Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 63
Filter
1.
Sci Total Environ ; 806(Pt 2): 150565, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-34582867

ABSTRACT

The distribution of cadmium (Cd) within the oceans strongly suggests that it is used as a nutrient by marine phytoplankton. Biologically induced removal of Cd from modern surface waters is accompanied by an isotopic fractionation leaving surface-waters enriched in isotopically heavy Cd. This first study focusses on tying the Cd isotopic record preserved in modern shallow platform carbonates of the Great Bahama Bank (GBB) to conditions in the upper water column, and provides a base for future studies aiming at reconstructing past bioproductivity levels in ancient ocean/basin surface waters. In addition, we compare δ114Cd values with previously published chromium (Cr) isotope values and link signals of bioproductivity with redox conditions in the surface waters. The GBB core samples yield [Cd] (21-188 µg/kg), which increases with depth alongside changes in carbonate mineralogy related to sediment supply and diagenesis. The δ114Cd values of these carbonates are mainly positively fractionated with an average of 0.11‰ ± 0.17 (2σ; n = 17) relative to the NIST 3108 reference standard. Unlike previously observed for Cr isotopes, there is no control of δ114Cd values by relative abundances of the carbonate polymorphs aragonite and calcite in the studied profile. Likewise, δ114Cd values are not correlated to major and trace element (e.g. Ca, Mg, Mn and Sr) contents. We postulate that the burial and diagenetic processes of carbonate cannot modify the Cd isotope signals. Using the experimental fractionation factor for Cd into calcite (-0.45‰), calculated seawater δ114Cd of +0.56 ± 0.17‰ is in agreement with values for modern North Atlantic Surface Seawater. This study's results suggest that δ114Cd values in carbonates are a reliable tool for reconstruction of bioproductivity levels in past surface seawaters, and open new possibilities in combination with Cr isotopes to link these with past ocean redox.


Subject(s)
Cadmium , Water , Bahamas , Cadmium/analysis , Carbon Isotopes , Carbonates , Chromium Isotopes/analysis , Isotopes
2.
Geobiology ; 19(2): 125-146, 2021 03.
Article in English | MEDLINE | ID: mdl-33347697

ABSTRACT

In east-central Brazil, the Ediacaran-Cambrian Bambuí Basin has the potential to provide a record of unique geochemical responses of Earth's ocean and atmosphere evolution during this key time interval. From this perspective, we studied an interval of the upper Bambuí Basin using sedimentologic, stratigraphic, and chemostratigraphic tools. The lower Cambrian Jaíba Member of the uppermost Serra da Saudade Formation is an interval of up to 60 m-thick of carbonate rocks disposed into two shallowing upward trends. Inner to outer ramp and high-energy shoal deposits are described, in which laminated microbialites are the prevailing sedimentary facies. REE + Y data suggest contamination by iron (oxy)hydroxides that are dissociated from the riverine detritic flux. Sedimentary iron enrichment may be related to the settling of iron nanoparticles in coastal environments, diagenetic iron mobilization, or both. MREE enrichment is caused by microbial degradation of organic matter in the iron reduction zone during the anoxic early-diagenetic stage. Chromium isotopes yielded negatively fractionated values (δ53 Cr = -0.69 to -0.27‰), probably resulting from biotic and abiotic reduction of dissolved Cr(VI) to light and less toxic Cr(III) within pores of microbial mats. The δ53 Cr data of the Jaíba microbialite are thus a product of metabolic reactions in microbial mats and do not reflect seawater signal. The isotopic offset from seawater is feasible from molecular diffusion of Cr into pore water and reduction reactions occurring deep inside the mat, although the exact mechanism and consequences are not yet fully understood due to the poor preservation of metabolic reactions in the geological record. Our study suggests that Cr isotopes can be used to reconstruct Cr and other metals cycling within ancient microbial mats, and that caution should be taken when using past microbialites to infer seawater Cr records and redox state of the atmosphere and ocean.


Subject(s)
Trace Elements , Brazil , Carbonates , Chromium Isotopes/analysis , Geologic Sediments , Seawater
3.
Geobiology ; 17(6): 579-593, 2019 11.
Article in English | MEDLINE | ID: mdl-31436043

ABSTRACT

Atmospheric oxygen levels control the oxidative side of key biogeochemical cycles and place limits on the development of high-energy metabolisms. Understanding Earth's oxygenation is thus critical to developing a clearer picture of Earth's long-term evolution. However, there is currently vigorous debate about even basic aspects of the timing and pattern of the rise of oxygen. Chemical weathering in the terrestrial environment occurs in contact with the atmosphere, making paleosols potentially ideal archives to track the history of atmospheric O2 levels. Here we present stable chromium isotope data from multiple paleosols that offer snapshots of Earth surface conditions over the last three billion years. The results indicate a secular shift in the oxidative capacity of Earth's surface in the Neoproterozoic and suggest low atmospheric oxygen levels (<1% PAL pO2 ) through the majority of Earth's history. The paleosol record also shows that localized Cr oxidation may have begun as early as the Archean, but efficient, modern-like transport of hexavalent Cr under an O2 -rich atmosphere did not become common until the Neoproterozoic.


Subject(s)
Atmosphere/analysis , Chromium Isotopes/analysis , Oxygen/analysis , Soil/chemistry , Chromium Isotopes/chemistry , Ontario , Oxidation-Reduction , Paleontology , South Africa , United States
4.
Chemosphere ; 233: 92-100, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31170588

ABSTRACT

Due to carcinogenicity of hexavalent chromium [Cr(VI)], its accurate quantification in Cr-contaminated soils is of paramount importance. The aim of this work was to quantify Cr(VI) by species-specific IDMS in soil samples from two Italian case studies: A) farmland potentially contaminated by pseudo-total Cr and Zn and heavy hydrocarbons due to past illegal burial of tannery wastes; B) Solofrana valley where volcanic soils are potentially contaminated by pseudo-total Cr and Cu due to tannery activities. Hexavalent Cr extraction from soils was performed by focused microwaves (5 min at 80 °C) using 50 mM EDTA, followed by the separation of Cr species by IC and detection by ICP-MS. The Cr(VI) extracted from 20 soil samples of case study A ranged from 0.15 to 11.18 µg g-1, with 70% of samples exceeding the Cr(VI) screening value set by Italian Parliament for residential/urban soil to assess their potential contamination. Higher levels of Cr(VI) (22.0-107.1 µg g-1) were extracted from other 7 Cr-most-enriched soil samples, which required a pre-treatment with n-hexane to remove part of organic compounds from each sample, since these reducing agents made the quantification of Cr(VI) by IDMS more challenging because they caused an almost complete reduction of 50Cr(VI) used for IDMS quantification. Hexavalent Cr extracted from soil samples of case study B ranged from 0.70 to 5.79 µg g-1, with 42% of samples exceeding the value set by Italian legislation. In both case studies, the Cr(VI) extracted from soil was significantly correlated to the pseudo-total Cr content.


Subject(s)
Chromium/analysis , Environmental Pollution/analysis , Mass Spectrometry/methods , Soil Pollutants/analysis , Chromium Isotopes/analysis , Edetic Acid/chemistry , Italy , Soil/chemistry
5.
Geobiology ; 17(5): 467-489, 2019 09.
Article in English | MEDLINE | ID: mdl-31006990

ABSTRACT

The ca. 1.9 Ga Beaverlodge Lake paleosol was studied using redox-sensitive Cr isotopes in order to determine the isotopic response to paleoweathering of a rhyodacite parent rock 500 million years after the Great Oxidation Event. Redox reactions occurring in modern weathering environments produce Cr(VI) that is enriched in heavy Cr isotopes compared to the igneous inventory. Cr(VI) species are soluble and easily leached from soils into streams and rivers, thus, leaving particle-reactive and isotopically light Cr(III) species to build up in soils. The Beaverlodge Lake paleosol and two other published weathering profiles of similar age, the Flin Flon and Schreiber Beach paleosols, are not as isotopically light as modern soils, indicating that rivers were not as isotopically heavy at that time. Considering that the global average δ53 Cr value for the oxidative weathering flux of Cr to the oceans today is just 0.27 ± 0.30‰ (1σ) based on a steady-state analysis of the modern ocean Cr cycle, the oxidative weathering flux of Cr to the oceans at ca. 1.9 Ga would have likely been shifted to lower δ53 Cr values, and possibly lower than the igneous inventory (-0.12 ± 0.10‰, 2σ). Mn oxides are the main oxidant of Cr(III) in modern soils, but there is no evidence that they formed in the studied paleosols. Cr(VI) may have formed by direct oxidation of Cr(III) using molecular oxygen or H2 O2 , but neither pathway is as efficient as Mn oxides for producing Cr(VI). The picture that emerges from this and other studies of Cr isotope variation in ca. 1.9 Ga paleosols is of atmospheric oxygen concentrations that are high enough to oxidize iron, but too low to oxidize Mn, resulting in low Cr(VI) inventories in Earth surface environments.


Subject(s)
Chromium Isotopes/analysis , Geologic Sediments/analysis , Soil/chemistry , Geology , Lakes , Northwest Territories , Oxidation-Reduction , Paleontology
6.
Isotopes Environ Health Stud ; 55(1): 56-69, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30621468

ABSTRACT

The origin of a resurgent hexavalent chromium contamination in groundwater from a phreatic aquifer in the Friuli Venezia Giulia Region plain was investigated by chromium isotopic systematics. The area underwent a severe Cr(VI) contamination by industrial effluents in 1997, when Cr(VI) concentration in groundwater reached 4500 µg/L. In subsequent years the contamination naturally attenuated, totally disappearing in 2003. A renewal of water contamination was observed in 2008, Cr(VI) reaching 1560 µg/L. The δ53Cr value in groundwater and extracts from sediments was measured in 2009-2011, and it ranges between -3.21 and +0.21‰ and between -4.71 and +1.26‰, respectively. Due to the lack of geogenic Cr-sources, these data are interpreted as evidence of the subsequent oxidation through Mn-oxides of the Cr(III) hosted in the aquifer and originated by the reduction of the original industrial chromates. Cr(III) is characterized by negative δ53Cr, starting from the δ53Cr value around zero of Cr(VI) in industrial effluents. Oxidation liberates soluble Cr(VI) which is transported by groundwater and permeated soils. The complex Cr-isotopic vs. concentration distribution reflects both the new Cr(VI) reduction and dilution processes in the aquifer system. From an environmental point of view, the data raise concerns regarding the potential impact of past Cr(VI)-contamination.


Subject(s)
Chromium Isotopes/analysis , Chromium/analysis , Groundwater/analysis , Water Pollutants, Chemical/analysis , Animals , Chemical Hazard Release , Chromates/chemistry , Chromium/chemistry , Environmental Monitoring , Geologic Sediments/analysis , Italy , Oxidation-Reduction , Water Pollutants, Chemical/chemistry
7.
Geobiology ; 15(1): 51-64, 2017 01.
Article in English | MEDLINE | ID: mdl-27392225

ABSTRACT

The chromium isotope system (53 Cr/52 Cr expressed as δ53 Cr relative to NIST SRM 979) is potentially a powerful proxy for the redox state of the ocean-atmosphere system, but a lack of temporally continuous, well-calibrated archives has limited its application to date. Marine carbonates could potentially serve as a common and continuous Cr isotope archive. Here, we present the first evaluation of planktonic foraminiferal calcite as an archive of seawater δ53 Cr. We show that single foraminiferal species from globally distributed core tops yielded variable δ53 Cr, ranging from 0.1‰ to 2.5‰. These values do not match with the existing measurements of seawater δ53 Cr. Further, within a single core-top, species with similar water column distributions (i.e., depth habitats) yielded variable δ53 Cr values. In addition, mixed layer and thermocline species do not consistently exhibit decreasing trends in δ53 Cr as expected based on current understanding of Cr cycling in the ocean. These observations suggest that either seawater δ53 Cr is more heterogeneous than previously thought or that there is significant and species-dependent Cr isotope fractionation during foraminiferal calcification. Given that the δ53 Cr variability is comparable to that observed in geological samples throughout Earth's history, interpreting planktonic foraminiferal δ53 Cr without calibrating modern foraminifera further, and without additional seawater measurements, would lead to erroneous conclusions. Our core-top survey clearly indicates that planktonic foraminifera are not a straightforward δ53 Cr archive and should not be used to study marine redox evolution without additional study. It likewise cautions against the use of δ53 Cr in bulk carbonate or other biogenic archives pending further work on vital effects and the geographic heterogeneity of the Cr isotope composition of seawater.


Subject(s)
Aquatic Organisms/chemistry , Chromium Isotopes/analysis , Foraminifera/chemistry , Plankton/parasitology , Seawater/parasitology
8.
Geobiology ; 15(1): 30-50, 2017 01.
Article in English | MEDLINE | ID: mdl-27444369

ABSTRACT

Fractionation of stable Cr isotopes has been measured in Archaean paleosols and marine sedimentary rocks and interpreted to record the terrestrial oxidation of Cr(III) to Cr(VI), providing possible indirect evidence for the emergence of oxygenic photosynthesis. However, these fractionations occur amidst evidence from other geochemical proxies for a pervasively anoxic atmosphere. This study examined the Cr geochemistry of the ca. 1.85 Ga Flin Flon paleosol, which developed under an atmosphere unambiguously oxidising enough to quantitatively convert Fe(II) to Fe(III) during pedogenesis. The paleosol shows an extreme range in Cr isotope composition of 2.76 ‰ δ53/52 Cr. The protolith greenstone (δ53/52 Cr: -0.23 ‰), the deepest weathering horizon (δ53/52 Cr: -0.15 to -0.23 ‰) and a residual corestone in the upper paleosol (δ53/52 Cr: -0.01 ‰) all exhibit Cr isotopic compositions comparable to unaltered igneous rocks. The most significant isotopic fractionation is preserved in the areas influenced by oxidative subaerial weathering (i.e. increase in Fe(III)/Fe(II)) and the greatest loss of mobile elements. The uppermost paleosol horizon is both Cr and Mn depleted and offset to significantly 53 Cr-enriched compositions (δ53/52 Cr values between +1.50 and +2.38 ‰), which is not easily modelled with the oxidation of Cr(III) and loss of isotopically heavy Cr(VI). Instead, the currently preferred model for these data invokes the open-system removal of isotopically light aqueous Cr(III) during either pedogenesis or subsequent hydrothermal/metamorphic alteration. The 53 Cr enrichment would then represent the preferential dissolution or complexation of isotopically light aqueous Cr(III) species (enhanced by lower pH conditions and possibly the presence of complexing ligands) and/or the residual signature from preferential adsorption of isotopically heavy Cr(III). Both scenarios would contradict the widely held assumption that only redox reactions of Cr can generate large magnitude isotopic fractionations and, if substantiated, non-redox isotope effects would complicate the conclusive fingerprinting of ancient atmospheric O2 from Cr isotope data alone.


Subject(s)
Chromium Isotopes/analysis , Geologic Sediments/chemistry , Hydrogen-Ion Concentration , Oxidation-Reduction
9.
J Chromatogr A ; 1443: 162-74, 2016 Apr 22.
Article in English | MEDLINE | ID: mdl-27036208

ABSTRACT

Chromatographic purification of chromium (Cr), which is required for high-precision isotope analysis, is complicated by the presence of multiple Cr-species with different effective charges in the acid digested sample aliquots. The differing ion exchange selectivity and sluggish reaction rates of these species can result in incomplete Cr recovery during chromatographic purification. Because of large mass-dependent inter-species isotope fractionation, incomplete recovery can affect the accuracy of high-precision Cr isotope analysis. Here, we demonstrate widely differing cation distribution coefficients of Cr(III)-species (Cr(3+), CrCl(2+) and CrCl2(+)) with equilibrium mass-dependent isotope fractionation spanning a range of ∼1‰/amu and consistent with theory. The heaviest isotopes partition into Cr(3+), intermediates in CrCl(2+) and the lightest in CrCl2(+)/CrCl3°. Thus, for a typical reported loss of ∼25% Cr (in the form of Cr(3+)) through chromatographic purification, this translates into 185 ppm/amu offset in the stable Cr isotope ratio of the residual sample. Depending on the validity of the mass-bias correction during isotope analysis, this further results in artificial mass-independent effects in the mass-bias corrected (53)Cr/(52)Cr (µ(53)Cr* of 5.2 ppm) and (54)Cr/(52)Cr (µ(54)Cr* of 13.5 ppm) components used to infer chronometric and nucleosynthetic information in meteorites. To mitigate these fractionation effects, we developed strategic chemical sample pre-treatment procedures that ensure high and reproducible Cr recovery. This is achieved either through 1) effective promotion of Cr(3+) by >5 days exposure to HNO3H2O2 solutions at room temperature, resulting in >∼98% Cr recovery for most types of sample matrices tested using a cationic chromatographic retention strategy, or 2) formation of Cr(III)-Cl complexes through exposure to concentrated HCl at high temperature (>120 °C) for several hours, resulting in >97.5% Cr recovery using a chromatographic elution strategy that takes advantage of the slow reaction kinetics of de-chlorination of Cr in dilute HCl at room temperature. These procedures significantly improve cation chromatographic purification of Cr over previous methods and allow for high-purity Cr isotope analysis with a total recovery of >95%.


Subject(s)
Chemistry Techniques, Analytical/methods , Chromium Isotopes/analysis , Chromium/chemistry , Isotopes/isolation & purification , Chemical Fractionation , Chromatography , Chromium/analysis , Kinetics , Solutions
10.
Geobiology ; 14(1): 54-67, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26331762

ABSTRACT

Chromium-isotope compositions (expressed as δ(53) Cr) of recent and ancient skeletal and non-skeletal carbonates are currently explored as a (paleo-) redox-proxy for shallow seawater. The idea behind this approach is that biogenic and non-biogenic carbonates could potentially be used as archives recording the Cr-isotope composition of seawater in which they formed, and with this contribute to the reconstruction of past paleo-environmental changes in the marine realm, and potentially to climate changes on land. However, investigations addressing the behavior and uptake mechanism of Cr, and the potential isotope fractionations between seawater and biogenic carbonates are scarce. Here, we present a study of Cr-isotope variations in three species of corals and contemporary seawater from the Rocas Atoll, NE, Brazil. Cr-isotope values of the studied coral species (Siderastrea stellata, Porites sp., and Montastrea cavernosa) vary from -0.5 to +0.33‰ and point to significant isotopic disequilibrium with coexisting seawater characterized by a Cr-isotope value of +0.92 ± 0.2‰. This isotopic offset requires reduction of hexavalent Cr(VI) in the sequestration process of all the studied coral species. Cr-isotope values in a profile across an S. stellata colony returned homogeneous, slightly positively fractioned δ(53) Cr values of +0.07 ± 0.08‰ (n = 8, 2σ), which we interpret to reflect a constant reductive uptake during the 20-year growth period recorded in this coral. In contrast, samples across a 12-year growth profile from Porites sp. display rather heterogeneous Cr-isotope values with δ(53) Cr varying from -0.50 to +0.10‰, indicating Cr incorporation under changing redox processes during its growth intervals. We propose a mechanism whereby initial photoreduction of isotopically heavy Cr(VI) to isotopically lighter Cr(III) in the endodermal layer of corals must be followed by efficient and effective re-oxidation of reduced Cr species to favor subsequent chromate (CrO42-) substitution during the calcifying processes ultimately leading to the formation of the coral skeleton.


Subject(s)
Anthozoa/chemistry , Chromium Isotopes/analysis , Animals , Atlantic Ocean , Brazil , Oxidation-Reduction
11.
Chemosphere ; 138: 74-80, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26037819

ABSTRACT

Chromium stable isotopes are of interest in many geochemical studies as a tool to identify Cr(VI) reduction and/or dilution in groundwater aquifers. For such studies the short term stability of Cr(VI) in water samples is required before the laboratory analyses can be carried out. Here the short term stability of Cr(VI) in groundwater samples was studied using an isotope approach. Based on commonly available methods for Cr(VI) stabilization, water samples were filtered and the pH value was adjusted to be equal to or greater than 8 before Cr isotope analysis. Based on our Cr isotope data (expressed as δ(53)CrNIST979), Cr(VI) was found to be unstable over short time periods in anthropogenically contaminated groundwater samples regardless of water treatment (e.g., pH adjustment, different storage temperatures). Based on our laboratory experiments, δ(53)CrNIST979 of the Cr(VI) pool was found to be unstable in the presence of dissolved Fe(II), Mn(IV) and/or SO2. Threshold concentrations of Fe(II) causing Cr(VI) reduction range between 10 mg L(-1) and 100 mg L(-1)and less than 1 mg L(-1) for Mn. Hence our isotope data show that water samples containing Cr(VI) should be processed on-site through anion column chemistry to avoid any isotope shifts.


Subject(s)
Chromium/analysis , Groundwater/chemistry , Water Pollutants, Chemical/analysis , Water Purification/methods , Chromium Isotopes/analysis
12.
Environ Sci Technol ; 49(9): 5467-75, 2015 May 05.
Article in English | MEDLINE | ID: mdl-25839086

ABSTRACT

Chromium isotope analysis is rapidly becoming a valuable complementary tool for tracking Cr(VI) treatment in groundwater. Evaluation of various treatment materials has demonstrated that the degree of isotope fractionation is a function of the reaction mechanism, where reduction of Cr(VI) to Cr(III) induces the largest fractionation. However, it has also been observed that uniform flow conditions can contribute complexity to isotope measurements. Here, laboratory batch and column experiments were conducted to assess Cr isotope fractionation during Cr(VI) reduction by zerovalent iron under both static and saturated flow conditions. Isotope measurements were accompanied by traditional aqueous geochemical measurements (pH, Eh, concentrations) and solid-phase analysis by scanning electron microscopy and X-ray absorption spectroscopy. Increasing δ(53)Cr values were associated with decreasing Cr(VI) concentrations, which indicates reduction; solid-phase analysis showed an accumulation of Cr(III) on the iron. Reactive transport modeling implemented a dual mechanism approach to simulate the fractionation observed in the experiments. The faster heterogeneous reaction pathway was associated with minimal fractionation (ε=-0.2‰), while the slower homogeneous pathway exhibited a greater degree of fractionation (ε=-0.9‰ for the batch experiment, and ε=-1.5‰ for the column experiment).


Subject(s)
Chromium Isotopes/analysis , Chromium/chemistry , Chemical Fractionation , Chromium Isotopes/chemistry , Groundwater/chemistry , Hydrogen-Ion Concentration , Iron/chemistry , Microscopy, Electron, Scanning , Models, Chemical , Oxidation-Reduction , Water/analysis , X-Ray Absorption Spectroscopy
13.
Chemosphere ; 130: 46-51, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25777078

ABSTRACT

This study investigated the fractionation of chromium isotopes during chromium reduction by Bacillus sp. under aerobic condition, variable carbon source (glucose) concentration (0, 0.1, 1, 2.5 and 10mM), and incubation temperatures (4, 15, 25 and 37°C). The results revealed that the δ(53)Cr values in the residual Cr(VI) increased with the degree of Cr reduction, and followed a Rayleigh fractionation model. The addition of glucose only slightly affected cell-specific Cr(VI) reduction rates (cSRR). However, the value of ε (2.00±0.21‰) in the experiments with different concentrations of glucose (0.1, 1, 2.5 and 10mM) was smaller than that from the experiment without glucose (3.74±0.16‰). The results indicated that the cell-specific reduction rate is not the sole control on the degree of isotopic fractionation, and different metabolic pathways would result in differing degrees of Cr isotopic fractionation. The cSRR decreased with decreasing temperature, showing that the values of ε were 7.62±0.36‰, 4.59±0.28‰, 3.09±0.16‰ and 1.99±0.23‰ at temperatures of 4, 15, 25 and 37°C, respectively. It shown that increasing cSRR linked to decreasing fractionations has been associated with increasing temperatures. Overall, our results revealed that temperature is a primary factor affecting Cr isotopic fractionation under microbial actions.


Subject(s)
Bacillus/metabolism , Biodegradation, Environmental , Chromium Isotopes/analysis , Chromium/analysis , Aerobiosis , Chemical Fractionation , Dose-Response Relationship, Drug , Glucose/chemistry , Temperature
14.
Ecotoxicol Environ Saf ; 110: 182-9, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25244686

ABSTRACT

Gammarids are aquatic amphipods widely used for water quality monitoring. To investigate the copper and cadmium diet-borne metal uptake in Gammarus pulex, we adapted the pulse-chase stable isotopes-based approach to determine the food ingestion rate (IR), the gut retention time (GRT) and the metal assimilation efficiencies (AE). G. pulex were fed with (65)Cu-, (106)Cd-, and (53)Cr-labeled alder leaves for 7.5h and then with unlabeled leaves for 5d. The metal stable isotope contents in the gammarids, leaves, filtered water and periodically collected feces were determined. Chromium was poorly assimilated by the gammarids; thus, Cr was used as an unassimilated tracer. The first tracer defecation occurred before the first feces harvest, indicating a gut passage time of less than 9h. A 24-h GRT and a 0.69gg(-1)d(-1) IR were estimated. The Cd AE value was estimated as 5-47%, depending on the assimilation determination method applied. The Cu AE value could not be evaluated regardless of the determination method used, most likely because of the rapid Cu regulation in gammarids in addition to analytical uncertainties when determining the Cu content in leaves. Application of the Cd AE value in the framework of the biodynamic bioaccumulation model shows that the diet-borne uptake of Cd significantly contributes (66-95%) to the metal bioaccumulation in G. pulex fed with alder leaves.


Subject(s)
Amphipoda , Environmental Monitoring/methods , Isotope Labeling/methods , Metals/analysis , Metals/pharmacokinetics , Water Pollutants, Chemical/analysis , Amphipoda/chemistry , Amphipoda/metabolism , Animals , Cadmium/analysis , Cadmium/pharmacokinetics , Chromium Isotopes/analysis , Copper/analysis , Copper/pharmacokinetics , Fresh Water/analysis , Models, Theoretical , Radioactive Tracers , Water Pollutants, Chemical/pharmacokinetics , Water Pollution/analysis
15.
Environ Sci Technol ; 48(11): 6089-96, 2014 Jun 03.
Article in English | MEDLINE | ID: mdl-24779992

ABSTRACT

Carcinogenic effects of hexavalent chromium in waters are of concern in many countries worldwide. We explored Cr isotope systematics at 11 sites in the Czech Republic and Poland. Geogenic Cr pollution was associated with serpentinite bodies at former convergent plate margins, while anthropogenic Cr pollution resulted from electroplating, tanning, and the chemical industry. Cr(VI) concentration in geogenic waters was less than 40 ppb. Anthropogenic waters contained up to 127,000 ppb Cr(VI). At both geogenic and anthropogenic sites, where known, the source of pollution had a low δ53Cr (<1‰). δ53Cr of geogenic and anthropogenic waters was up to 3.9 and 5.8‰, respectively. At both serpentinite-dominated and industrial sites, δ53Cr(VI)aq was shifted toward higher values, compared to the pollution source. At the industrial sites, this positive δ53Cr shift was related to Cr(VI) reduction, a process known to fractionate Cr isotopes. At geogenic sites, the origin of high δ53Cr(VI)aq is tentatively ascribed to preferential release of 53Cr during oxidation of soil Cr(III) and its mobilization to water. δ53Cr(VI) of industrially contaminated waters was significantly higher (p<0.001) compared to δ53Cr of waters carrying geogenic Cr(VI), implying that either the effective fractionation factor or process extent was greater for Cr(VI) reduction than for Cr(III) oxidation.


Subject(s)
Chromium Isotopes/analysis , Chromium/analysis , Environmental Pollution/analysis , Industrial Waste/analysis , Soil Pollutants/analysis , Water Pollutants, Chemical/analysis , Chromium/chemistry , Chromium Isotopes/chemistry , Czech Republic
16.
Nature ; 501(7468): 535-8, 2013 Sep 26.
Article in English | MEDLINE | ID: mdl-24067713

ABSTRACT

It is widely assumed that atmospheric oxygen concentrations remained persistently low (less than 10(-5) times present levels) for about the first 2 billion years of Earth's history. The first long-term oxygenation of the atmosphere is thought to have taken place around 2.3 billion years ago, during the Great Oxidation Event. Geochemical indications of transient atmospheric oxygenation, however, date back to 2.6-2.7 billion years ago. Here we examine the distribution of chromium isotopes and redox-sensitive metals in the approximately 3-billion-year-old Nsuze palaeosol and in the near-contemporaneous Ijzermyn iron formation from the Pongola Supergroup, South Africa. We find extensive mobilization of redox-sensitive elements through oxidative weathering. Furthermore, using our data we compute a best minimum estimate for atmospheric oxygen concentrations at that time of 3 × 10(-4) times present levels. Overall, our findings suggest that there were appreciable levels of atmospheric oxygen about 3 billion years ago, more than 600 million years before the Great Oxidation Event and some 300-400 million years earlier than previous indications for Earth surface oxygenation.


Subject(s)
Atmosphere/chemistry , Oxygen/analysis , Biological Evolution , Chromium Isotopes/analysis , Cyanobacteria/metabolism , Earth, Planet , Geologic Sediments/analysis , Geologic Sediments/chemistry , History, Ancient , Iron/analysis , Oxidation-Reduction , Oxygen/metabolism , Photosynthesis , South Africa
17.
Appl Environ Microbiol ; 78(7): 2462-4, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22286991

ABSTRACT

We studied Cr isotopic fractionation during Cr(VI) reduction by Pseudomonas stutzeri strain RCH2. Despite the fact that strain RCH2 reduces Cr(VI) cometabolically under both aerobic and denitrifying conditions and at similar specific rates, fractionation was markedly different under these two conditions (ε was ∼2‰ aerobically and ∼0.4‰ under denitrifying conditions).


Subject(s)
Chemical Fractionation/methods , Chromium/metabolism , Nitrites/metabolism , Oxygen/metabolism , Pseudomonas stutzeri/metabolism , Water Microbiology , Aerobiosis , Biodegradation, Environmental , Chromium/chemistry , Chromium Isotopes/analysis , Denitrification , Oxidation-Reduction , Pseudomonas stutzeri/growth & development , Pseudomonas stutzeri/isolation & purification , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/metabolism
18.
Environ Sci Technol ; 45(2): 502-7, 2011 Jan 15.
Article in English | MEDLINE | ID: mdl-21121656

ABSTRACT

At Idaho National Laboratory, Cr(VI) concentrations in a groundwater plume once exceeded regulatory limits in some monitoring wells but have generally decreased over time. This study used Cr stable isotope measurements to determine if part of this decrease resulted from removal of Cr(VI) via reduction to insoluble Cr(III). Although waters in the study area contain dissolved oxygen, the basalt host rock contains abundant Fe(II) and may contain reducing microenvironments or aerobic microbes that reduce Cr(VI). In some contaminated locations, (53)Cr/(52)Cr ratios are close to that of the contaminant source, indicating a lack of Cr(VI) reduction. In other locations, ratios are elevated. Part of this shift may be caused by mixing with natural background Cr(VI), which is present at low concentrations but in some locations has elevated (53)Cr/(52)Cr. Some contaminated wells have (53)Cr/(52)Cr ratios greater than the maximum attainable by mixing between the inferred contaminant and the range of natural background observed in several uncontaminated wells, suggesting that Cr(VI) reduction has occurred. Definitive proof of reduction would require additional evidence. Depth profiles of (53)Cr/(52)Cr suggest that reduction occurs immediately below the water table, where basalts are likely least weathered and most reactive, and is weak or nonexistent at greater depth.


Subject(s)
Carcinogens, Environmental/analysis , Chromium/analysis , Environmental Monitoring/methods , Rivers/chemistry , Water Pollutants, Chemical/analysis , Carcinogens, Environmental/chemistry , Chromium/chemistry , Chromium Isotopes/analysis , Chromium Isotopes/chemistry , Idaho , Oxidation-Reduction , Water Pollutants, Chemical/chemistry
19.
Rapid Commun Mass Spectrom ; 23(16): 2467-75, 2009 Aug 30.
Article in English | MEDLINE | ID: mdl-19603467

ABSTRACT

Understanding blood volume changes in children with malaria is important for managing fluid status. Traditionally, blood/red cell volume measurements have used radioactive chromium isotopes. We applied an alternative approach, using non-radioactive chromium-53 labelling and mass spectrometry to investigate red cell volume (RCV) in Gabonese children with malaria. Nineteen children with malaria participated (10 severe, 9 moderately severe; ages 15 months to 7 years). Blood labelled with (53)Cr-chromate ex vivo was re-injected, then sampled 30 min later. Pre- and post-injection (53)Cr content were measured by gas chromatography/electron ionisation mass spectrometry of the chromium-trifluoroacetylacetone (TFA) chelate, calibrated against (50)Cr standards. Blood and red cell volumes were calculated from isotopic dilution in 15 of 19 children (in four, insufficient signal mitigated analysis). In this small pilot study, there were no significant differences between moderate and severe cases. Including all subjects, the mean RCV was reduced compared with predicted values (184 vs. 269 mL; p = 0.016) but blood volume, 71 +/- 33 mL/kg (normalised for weight), was close to predicted, approximately 77 mL/kg, commensurate with reduced haematocrit. Blood lactate concentration correlated negatively with RCV/weight (r = -0.56, p = 0.028), consistent with anaemia. In one case, sequential samples over 42 days gave an estimated rate of (53)Cr disappearance of 1.4%/day (equivalent half-life: 70 days). (53)Cr-labelling of red cells may be used to estimate blood and red cell volumes and can be used as an investigative tool in situations such as childhood diseases and resource-constrained settings. Although the red cell mass is depleted in malaria, the blood volume appears relatively well preserved.


Subject(s)
Blood Volume , Chromium Isotopes/analysis , Erythrocyte Volume , Gas Chromatography-Mass Spectrometry/methods , Malaria/blood , Malaria/physiopathology , Child , Child, Preschool , Chromium Isotopes/metabolism , Cohort Studies , Female , Humans , Infant , Malaria/metabolism , Malaria/pathology , Male , Severity of Illness Index
20.
Talanta ; 77(1): 189-94, 2008 Oct 19.
Article in English | MEDLINE | ID: mdl-18804619

ABSTRACT

An isotope dilution method has been developed for the speciation analysis of chromium in natural waters which accounts for species interconversions without the requirement of a separation instrument connected to the mass spectrometer. The method involves (i) in-situ spiking of the sample with isotopically enriched chromium species; (ii) separation of chromium species by precipitation with iron hydroxide; (iii) careful measurement of isotope ratios using an inductively coupled plasma mass spectrometer (ICP-MS) with a dynamic reaction cell (DRC) to remove isobaric polyatomic interferences. The method detection limits are 0.4 microg L(-1) for Cr(III) and 0.04 microg L(-1) for Cr(VI). The method is demonstrated for the speciation of Cr(III) and Cr(VI) in local nullah and synthetically spiked water samples. The percentage of conversion from Cr(III) to Cr(VI) increased from 5.9% to 9.3% with increase of the concentration of Cr(VI) and Cr(III) from 1 to 100 microg L(-1), while the reverse conversion from Cr(VI) to Cr(III) was observed within a range between 0.9% and 1.9%. The equilibrium constant for the conversion was found to be independent of the initial concentrations of Cr(III) and Cr(VI) and in the range of 1.0 (at pH 3) to 1.8 (at pH 10). The precision of the method is better than that of the DPC method for Cr(VI) analysis, with the added bonuses of freedom from interferences and simultaneous Cr(III) determination.


Subject(s)
Chromium Isotopes/analysis , Chromium Isotopes/chemistry , Mass Spectrometry/methods , Water/analysis , Water/chemistry , Hydrogen-Ion Concentration , Indicator Dilution Techniques , Solutions , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...