Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.394
Filter
1.
Sci Rep ; 14(1): 14090, 2024 06 18.
Article in English | MEDLINE | ID: mdl-38890328

ABSTRACT

Chromium (Cr) can interfere with plant gene expression, change the content of metabolites and affect plant growth. However, the molecular response mechanism of wetland plants at different time sequences under Cr stress has yet to be fully understood. In this study, Canna indica was exposed to 100 mg/kg Cr-contaminated soil for 0, 7, 14, and 21 days and analyzed using untargeted metabolomics (LC-MS) and transcriptomics. The results showed that Cr stress increased the activities of superoxide dismutase (SOD), ascorbate peroxidase (APX) and peroxidase (POD), the contents of glutathione (GSH), malondialdehyde (MDA), and oxygen free radical (ROS), and inhibited the biosynthesis of photosynthetic pigments, thus leading to changes in plant growth and biomass. Metabonomics analysis showed that Cr stress mainly affected 12 metabolic pathways, involving 38 differentially expressed metabolites, including amino acids, phenylpropane, and flavonoids. By transcriptome analysis, a total of 16,247 differentially expressed genes (DEGs, 7710 up-regulated genes, and 8537 down-regulated genes) were identified, among which, at the early stage of stress (Cr contaminate seven days), C. indica responds to Cr toxicity mainly through galactose, starch and sucrose metabolism. With the extension of stress time, plant hormone signal transduction and MAPK signaling pathway in C. indica in the Cr14 (Cr contaminate 14 days) treatment group were significantly affected. Finally, in the late stage of stress (Cr21), C. indica co-defuses Cr toxicity by activating its Glutathione metabolism and Phenylpropanoid biosynthesis. In conclusion, this study revealed the molecular response mechanism of C. indica to Cr stress at different times through multi-omics methods.


Subject(s)
Gene Expression Profiling , Gene Expression Regulation, Plant , Metabolomics , Stress, Physiological , Transcriptome , Metabolomics/methods , Stress, Physiological/genetics , Chromium/metabolism , Chromium/toxicity , Soil Pollutants/toxicity , Soil Pollutants/metabolism , Metabolome
2.
Curr Microbiol ; 81(8): 231, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38896297

ABSTRACT

Spirulina platensis, a photosynthetic cyanobacterium, has garnered attention for its potential role in environmental remediation due to its ability to absorb and metabolize toxic heavy metals. Understanding its response toward toxicity of one of the most common contaminants, Cr(VI) is crucial for assessing its efficacy in bioremediation efforts. This study aims to investigate the physiological and biochemical responses of Spirulina platensis to varying concentrations of Cr(VI) from 0.5 to 5 ppm, shedding light on its potential as a bioindicator for environmental contamination and its suitability for bioremediation purposes. The impact of Cr(VI) on cell density, biosorption, pigment levels, nutrient content, fluorescence response, and photosynthetic efficiency was examined. The study revealed a gradual reduction in cell density, biomass production, and biosorption efficiency with increasing Cr(VI) concentrations. Pigment levels, carbohydrate, protein, and lipid content showed significant decreases, indicating physiological stress. Fluorescence response and photosynthetic efficiency were also adversely affected, suggesting alterations in electron transfer dynamics. A threshold for chromium toxicity was observed at 0.5 ppm, beyond which significant physiological disturbances occurred. This investigation highlights the sensitivity of Spirulina platensis to Cr(VI) toxicity and its potential as a bioindicator for heavy metal contamination. Metal sorption was highest in 0.5 ppm Cr(VI) with 56.56% removal. Notably, at lower concentrations, Cr(VI) acted as an intermediate electron acceptor, enhancing the electron transport chain and potentially increasing biomass under controlled conditions. The findings underscore the importance of understanding the mechanisms underlying heavy metal stress in microalgae for effective environmental remediation strategies. The research highlights the dual role of chromium(VI) in influencing S. platensis, depending on the concentration, and underscores the importance of understanding metal ion interactions with photosynthetic organisms for potential applications in bioremediation.


Subject(s)
Biodegradation, Environmental , Chromium , Photosynthesis , Spirulina , Chromium/metabolism , Chromium/toxicity , Spirulina/metabolism , Spirulina/growth & development , Spirulina/drug effects , Spirulina/chemistry , Photosynthesis/drug effects , Biomass , Adsorption
3.
Nutrients ; 16(10)2024 May 08.
Article in English | MEDLINE | ID: mdl-38794654

ABSTRACT

Hexavalent chromium is a common pollutant in the environment. Long-term exposure to hexavalent chromium can cause damage to multiple organs. The kidney is one of the main organs that metabolizes heavy metal toxicity, and the accumulation of Cr (VI) in the body can lead to serious damage to kidney function. Studies have shown that ginseng polysaccharides have the function of preventing cisplatin-induced endoplasmic reticulum stress, inflammatory response, and apoptosis in renal cells, but their efficacy and mechanisms against hexavalent chromium-induced nephrotoxicity need to be explored. The aim of this study was to explore the efficacy and mechanism of ginseng polysaccharide against hexavalent chromium-induced nephrotoxicity. The results of pharmacodynamic experiments showed that ginseng polysaccharide could significantly reduce the kidney index, urea nitrogen (BUN), and serum creatinine (Cre) values of K2Cr2O7-treated mice. The results of mechanistic experiments showed that ginseng polysaccharides could alleviate oxidative stress, apoptosis, and biofilm damage in renal tissues caused by Cr (VI). Lipidomic correlation analysis showed that ginseng polysaccharides could protect the organism by regulating the expression of differential lipids. This study opens new avenues for the development of alternative strategies for the prevention of kidney injury caused by hexavalent chromium.


Subject(s)
Apoptosis , Chromium , Kidney , Oxidative Stress , Panax , Polysaccharides , Panax/chemistry , Chromium/toxicity , Animals , Polysaccharides/pharmacology , Mice , Kidney/drug effects , Kidney/metabolism , Kidney/pathology , Apoptosis/drug effects , Male , Oxidative Stress/drug effects , Kidney Diseases/chemically induced , Kidney Diseases/prevention & control , Plant Extracts/pharmacology , Creatinine/blood
4.
Ecotoxicol Environ Saf ; 279: 116458, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38759536

ABSTRACT

Heavy metals interact with each other in a coexisting manner to produce complex combined toxicity to organisms. At present, the toxic effects of chronic co-exposure to heavy metals hexavalent chromium [Cr(VI)] and divalent nickel [Ni(II)] on organisms are seldom studied and the related mechanisms are poorly understood. In this study, we explored the mechanism of the colon injury in mice caused by chronic exposure to Cr or/and Ni. The results showed that, compared with the control group, Cr or/and Ni chronic exposure affected the body weight of mice, and led to infiltration of inflammatory cells in the colon, decreased the number of goblet cells, fusion of intracellular mucus particles and damaged cell structure of intestinal epithelial. In the Cr or/and Ni exposure group, the activity of nitric oxide synthase (iNOS) increased, the expression levels of MUC2 were significantly down-regulated, and those of ZO-1 and Occludin were significantly up-regulated. Interestingly, factorial analysis revealed an interaction between Cr and Ni, which was manifested as antagonistic effects on iNOS activity, ZO-1 and MUC2 mRNA expression levels. Transcriptome sequencing further revealed that the expression of genes-related to inflammation, intestinal mucus and tight junctions changed obviously. Moreover, the relative contents of Cr(VI) and Ni(II) in the Cr, Ni and Cr+Ni groups all changed with in-vitro gastrointestinal (IVG)digestion, especially in the Cr+Ni group. Our results indicated that the chronic exposure to Cr or/and Ni can lead to damage to the mice colon, and the relative content changes of Cr(VI) and Ni(II) might be the main reason for the antagonistic effect of Cr+Ni exposure on the colon damage.


Subject(s)
Chromium , Colon , Mucin-2 , Nickel , Animals , Chromium/toxicity , Nickel/toxicity , Mice , Colon/drug effects , Colon/pathology , Mucin-2/genetics , Mucin-2/metabolism , Nitric Oxide Synthase Type II/metabolism , Nitric Oxide Synthase Type II/genetics , Gene Expression Profiling , Male , Digestion/drug effects , Zonula Occludens-1 Protein/metabolism , Zonula Occludens-1 Protein/genetics , Transcriptome/drug effects , Occludin/metabolism , Occludin/genetics , Intestinal Mucosa/drug effects , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology
5.
Chemosphere ; 358: 142203, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38697571

ABSTRACT

Excessive release of chromium (Cr) from the tanning industry and antibiotics from livestock caused severe hazards to humans. Gallic acid (GA 10 mM) alleviated alone/combined SDZ 30 mg kg-1 and TWW 40, 60, and 100% stress in wheat. GA (10 mM) decreased the TSP 12 and 13%, TFAA 8 and 10%, TSS 14 and 16%, RS 18 and 16%, and NRS 11 and 9% in shoots and grains under SDZ + TWW (30 mg kg-1+100%), compared without foliar. GA (10 mM) declined the MDA 20 and 31, EL 13 and 36%, H2O2 17 and 15%, O2•- 10 and 11% in leaves and roots, under combined SDZ + TWW (30 mg kg-1+100%), compared without foliar. GA (10 mM) improved the POD 106 and 30%, SOD 145 and 31%, CAT 78, and 35%, APX 100 and 25% in leaves and roots under combined SDZ + TWW (30 mg kg-1+100%), compared without foliar application. Considerably GA (10 mM) reduced total Cr 18, CrIII 20, and CrVI 50% in roots and shoots 19, 41, and 48%, and grains 15, 27, and 29% respectively, under combined SDZ + TWW (30 mg kg-1+100%) stress, compared without foliar. Overall, GA boosted the wheat growth, physiology, and defence system by inhibiting the combined SDZ + Cr toxicity.


Subject(s)
Gallic Acid , Sulfadiazine , Tanning , Triticum , Wastewater , Triticum/drug effects , Triticum/growth & development , Wastewater/chemistry , Sulfadiazine/toxicity , Chromium/toxicity , Plant Roots/drug effects , Plant Roots/growth & development , Soil Pollutants/toxicity , Plant Leaves/drug effects
6.
J Hazard Mater ; 472: 134447, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38692000

ABSTRACT

Sulfur-based denitrification is a promising technology for efficient nitrogen removal in low-carbon wastewater, while it is easily affected by toxic substances. This study revealed the inhibitory mechanism of Cr(VI) on thiosulfate-based denitrification, including bio-toxicity and bio-electron characteristics response. The activity of nitrite reductase (NIR) was more sensitive to Cr(VI) than that of nitrate reductase (NAR), and NIR was inhibited by 21.32 % and 19.86 % under 5 and 10 mg/L Cr(VI), resulting in 10.12 and 15.62 mg/L of NO2--N accumulation. The biofilm intercepted 36.57 % of chromium extracellularly by increasing 25.78 % of extracellular polymeric substances, thereby protecting microbes from bio-toxicity under 5 mg/L Cr(VI). However, it was unable to resist 20-30 mg/L of Cr(VI) bio-toxicity as 19.95 and 14.29 mg Cr/(g volatile suspended solids) invaded intracellularly, inducing the accumulation of reactive oxygen species by 165.98 % and 169.12 %, which triggered microbial oxidative-stress and damaged the cells. In terms of electron transfer, S2O32- oxidation was inhibited, and parts of electrons were redirected intracellularly to maintain microbial activity, resulting in insufficient electron donors. Meanwhile, the contents of flavin adenine dinucleotide and cytochrome c decreased under 5-30 mg/L Cr(VI), reducing the electron acquisition rate of denitrification. Thermomonas (the dominant genus) possessed denitrification and Cr(VI) resistance abilities, playing an important role in antioxidant stress and biofilm formation. ENVIRONMENTAL IMPLICATION: Sulfur-based denitrification (SBD) is a promising method for nitrate removal in low-carbon wastewater, while toxic heavy metals such as Cr(VI) negatively impair denitrification. This study elucidated Cr(VI) inhibitory mechanisms on SBD, including bio-toxicity response, bio-electron characteristics, and microbial community structure. Higher concentrations Cr(VI) led to intracellular invasion and oxidative stress, evidenced by ROS accumulation. Moreover, Cr(VI) disrupted electron flow by inhibiting thiosulfate oxidation and affecting electron acquisition by denitrifying enzymes. This study provided valuable insights into Cr(VI) toxicity, which is of great significance for improving wastewater treatment technologies and maintaining efficient and stable operation of SBD in the face of complex environmental challenges.


Subject(s)
Biofilms , Chromium , Denitrification , Sulfur , Chromium/toxicity , Chromium/metabolism , Chromium/chemistry , Denitrification/drug effects , Sulfur/chemistry , Sulfur/metabolism , Biofilms/drug effects , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/metabolism , Nitrite Reductases/metabolism , Nitrate Reductase/metabolism , Wastewater/chemistry , Reactive Oxygen Species/metabolism , Bacteria/metabolism , Bacteria/drug effects , Electrons , Oxidative Stress/drug effects
7.
Environ Pollut ; 352: 124126, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38735460

ABSTRACT

Human exposure to chromium (Cr) is common but little is known about its adverse effects on pregnancy outcomes. This study aimed to explore the association between Cr exposure and the risk of neural tube defects (NTDs) and the underlying mechanisms of Cr-induced NTDs. 593 controls and 408 NTD cases with placentas were included in this study. Chromium trichloride (Cr(III)) and potassium dichromate (Cr(VI)) were intragastrically administered to pregnant mice and the number of NTDs was recorded. The odds ratio for total NTDs in the highest exposure group in placenta was 4.18 (95% confidence interval (CI), 1.97-8.84). The incidence of fetal NTDs in mice administered with Cr(III) showed a dose-response relationship. Cr(VI) didn't show teratogenicity of NTDs whereas increased the stillbirth rate. Prenatal exposure to Cr(III) increased levels of oxidative stress and apoptosis in fetal mice. RNA-sequencing results indicated significant enrichment of the MAPK pathway. RT-qPCR and Western blot analysis revealed that Cr(III) induced increased expression of p-JNK, p-P38, and Casp3. Toxicological effects can be partly antagonized by antioxidant supplementation. High chromium exposure was associated with increased human NTD risks. Excessive Cr(III) exposure can induce NTDs in fetal mice by increasing apoptosis through upgrading oxidative stress and then activating JNK/P38 MAPK signaling pathway.


Subject(s)
Chromium , Neural Tube Defects , Placenta , Female , Neural Tube Defects/chemically induced , Animals , Pregnancy , Chromium/toxicity , Mice , Placenta/metabolism , Placenta/drug effects , Humans , Apoptosis/drug effects , Oxidative Stress/drug effects , Maternal Exposure
8.
J Hazard Mater ; 473: 134590, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38762990

ABSTRACT

Phytoremediation, an eco-friendly approach for mitigating heavy metal contamination, is reliant on hyperaccumulators. This study focused on Leersia hexandra Swart, a known chromium (Cr) hyperaccumulator with demonstrated tolerance to multiple heavy metals. Our objective was to investigate its response to simultaneous Cr and nickel (Ni) stress over 12 days. Results from physiological experiments demonstrated a significant increase in the activities of antioxidant enzymes (APX, SOD, CAT) and glutathione (GSH) content under Cr and Ni stress, indicating enhanced antioxidant mechanisms. Transcriptome analysis revealed that stress resulted in the differential expression of 27 genes associated with antioxidant activity and metal binding, including APX, SOD, CAT, GSH, metallothionein (MT), and nicotinamide (NA). Among them, twenty differentially expressed genes (DEGs) related to GSH metabolic cycle were identified. Notably, GSTU6, GND1, and PGD were the top three related genes, showing upregulation with fold changes of 4.57, 6.07, and 3.76, respectively, indicating their crucial role in metal tolerance. The expression of selected DEGs was validated by quantitative real-time PCR, confirming the reliability of RNA-Seq data. Metabolomic analysis revealed changes in 1121 metabolites, with amino acids, flavonoids, and carbohydrates being the most affected. Furthermore, glucosinolate biosynthesis and amino acid biosynthesis pathways were represented in the KEGG pathway of differentially expressed metabolites (DEMs). This study provides insights into the tolerance mechanisms of L. hexandra under the co-stress of Cr and Ni, offering a new perspective for enhancing its remediation performance.


Subject(s)
Chromium , Metabolome , Nickel , Transcriptome , Nickel/metabolism , Nickel/toxicity , Chromium/toxicity , Chromium/metabolism , Transcriptome/drug effects , Metabolome/drug effects , Gene Expression Regulation, Plant/drug effects , Stress, Physiological/drug effects , Metabolic Networks and Pathways/drug effects , Soil Pollutants/toxicity , Soil Pollutants/metabolism , Biodegradation, Environmental , Glutathione/metabolism , Antioxidants/metabolism
9.
Environ Pollut ; 355: 124280, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38815890

ABSTRACT

Cr(VI) is a common hazardous heavy metal contaminant that seriously endangers human and aquatic animal health. GPX4 was the key enzyme that reduces heavy metal toxicity through inhibiting ferroptosis pathway. Astaxanthin was GPX4 activator that can weaken biological toxicity induced by Cr(VI) exposure. The present study was conducted to evaluate the major role of GPX4 in astaxanthin protects Cr(VI)-induced oxidative damage, blood-brain barrier injury and neurotoxicity in brain-liver axis through inhibiting ferroptosis pathway. In the current study, astaxanthin intervention can effectively alleviate Cr(VI)-induced oxidative stress, blood-brain barrier damage, and neurotoxicity. GPX4 plays a major role in mediating astaxanthin nutritional intervention to reduce ROS and liver non-heme iron accumulation, which would contribute to the reduction of ferroptosis. Meanwhile, astaxanthin maintains the stability of transport receptors and protein macromolecules such as TMEM163, SLC7A11, SLC3A2, FPN1 and GLUT1 in the brain liver axis, promoting substance exchange and energy supply. Moreover, astaxanthin alleviates Cr(VI)-induced neurotoxicity by promoting tight protein expression and reducing blood-brain barrier permeability.


Subject(s)
Blood-Brain Barrier , Chromium , Water Pollutants, Chemical , Xanthophylls , Zebrafish , Xanthophylls/pharmacology , Animals , Blood-Brain Barrier/drug effects , Blood-Brain Barrier/metabolism , Chromium/toxicity , Water Pollutants, Chemical/toxicity , Oxidative Stress/drug effects , Neurotoxicity Syndromes/metabolism , Brain/drug effects , Brain/metabolism , Liver/drug effects , Liver/metabolism
10.
Ecotoxicol Environ Saf ; 279: 116500, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38795416

ABSTRACT

Hexavalent chromium [Cr(VI)] is one of the most common environmental contaminants due to its tremendous industrial applications, but its effects and mechanism remain to be investigated. Our previous studies showed that Cr(VI) exposure caused malignant transformation and tumorigenesis. This study showed that glycolytic proteins HK2 and LDHA levels were statistically significant changed in blood samples of Cr(VI)-exposed workers and in Cr-T cells compared to the control subjects and parental cells. HK2 and LDHA knockdown inhibited cell proliferation and angiogenesis, and higher HK2 and LDHA expression levels are associated with advanced stages and poor prognosis of lung cancer. We found that miR-218 levels were significantly decreased and miR-218 directly targeted HK2 and LDHA for inhibiting their expression. Overexpression of miR-218 inhibited glucose consumption and lactate production in Cr-T cells. Further study found that miR-218 inhibited tumor growth and angiogenesis by decreasing HK2 and LDHA expression in vivo. MiR-218 levels were negatively correlated with HK2 and LDHA expression levels and cancer development in human lung and other cancers. These results demonstrated that miR-218/HK2/LDHA pathway is vital for regulating Cr(VI)-induced carcinogenesis and human cancer development.


Subject(s)
Carcinogenesis , Chromium , Hexokinase , Lung Neoplasms , MicroRNAs , Up-Regulation , MicroRNAs/genetics , Humans , Chromium/toxicity , Hexokinase/genetics , Hexokinase/metabolism , Carcinogenesis/chemically induced , Lung Neoplasms/chemically induced , Lung Neoplasms/pathology , Lung Neoplasms/genetics , Prognosis , Animals , Cell Proliferation/drug effects , L-Lactate Dehydrogenase/metabolism , Occupational Exposure/adverse effects , Mice , Isoenzymes
11.
Plant Physiol Biochem ; 211: 108659, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38691875

ABSTRACT

Chromium (Cr) contamination in agricultural soils poses a risk to crop productivity and quality. Emerging nano-enabled strategies show great promise in remediating soils contaminated with heavy metals and enhancing crop production. The present study was aimed to investigate the efficacy of nano silicon (nSi) in promoting wheat growth and mitigating adverse effects of Cr-induced toxicity. Wheat seedlings exposed to Cr (K2Cr2O7) at a concentration of 100 mg kg-1 showed significant reductions in plant height (29.56%), fresh weight (35.60%), and dry weight (38.92%) along with enhanced Cr accumulation in roots and shoots as compared to the control plants. However, the application of nSi at a concentration of 150 mg kg-1 showcased substantial mitigation of Cr toxicity, leading to a decrease in Cr accumulation by 27.30% in roots and 35.46% in shoots of wheat seedlings. Moreover, nSi exhibited the capability to scavenge oxidative stressors, such as hydrogen peroxide (H2O2), and malondialdehyde (MDA) and electrolyte leakage, while significantly enhancing gas exchange parameters, total chlorophyll content, and antioxidant activities (enzymatic and nonenzymatic) in plants grown in Cr-contaminated soil. This study further found that the reduced Cr uptake by nSi application was due to downregulating the expression of HMs transporter genes (TaHMA2 and TaHMA3), alongwith upregulating the expression of antioxidant-responsive genes (TaSOD and TaSOD). The findings of this investigation highlight the remarkable potential of nSi in ameliorating Cr toxicity. This enhanced efficacy could be ascribed to the distinctive size and structure of nSi, which augment its ability to counteract Cr stress. Thus, the application of nSi could serve as a viable solution for production of crops in metal contaminated soils, offering an effective alternative to time-consuming and costly remediation techniques.


Subject(s)
Chromium , Silicon , Triticum , Triticum/drug effects , Triticum/metabolism , Triticum/growth & development , Silicon/pharmacology , Chromium/toxicity , Soil Pollutants/toxicity , Plant Roots/drug effects , Plant Roots/metabolism , Oxidative Stress/drug effects , Antioxidants/metabolism , Seedlings/drug effects , Seedlings/metabolism
12.
Plant Physiol Biochem ; 210: 108624, 2024 May.
Article in English | MEDLINE | ID: mdl-38636254

ABSTRACT

Heavy metals are one of the most damaging environmental toxins that hamper growth of plants. These noxious chemicals include lead (Pb), arsenic (As), nickel (Ni), cadmium (Cd) and chromium (Cr). Chromium is one of the toxic metal which induces various oxidative processes in plants. The emerging role of nanoparticles as pesticides, fertilizers and growth regulators have attracted the attention of various scientists. Current study was conducted to explore the potential of zinc oxide nanoparticles (ZnONPs) alone and in combination with plant growth promoting rhizobacteria (PGPR) Klebsiella sp. SBP-8 in Cr stress alleviation in Brassica juncea (L.). Chromium stress reduced shoot fresh weight (40%), root fresh weight (28%), shoot dry weight (28%) and root dry weight (34%) in B. juncea seedlings. Chromium stressed B. juncea plants showed enhanced levels of malondialdehyde (MDA), electrolyte leakage (EL), hydrogen peroxide (H2O2) and superoxide ion (O2• -). However, co-supplementation of ZnONPs and Klebsiella sp. SBP-8 escalated the activity of antioxidant enzymes i.e., superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX) in B. juncea grown in normal and Cr-toxic soil. It is further proposed that combined treatment of ZnONPs and Klebsiella sp. SBP-8 may be useful for alleviation of other abiotic stresses in plants.


Subject(s)
Antioxidants , Chromium , Klebsiella , Mustard Plant , Zinc Oxide , Mustard Plant/drug effects , Mustard Plant/microbiology , Mustard Plant/metabolism , Chromium/toxicity , Chromium/metabolism , Antioxidants/metabolism , Klebsiella/metabolism , Klebsiella/drug effects , Zinc Oxide/pharmacology , Adsorption , Metal Nanoparticles/chemistry , Nanoparticles/chemistry , Soil Pollutants/toxicity
13.
Ecotoxicol Environ Saf ; 276: 116313, 2024 May.
Article in English | MEDLINE | ID: mdl-38626602

ABSTRACT

Wheat (Triticum aestivum L.) is a major foodstuff for over 40% of the world's population. However, hexavalent chromium [Cr(VI)] in contaminated soil significantly affects wheat production and its ecological environment. Streptomyces sp. HU2014 was first used to investigate the effects of Cr (VI) stress on wheat growth. We analyzed the Cr(VI) concentration, physicochemical properties of wheat and soil, total Cr content, and microbial community structures during their interactions. HU2014 reduced the toxicity of Cr(VI) and promoted wheat growth by increasing total nitrogen, nitrate nitrogen, total phosphorus, and Olsen-phosphorus in Cr(VI)-contaminated soil. These four soil variables had strong positive effects on two bacterial taxa, Proteobacteria and Bacteroidota, in the HU2014 treatments. In addition, the level of the dominant Proteobacteria positively correlated with the total Cr content in the soil. Among the fungal communities, which had weaker correlations with soil variables compared with bacterial communities, Ascomycota was the most abundant. Our findings suggest that HU2014 can promote the phytoremediation of Cr(VI)-contaminated soil.


Subject(s)
Biodegradation, Environmental , Chromium , Rhizosphere , Soil Microbiology , Soil Pollutants , Streptomyces , Triticum , Chromium/toxicity , Streptomyces/drug effects , Triticum/growth & development , Triticum/microbiology , Triticum/drug effects , Soil Pollutants/toxicity , Soil/chemistry , Proteobacteria/drug effects , Nitrogen/metabolism , Phosphorus
14.
Chemosphere ; 356: 141927, 2024 May.
Article in English | MEDLINE | ID: mdl-38593954

ABSTRACT

Numerous animal studies have demonstrated the toxicity of hexavalent chromium [Cr(VI)] and the bioremediative effects of probiotics on the composition and functions of gut microbiota. Since the precise mechanisms of Cr(VI) detoxification and its interactions with human gut microbiota were unknown, a novel dual-chamber simulated intestinal (DCSI) system was developed to maintain both the stability of the simulated system and the composition of the gut microbiota. Probiotic GR-1 was found to regulate intestinal gut microbiota, thereby reducing the toxicity of Cr(VI) within the DCSI system. The results indicate that Cr(VI) levels were reduced from 2.260 ± 0.2438 µg/g to 1.7086 ± 0.1950 µg/g in the gut microbiota cell pellet, and Cr(VI) permeability decreased from 0.5521 ± 0.1132 µg/L to 0.3681 ± 0.0178 µg/L after 48 h in simulated gut fluid. Additionally, the removal rate of 1,1-Diphenyl-2-picrylhydrazyl (DPPH), reducibility (Vitamin C), and total antioxidant capacity (T-AOC) increased by 50.83%, 31.70%, and 27.56%, respectively, following probiotic treatment. The increase in antioxidant capacity correlated with total Cr removal (P < 0.05, r from -0.80 to 0.73). 16S rRNA sequencing analysis showed that gut microbiota composition was reshaped by the addition of probiotics, which regulated the recovery of the functional gut microbiota to normal levels, rather than restoring the entire gut microbiota composition for community function. Thus, this study not only demonstrates the feasibility and stability of culturing gut microbiota but also offers a new biotechnological approach to synthesizing functional communities with functional strains for environmental risk management.


Subject(s)
Chromium , Gastrointestinal Microbiome , Pediococcus acidilactici , Probiotics , Chromium/toxicity , Chromium/metabolism , Gastrointestinal Microbiome/drug effects , Humans , Biodegradation, Environmental
15.
Environ Pollut ; 350: 123991, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38631449

ABSTRACT

Chromium (Cr) is a heavy metal that poses a grave threat to the ecosystem including plants. Chromium is very harmful to plants due to its effects on many physiological and metabolic pathways culminating in a negative impact on plant's growth, development, and ability to take up nutrients. Plants have developed physiological, biochemical, and molecular ways of defense against Cr, such as by augmenting antioxidant potential to reduce reactive oxygen species (ROS). A number of genes have been discovered to play a significant role in the defense mechanisms of plants against Cr, for example, genes associated with the activation of phytochelatins, metallothioneins, and those of enzymes like glutathione-S-transferases. Along with this, a few miRNAs have been found to be associated in alleviating Cr stress and, to augment plant tolerance by controlling transcription factors, HSPs, and the expression of a few proteins and hormones. Defense pathway genes and miRNAs have been used for the generation of transgenic phytoremediator plants. Not only do the transgenic plants have a higher tolerance to Cr, but they also act as hyperaccumulators for Cr and have the potential to remediate other heavy metals. This article describes about environmental Cr contamination, Cr effects on plants, different genes and miRNAs involved in Cr stress mitigation and use of candidate genes, microRNAs for creating transgenic plant systems for phytoremediation, and the applications of CRISPR technology. It is expected that the integration of omics approach and advanced genomics will offer scope for more effective phytoremediation of Chromium in the coming years.


Subject(s)
Biodegradation, Environmental , Chromium , Plants, Genetically Modified , Plants , Soil Pollutants , Chromium/metabolism , Chromium/toxicity , Soil Pollutants/metabolism , Plants/metabolism , Plants/genetics , Plants, Genetically Modified/genetics , MicroRNAs/genetics , MicroRNAs/metabolism
16.
Article in English | MEDLINE | ID: mdl-38673319

ABSTRACT

The toxicity and carcinogenicity of hexavalent chromium via the inhalation route is well established. However, a scientific debate has arisen about the potential effects of oral exposure to chromium on human health. Epidemiological studies evaluating the connection between ingested chromium and adverse health effects on the general population are limited. In recent years, a wealth of biomonitoring studies has emerged evaluating the associations between chromium levels in body fluids and tissues and health outcomes. This systematic review brings together epidemiological and biomonitoring evidence published over the past decade on the health effects of the general population related to oral exposure to chromium. In total, 65 studies were reviewed. There appears to be an inverse association between prenatal chromium exposure and normal fetal development. In adults, parameters of oxidative stress and biochemical alterations increase in response to chromium exposure, while effects on normal renal function are conflicting. Risks of urothelial carcinomas cannot be overlooked. However, findings regarding internal chromium concentrations and abnormalities in various tissues and systems are, in most cases, controversial. Environmental monitoring together with large cohort studies and biomonitoring with multiple biomarkers could fill the scientific gap.


Subject(s)
Chromium , Humans , Chromium/toxicity , Environmental Exposure/adverse effects , Female , Pregnancy , Administration, Oral
17.
J Environ Sci (China) ; 143: 224-234, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38644019

ABSTRACT

Hexavalent chromium and its compounds are prevalent pollutants, especially in the work environment, pose a significant risk for multisystem toxicity and cancers. While it is known that chromium accumulation in the liver can cause damage, the dose-response relationship between blood chromium (Cr) and liver injury, as well as the possible potential toxic mechanisms involved, remains poorly understood. To address this, we conducted a follow-up study of 590 visits from 305 participants to investigate the associations of blood Cr with biomarkers for liver injury, including serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), total bilirubin (TBIL), and direct bilirubin (DBIL), and to evaluate the mediating effects of systemic inflammation. Platelet (PLT) and the platelet-to-lymphocyte ratio (PLR) were utilized as biomarkers of systemic inflammation. In the linear mixed-effects analyses, each 1-unit increase in blood Cr level was associated with estimated effect percentage increases of 0.82% (0.11%, 1.53%) in TBIL, 1.67% (0.06%, 3.28%) in DBIL, 0.73% (0.04%, 1.43%) in ALT and 2.08% (0.29%, 3.87%) in AST, respectively. Furthermore, PLT mediated 10.04%, 11.35%, and 10.77% increases in TBIL, DBIL, and ALT levels induced by chromate, respectively. In addition, PLR mediated 8.26% and 15.58% of the association between blood Cr and TBIL or ALT. These findings shed light on the mechanisms underlying blood Cr-induced liver injury, which is partly due to worsening systemic inflammation.


Subject(s)
Chromates , Chromium , Inflammation , Humans , Chromium/toxicity , Chromium/blood , Inflammation/blood , Male , Chromates/toxicity , Chromates/blood , Adult , Female , Middle Aged , Biomarkers/blood , Occupational Exposure/adverse effects , Alanine Transaminase/blood , Chemical and Drug Induced Liver Injury/blood , Aspartate Aminotransferases/blood , Environmental Pollutants/blood , Environmental Pollutants/toxicity
18.
Environ Geochem Health ; 46(5): 161, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38592512

ABSTRACT

Hexavalent chromium (Cr (VI)) is an environmental contaminant brining high concerns due to its higher toxicity and mobility in comparison with trivalent chromium Cr(III). Cr (VI) has been linked with several adverse health effects, including respiratory diseases, lung cancer, and skin irritation. The primary sources of it in the environment are industrial activities.Most of the time, fly ash made of lignite can release Cr(VI) when it comes into contact with water in an aquatic environment. The objective of this study is the investigation of Cr (VI) concentration in leachates of fly ash and marl mixtures and the determination of its solubility under different pH conditions. Samples of fly ash were collected from the Power Plant of Agios Dimitrios. Additionally, samples of marl were collected from the mine of South Field, and both samples were mixed and prepared in in different proportions (% w.t.). The leaching experiments were carried out according to the EN-12457/1-4 (2003) standard under different pH conditions and chemical analysis of the leachates were performed by spectrophotometry with diphenylcarbazide (DPC). The environmental footprint of Cr (VI) in the study area was significant, especially in mixtures containing higher concentrations of fly ash. A critical pH range between 6 to 12 is observed. At acidic pH values, a high release of Cr (VI) was observed, while at the mentioned critical values (pH 10-12), a gradual decrease in its leachability was noticed. The high concentrations of Cr (VI) in the industrial area studied require immediate actions in terms of managing and limiting the potential hazardous impacts on the environment and by extension on the public health by developing appropriate prevention strategies.


Subject(s)
Chromium , Coal Ash , Humans , Greece , Chromium/toxicity , Chromatography, Gas
19.
Chemosphere ; 356: 141937, 2024 May.
Article in English | MEDLINE | ID: mdl-38599327

ABSTRACT

Based on their chemical structure and catalytic features, carbon dots (CDs) demonstrate great advantages for agricultural systems. The improvements in growth, photosynthesis, nutrient assimilation and resistance are provided by CDs treatments under control or adverse conditions. However, there is no data on how CDs can enhance the tolerance against chromium toxicity on gas exchange, photosynthetic machinery and ROS-based membrane functionality. The present study was conducted to evaluate the impacts of the different concentrations of orange peel derived-carbon dots (50-100-200-500 mg L-1 CD) on growth, chlorophyll fluorescence, phenomenological fluxes between photosystems, photosynthetic performance, ROS accumulation and antioxidant system under chromium stress (Cr, 100 µM chromium (VI) oxide) in Lactuca sativa. CDs removed the Cr-reduced changes in growth (RGR), water content (RWC) and proline (Pro) content. Compared to stress, CD exposures caused an alleviation in carbon assimilation rate, stomatal conductance, transpiration rate, carboxylation efficiency, chlorophyll fluorescence (Fv/Fm) and potential photochemical efficiency (Fv/Fo). Cr toxicity disrupted the energy fluxes (ABS/RC, TRo/RC, ETo/RC and DIo/RC), quantum yields and, efficiency (ΨEo and φRo), dissipation of energy (DIo/RC) and performance index (PIABS and PItotal). An amelioration in these parameters was provided by CD addition to Cr-applied plants. Stressed plants had high activities of superoxide dismutase (SOD), peroxidase (POX) and ascorbate peroxidase (APX), which could not prevent the increase of H2O2 and lipid peroxidation (TBARS content). While all CDs induced SOD and catalase (CAT) in response to stress, POX and enzyme/non-enzymes related to ascorbate-glutathione (AsA-GSH) cycle (APX, monodehydroascorbate reductase (MDHAR) and dehydroascorbate reductase (DHAR), the contents of AsA and, GSH) were activated by 50-100-200 mg L-1 CD. CDs were able to protect the AsA regeneration, GSH/GSSG and GSH redox status. The decreases in H2O2 content might be attributed to the increased activity of glutathione peroxidase (GPX). Therefore, all CD applications minimized the Cr stress-based disturbances (TBARS content) by controlling ROS accumulation, antioxidant system and photosynthetic machinery. In conclusion, CDs have the potential to be used as a biocompatible inducer in removing the adverse effects of Cr stress in lettuce plants.


Subject(s)
Antioxidants , Carbon , Chlorophyll A , Chromium , Lactuca , Oxidation-Reduction , Photosynthesis , Chromium/toxicity , Antioxidants/metabolism , Lactuca/drug effects , Lactuca/metabolism , Carbon/metabolism , Photosynthesis/drug effects , Fluorescence , Chlorophyll A/metabolism , Quantum Dots/toxicity , Quantum Dots/chemistry , Kinetics , Chlorophyll/metabolism , Reactive Oxygen Species/metabolism
20.
Sci Total Environ ; 930: 172413, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38631632

ABSTRACT

Nanotechnology is a new scientific area that promotes unique concepts to comprehend the optimal mechanics of nanoparticles (NPs) in plants under heavy metal stress. The present investigation focuses on effects of synthetic and green synthesized titanium dioxide nanoparticles (TiO2 NPs and gTiO2 NPs) against Cr(VI). Green TiO2 NPs have been produced from plant leaf extract (Ricinus communis L.). Synthesis was confirmed employing an array of optical spectroscopic and electron microscopic techniques. Chromium strongly accelerated H2O2 and MDA productions by 227 % and 266 % at highest chromium concentration (60 mg/kg of soil), respectively, and also caused DNA damage, and decline in photosynthesis. Additionally, anomalies were observed in stomatal cells with gradual increment in chromium concentrations. Conversely, foliar applications of TiO2 NPs and gTiO2 NPs considerably mitigated chromium stress. Sunflower plants treated with modest amounts of green TiO2 NPs had significantly better growth index compared to chemically synthesized ones. Principal component analysis highlighted the variations among photosynthetic attributes, oxidative stress markers, and antioxidant defense systems. Notably, gTiO2 supplementation to the Cr(VI) strained plants minimized PC3 production which is a rare report so far. Conclusively, gTiO2 NPs have been identified to be promising nano-based nutrition resource for farming applications.


Subject(s)
Chromium , Green Chemistry Technology , Helianthus , Titanium , Titanium/toxicity , Helianthus/drug effects , Chromium/toxicity , Metal Nanoparticles/toxicity , Soil Pollutants , Oxidative Stress/drug effects , Photosynthesis/drug effects , Nanoparticles
SELECTION OF CITATIONS
SEARCH DETAIL
...