Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Microbiol Rep ; 7(2): 301-11, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25417903

ABSTRACT

Chromohalobacter salexigens is a halophilic γ-proteobacterium that responds to osmotic and heat stresses by accumulating ectoine and hydroxyectoine respectively. Evolution has optimized its metabolism to support high production of ectoines. We analysed the effect of an rpoS mutation in C. salexigens metabolism and ectoines synthesis. In long-term adapted cells, the rpoS strain was osmosensitive but not thermosensitive and showed unaltered ectoines content, suggesting that RpoS regulates ectoine(s)-independent osmoadaptive mechanisms. RpoS is involved in the regulation of C. salexigens metabolic adaptation to stress, as early steps of glucose oxidation through the Entner-Doudoroff pathway were deregulated in the rpoS mutant, leading to improved metabolic efficiency at low salinity. Moreover, a reduced pyruvate (but not acetate) overflow was displayed by the rpoS strain at low salt, probably linked to a slowdown in gluconate production and/or subsequent metabolism. Interestingly, RpoS does not seem to be the main regulator triggering the immediate transcriptional response of ectoine synthesis to osmotic or thermal upshifts. However, it contributed to the expression of the ect genes in cells previously adapted to low or high salinity.


Subject(s)
Amino Acids, Diamino/biosynthesis , Bacterial Proteins/metabolism , Chromohalobacter/metabolism , Gene Expression Regulation, Bacterial , Heat-Shock Response , Osmotic Pressure , Sigma Factor/metabolism , Bacterial Proteins/genetics , Chromohalobacter/drug effects , Chromohalobacter/radiation effects , Gene Knockout Techniques , Sigma Factor/genetics
2.
Appl Environ Microbiol ; 79(3): 1018-23, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23160137

ABSTRACT

Hydroxyectoine overproduction by the natural producer Chromohalobacter salexigens is presented in this study. Genetically engineered strains were constructed that at low salinity coexpressed, in a vector derived from a native plasmid, the ectoine (ectABC) and hydroxyectoine (ectD) genes under the control of the ectA promoter, in a temperature-independent manner. Hydroxyectoine production was further improved by increasing the copies of ectD and using a C. salexigens genetic background unable to synthesize ectoines.


Subject(s)
Amino Acids, Diamino/metabolism , Chromohalobacter/metabolism , Metabolic Engineering , Metabolic Networks and Pathways/genetics , Chromohalobacter/drug effects , Chromohalobacter/radiation effects , Gene Dosage , Plasmids , Salinity , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...