.


Subject(s)
Photochemistry , Solar Energy , Water Pollutants, Chemical , Water Purification , Water , Catalysis/radiation effects , Water/chemistry , Water Purification/instrumentation , Water Purification/methods , Humans , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/isolation & purification , Doxycycline/chemistry , Doxycycline/isolation & purification , Sulfamethoxazole/chemistry , Sulfamethoxazole/isolation & purification , Dexamethasone/chemistry , Dexamethasone/isolation & purification , Quartz , Chromatography , Temperature , Time Factors , Animals , Water Supply
20.
Adv Exp Med Biol ; 3234: 163-172, 2024.
Article in English | MEDLINE | ID: mdl-38507206

ABSTRACT

Small angle X-ray scattering (SAXS) is a versatile technique that can provide unique insights in the solution structure of macromolecules and their complexes, covering the size range from small peptides to complete viral assemblies. Technological and conceptual advances in the last two decades have tremendously improved the accessibility of the technique and transformed it into an indispensable tool for structural biology. In this chapter we introduce and discuss several approaches to collecting SAXS data on macromolecular complexes, including several approaches to online chromatography. We include practical advice on experimental design and point out common pitfalls of the technique.


Subject(s)
Chromatography , Scattering, Small Angle , X-Rays , X-Ray Diffraction , Macromolecular Substances/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...