Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24.733
Filter
1.
J Genet ; 1032024.
Article in English | MEDLINE | ID: mdl-38831650

ABSTRACT

Genomic studies make it possible to breakthrough in many fields such as biochemistry, physiology, phylogenetics, etc., though they are unworkable without sequences of genomic DNA of an organism. The terrestrial mollusks' genomes would benefit gastropod biology investigations, that are unavailable so far due to problems in DNA integrity and quality after the isolation procedures. Here we describe a fast and handy protocol for genomic DNA extraction from the tissues of Helix lucorum, which allows to yield high-quality samples applicable for downstream analysis such as high-throughput DNA sequencing. Troubleshooting revealed the nuclease activity of snail tissue lysate, which may be avoided by heating the lysate and decreasing the incubation time.


Subject(s)
Chromosome Deletion , Animals , Humans , Chromosomes, Human, Pair 15/genetics , High-Throughput Nucleotide Sequencing , Helix, Snails/genetics , Male
2.
J Genet ; 1032024.
Article in English | MEDLINE | ID: mdl-38831651

ABSTRACT

In the past, there were no easily distinct and recognizable features as a guide for precise clinical and genetic diagnosis of cases with chromosome microdeletions involving 15q26 including CHD2,. The present study analysed the clinical data and collected venous blood samples from a pediatric patient and his healthy family members for DNA testing. The whole-exome sequencing was performed by the next-generation sequencing (NGS). Chromosomal copy-number variations were tested based on NGS. We present a review of all cases with chromosome microdeletions affecting CHD2. A novel de novo 5.82-Mb deletion at 15q25.3-15q26.1 including CHD2 was identified in our patient who is an 11.6-year-old boy. We first found surprising efficacy of lamotrigine in controlling intractable drop seizures in the individual. These cases have development delay, behavioural problems, epilepsy, variable multiple anomalies, etc. Phenotypes of individuals with deletions involving 15q26 including CHD2 are highly variable with regard to facial features and multiple developmental anomalies. We first found the special clinical entity of development delay, behavioural problems, epilepsy, variable skeletal and muscular anomalies, abnormalities of variable multiple systems and characteristic craniofacial phenotypes in patients with chromosome microdeletions involving CHD2. The larger deletions involving 15q26 including CHD2 tend to cause the classical phenotype. A distinctive craniofacial appearance of the classical phenotype is midface hypoplasia and perifacial protrusion.


Subject(s)
Chromosome Deletion , Chromosomes, Human, Pair 15 , Humans , Male , Child , Chromosomes, Human, Pair 15/genetics , DNA-Binding Proteins/genetics , Animals , DNA Copy Number Variations , High-Throughput Nucleotide Sequencing , Phenotype , Exome Sequencing , DNA/genetics , DNA/isolation & purification , Female , Sequence Analysis, DNA
3.
Psychiatr Genet ; 34(3): 71-73, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38690958

ABSTRACT

Intellectual disability is characterized by impairment in at least two of the following areas: social skills, communication skills, self-care tasks, and academic skills. These impairments are evaluated in relation to the expected standards based on the individual's age and cultural levels. Additionally, intellectual disability is typically defined by a measurable level of intellectual functioning, represented by an intelligence quotients core of 70 or below. Autism spectrum disorder is a developmental disability resulting from differences in the brain, often characterized by problems in social communication and interaction, and limited or repetitive behaviors or interests. Hereditary spherocytosis is a disease characterized by anemia, jaundice, and splenomegaly as a result of increased tendency to hemolysis with morphological transformation of erythrocytes from biconcave disc-shaped cells with central pallor to spherocytes lacking central pallor due to hereditary injury of cellular membrane proteins. An 11-year-old female patient was referred to Pediatric Genetics Subdivision due to the presence of growth retardation and a diagnosis of hereditary spherocytosis. Since she also had dysmorphic facial features, such as frontal bossing, broad and prominent forehead, tubular nasal structure, and thin vermillion, genetic tests were performed. Chromosomal microarray analysis revealed a 2.5 Mb deletion in the 14q23.2q23.3 region. Deletion was also identified in the same region in her father, who had the same phenotypic characteristics, including hereditary spherocytosis and learning difficulties. We propose that the PLEKHG3 and AKAP5 genes, which are located in this region, may contribute to the development of intellectual disability.


Subject(s)
Chromosome Deletion , Haploinsufficiency , Intellectual Disability , Humans , Intellectual Disability/genetics , Female , Child , Haploinsufficiency/genetics , A Kinase Anchor Proteins/genetics , Spherocytosis, Hereditary/genetics
4.
J Neurodev Disord ; 16(1): 25, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38730350

ABSTRACT

BACKGROUND: Phelan-McDermid syndrome (PMS) is a genetic neurodevelopmental disorder caused by SHANK3 haploinsufficiency and is associated with an increased risk for seizures. Previous literature indicates that around one third of individuals with PMS also have epilepsy or seizures, with a wide range of types and ages of onset. Investigating the impact of seizures on intellectual and adaptive functioning for PMS is a primary concern for caregivers and is important to understanding the natural history of this syndrome. METHODS: We report on results from 98 individuals enrolled in a prospective, longitudinal study. We detailed seizure frequency, type, and age of onset, and we analyzed seizure occurrence with best estimate IQ, adaptive functioning, clinical features, and genotype. We conducted multiple linear regression analyses to assess the relationship between the presence of seizures and the Vineland Adaptive Behavior Scale, Second Edition (VABS-II) Adaptive Behavior Composite score and the best estimate full-scale IQ. We also performed Chi-square tests to explore associations between seizure prevalence and genetic groupings. Finally, we performed Chi-square tests and t-tests to explore the relationship between seizures and demographic features, features that manifest in infancy, and medical features. RESULTS: Seizures were present in 41% of the cohort, and age of onset was widely variable. The presence of seizures was associated with significantly lower adaptive and intellectual functioning. Genotype-phenotype analyses were discrepant, with no differences in seizure prevalence across genetic classes, but with more genes included in deletions of participants with 22q13 deletions and seizures compared to those with 22q13 deletions and no seizures. No clinical associations were found between the presence of seizures and sex, history of pre- or neonatal complications, early infancy, or medical features. In this cohort, generalized seizures were associated with developmental regression, which is a top concern for PMS caregivers. CONCLUSIONS: These results begin to eludicate correlates of seizures in individuals with PMS and highlight the importance of early seizure management. Importantly, presence of seizures was associated with adaptive and cognitive functioning. A larger cohort might be able to identify additional associations with medical features. Genetic findings suggest an increased capability to realize genotype-phenotype relationships when deletion size is taken into account.


Subject(s)
Chromosome Deletion , Chromosome Disorders , Chromosomes, Human, Pair 22 , Seizures , Humans , Male , Female , Seizures/genetics , Chromosome Disorders/complications , Chromosome Disorders/genetics , Chromosome Disorders/physiopathology , Chromosomes, Human, Pair 22/genetics , Child , Child, Preschool , Adolescent , Longitudinal Studies , Young Adult , Adult , Prospective Studies , Infant , Nerve Tissue Proteins/genetics
5.
Radiology ; 311(2): e233120, 2024 May.
Article in English | MEDLINE | ID: mdl-38713025

ABSTRACT

Background According to 2021 World Health Organization criteria, adult-type diffuse gliomas include glioblastoma, isocitrate dehydrogenase (IDH)-wildtype; oligodendroglioma, IDH-mutant and 1p/19q-codeleted; and astrocytoma, IDH-mutant, even when contrast enhancement is lacking. Purpose To develop and validate simple scoring systems for predicting IDH and subsequent 1p/19q codeletion status in gliomas without contrast enhancement using standard clinical MRI sequences. Materials and Methods This retrospective study included adult-type diffuse gliomas lacking contrast at contrast-enhanced MRI from two tertiary referral hospitals between January 2012 and April 2022 with diagnoses confirmed at pathology. IDH status was predicted primarily by using T2-fluid-attenuated inversion recovery (FLAIR) mismatch sign, followed by 1p/19q codeletion prediction. A visual rating of MRI features, apparent diffusion coefficient (ADC) ratio, and relative cerebral blood volume was measured. Scoring systems were developed through univariable and multivariable logistic regressions and underwent calibration and discrimination, including internal and external validation. Results For the internal validation cohort, 237 patients were included (mean age, 44.4 years ± 14.4 [SD]; 136 male patients; 193 patients in IDH prediction and 163 patients in 1p/19q prediction). For the external validation cohort, 35 patients were included (46.1 years ± 15.3; 20 male patients; 28 patients in IDH prediction and 24 patients in 1p/19q prediction). The T2-FLAIR mismatch sign demonstrated 100% specificity and 100% positive predictive value for IDH mutation. IDH status prediction scoring system for tumors without mismatch sign included age, ADC ratio, and morphologic characteristics, whereas 1p/19q codeletion prediction for IDH-mutant gliomas included ADC ratio, cortical involvement, and mismatch sign. For IDH status and 1p/19q codeletion prediction, bootstrap-corrected areas under the receiver operating characteristic curve were 0.86 (95% CI: 0.81, 0.90) and 0.73 (95% CI: 0.65, 0.81), respectively, whereas at external validation they were 0.99 (95% CI: 0.98, 1.0) and 0.88 (95% CI: 0.63, 1.0). Conclusion The T2-FLAIR mismatch sign and scoring systems using standard clinical MRI predicted IDH and 1p/19q codeletion status in gliomas lacking contrast enhancement. © RSNA, 2024 Supplemental material is available for this article. See also the editorial by Badve and Hodges in this issue.


Subject(s)
Chromosome Deletion , Isocitrate Dehydrogenase , Magnetic Resonance Imaging , Mutation , Adult , Female , Humans , Male , Middle Aged , Brain Neoplasms/genetics , Brain Neoplasms/diagnostic imaging , Chromosomes, Human, Pair 1/genetics , Chromosomes, Human, Pair 19/genetics , Contrast Media , Glioma/genetics , Glioma/diagnostic imaging , Isocitrate Dehydrogenase/genetics , Magnetic Resonance Imaging/methods , Retrospective Studies
6.
Stem Cell Res ; 77: 103436, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38733811

ABSTRACT

Y chromosome deletion and karyotype abnormalities are commonly associated with congenital non-obstructive azoospermia, impairing spermatogenesis. Specifically, the deletion of the Y chromosome Azoospermia factor a (AZFa) has been identified in infertile males with severely impaired spermatogenesis. AZFa, encompassing megabase-scale of the Y chromosome region, poses challenges in modeling AZFa deletion-related male infertility using gene editing tools. Here, we successfully created an AZFa-deleted human embryonic stem cell line utilizing the CRISPR/Cas9 gene editing tool. Our analysis indicates the AZFa-deleted stem cell line holds promise for differentiation into ectoderm, mesoderm, and endoderm, highlighting its potential for further comprehensive study.


Subject(s)
Human Embryonic Stem Cells , Humans , Human Embryonic Stem Cells/metabolism , Human Embryonic Stem Cells/cytology , Male , Cell Line , Chromosomes, Human, Y/genetics , Cell Differentiation , CRISPR-Cas Systems , Chromosome Deletion , Gene Editing
7.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 41(6): 753-757, 2024 Jun 10.
Article in Chinese | MEDLINE | ID: mdl-38818564

ABSTRACT

OBJECTIVE: To carry out genetic analysis on two families with carriers of small terminal translocations using karyotyping analysis and genomic copy number variation sequencing (CNV-seq). METHODS: Two couples undergoing prenatal diagnosis at the Tianjin Central Hospital of Obstetrics and Gynecology respectively on April 12, 2020 and December 17, 2021 were selected as the study subjects. With informed consent, amniotic fluid and peripheral blood samples were collected and subjected to conventional karyotyping and CNV-seq analysis for the detection of chromosomal microdeletion/duplications. RESULTS: Both couples had given births to children with chromosomal aberrations previously, and both fetuses were found to have abnormal karyotypes. CNV-seq showed that they had harbored microdeletion/duplications, and their mothers had both carried balanced translocations involving terminal fragments of chromosomes. CONCLUSION: For fetuses with small chromosomal segmental abnormalities, their parental origin should be traced, and the diagnosis should be confirmed with combined genetic techniques.


Subject(s)
DNA Copy Number Variations , Karyotyping , Prenatal Diagnosis , Humans , Prenatal Diagnosis/methods , Female , Pregnancy , Male , Adult , Chromosome Aberrations , Translocation, Genetic , Genetic Testing/methods , Chromosome Deletion
8.
Clin Epigenetics ; 16(1): 62, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38715103

ABSTRACT

BACKGROUND: Temple syndrome (TS14) is a rare imprinting disorder caused by maternal UPD14, imprinting defects or paternal microdeletions which lead to an increase in the maternal expressed genes and a silencing the paternally expressed genes in the 14q32 imprinted domain. Classical TS14 phenotypic features include pre- and postnatal short stature, small hands and feet, muscular hypotonia, motor delay, feeding difficulties, weight gain, premature puberty along and precocious puberty. METHODS: An exon array comparative genomic hybridization was performed on a patient affected by psychomotor and language delay, muscular hypotonia, relative macrocephaly, and small hand and feet at two years old. At 6 years of age, the proband presented with precocious thelarche. Genes dosage and methylation within the 14q32 region were analyzed by MS-MLPA. Bisulfite PCR and pyrosequencing were employed to quantification methylation at the four known imprinted differentially methylated regions (DMR) within the 14q32 domain: DLK1 DMR, IG-DMR, MEG3 DMR and MEG8 DMR. RESULTS: The patient had inherited a 69 Kb deletion, encompassing the entire DLK1 gene, on the paternal allele. Relative hypermethylation of the two maternally methylated intervals, DLK1 and MEG8 DMRs, was observed along with normal methylation level at IG-DMR and MEG3 DMR, resulting in a phenotype consistent with TS14. Additional family members with the deletion showed modest methylation changes at both the DLK1 and MEG8 DMRs consistent with parental transmission. CONCLUSION: We describe a girl with clinical presentation suggestive of Temple syndrome resulting from a small paternal 14q32 deletion that led to DLK1 whole-gene deletion, as well as hypermethylation of the maternally methylated DLK1-DMR.


Subject(s)
Calcium-Binding Proteins , Chromosomes, Human, Pair 14 , DNA Methylation , Genomic Imprinting , Intercellular Signaling Peptides and Proteins , Humans , Calcium-Binding Proteins/genetics , DNA Methylation/genetics , Chromosomes, Human, Pair 14/genetics , Intercellular Signaling Peptides and Proteins/genetics , Genomic Imprinting/genetics , Membrane Proteins/genetics , Child , Male , Comparative Genomic Hybridization/methods , Female , Chromosome Deletion , Child, Preschool , Phenotype , Abnormalities, Multiple/genetics , Imprinting Disorders , Muscle Hypotonia , Facies
9.
Science ; 384(6695): 584-590, 2024 05 03.
Article in English | MEDLINE | ID: mdl-38696583

ABSTRACT

Meningomyelocele is one of the most severe forms of neural tube defects (NTDs) and the most frequent structural birth defect of the central nervous system. We assembled the Spina Bifida Sequencing Consortium to identify causes. Exome and genome sequencing of 715 parent-offspring trios identified six patients with chromosomal 22q11.2 deletions, suggesting a 23-fold increased risk compared with the general population. Furthermore, analysis of a separate 22q11.2 deletion cohort suggested a 12- to 15-fold increased NTD risk of meningomyelocele. The loss of Crkl, one of several neural tube-expressed genes within the minimal deletion interval, was sufficient to replicate NTDs in mice, where both penetrance and expressivity were exacerbated by maternal folate deficiency. Thus, the common 22q11.2 deletion confers substantial meningomyelocele risk, which is partially alleviated by folate supplementation.


Subject(s)
Chromosome Deletion , Chromosomes, Human, Pair 22 , Meningomyelocele , Animals , Female , Humans , Male , Mice , Chromosomes, Human, Pair 22/genetics , DiGeorge Syndrome/genetics , Exome Sequencing , Folic Acid/administration & dosage , Folic Acid Deficiency/complications , Folic Acid Deficiency/genetics , Meningomyelocele/epidemiology , Meningomyelocele/genetics , Penetrance , Spinal Dysraphism/genetics , Risk , Adaptor Proteins, Signal Transducing/genetics
10.
Taiwan J Obstet Gynecol ; 63(3): 398-401, 2024 May.
Article in English | MEDLINE | ID: mdl-38802206

ABSTRACT

OBJECTIVE: We present mosaic distal 10q deletion at prenatal diagnosis in a pregnancy associated with a favorable fetal outcome. CASE REPORT: A 40-year-old, gravida 2, para 0, woman underwent amniocentesis at 16 weeks of gestation because of advanced maternal age. Amniocentesis revealed a karyotype of 46,XY, del(10) (q26.13)[6]/46,XY[17]. Simultaneous array comparative genomic hybridization (aCGH) analysis on the DNA extracted from uncultured amniocytes showed 35% mosaicism for the 10q26.13q26.3 deletion. At 22 weeks of gestation, she underwent cordocentesis which revealed a karyotype of 46,XY,del(10) (q26.13)[16]/46,XY[24]. Prenatal ultrasound findings were normal. At 24 weeks of gestation, she was referred for genetic counseling, and repeat amniocentesis revealed a karyotype of 46,XY,del(10) (q26.13)[4]/46,XY[22]. The parental karyotypes were normal. Molecular genetic analysis on uncultured amniocytes revealed no uniparental disomy (UPD) 10 by quantitative fluorescence polymerase chain reaction (QF-PCR), arr 10q26.13q26.3 × 1.6 (40% mosaicism) by aCGH, and 29.8% (31/104 cells) mosaicism for the distal 10q deletion by interphase fluorescence in situ hybridization (FISH). The woman was advised to continue the pregnancy, and a phenotypically normal 2,900-g male baby was delivered at 39 weeks of gestation. The cord blood had a karyotype of 46,XY,del(10) (q26.13)[6]/46,XY[34], and both the umbilical cord and the placenta had the karyotype of 46,XY. When follow-up at age four months, the neonate was normal in phenotype and development. The peripheral blood had a karyotype of 46,XY,del(10) (q26.13)[5]/46,XY[35], and interphase FISH analysis on buccal mucosal cells showed 8% (8/102 cells) mosaicism for distal 10q deletion. CONCLUSION: Mosaic distal 10q deletion with a normal cell line at prenatal diagnosis can be associated with a favorable fetal outcome and perinatal progressive decrease of the aneuploid cell line.


Subject(s)
Amniocentesis , Comparative Genomic Hybridization , Cordocentesis , Mosaicism , Humans , Pregnancy , Female , Mosaicism/embryology , Adult , Chromosomes, Human, Pair 10/genetics , Chromosome Deletion , Infant, Newborn , Aneuploidy , Karyotyping
12.
Genet Res (Camb) ; 2024: 5549592, 2024.
Article in English | MEDLINE | ID: mdl-38586596

ABSTRACT

22q11.2 deletion syndrome (22q11.2DS) is a microdeletion syndrome with a broad and heterogeneous phenotype, even though most of the deletions present similar sizes, involving ∼3 Mb of DNA. In a relatively large population of a Brazilian 22q11.2DS cohort (60 patients), we investigated genetic variants that could act as genetic modifiers and contribute to the phenotypic heterogeneity, using a targeted NGS (Next Generation Sequencing) with a specific Ion AmpliSeq panel to sequence nine candidate genes (CRKL, MAPK1, HIRA, TANGO2, PI4KA, HDAC1, ZDHHC8, ZFPM2, and JAM3), mapped in and outside the 22q11.2 hemizygous deleted region. In silico prediction was performed, and the whole-genome sequencing annotation analysis package (WGSA) was used to predict the possible pathogenic effect of single nucleotide variants (SNVs). For the in silico prediction of the indels, we used the genomic variants filtered by a deep learning model in NGS (GARFIELD-NGS). We identified six variants, 4 SNVs and 2 indels, in MAPK1, JAM3, and ZFPM2 genes with possibly synergistic deleterious effects in the context of the 22q11.2 deletion. Our results provide the opportunity for the discovery of the co-occurrence of genetic variants with 22q11.2 deletions, which may influence the patients´ phenotype.


Subject(s)
DiGeorge Syndrome , Humans , DiGeorge Syndrome/genetics , Phenotype , Brazil , Chromosome Deletion
13.
Genome Biol ; 25(1): 95, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38622679

ABSTRACT

BACKGROUND: Aneuploidy, an abnormal number of chromosomes within a cell, is a hallmark of cancer. Patterns of aneuploidy differ across cancers, yet are similar in cancers affecting closely related tissues. The selection pressures underlying aneuploidy patterns are not fully understood, hindering our understanding of cancer development and progression. RESULTS: Here, we apply interpretable machine learning methods to study tissue-selective aneuploidy patterns. We define 20 types of features corresponding to genomic attributes of chromosome-arms, normal tissues, primary tumors, and cancer cell lines (CCLs), and use them to model gains and losses of chromosome arms in 24 cancer types. To reveal the factors that shape the tissue-specific cancer aneuploidy landscapes, we interpret the machine learning models by estimating the relative contribution of each feature to the models. While confirming known drivers of positive selection, our quantitative analysis highlights the importance of negative selection for shaping aneuploidy landscapes. This is exemplified by tumor suppressor gene density being a better predictor of gain patterns than oncogene density, and vice versa for loss patterns. We also identify the importance of tissue-selective features and demonstrate them experimentally, revealing KLF5 as an important driver for chr13q gain in colon cancer. Further supporting an important role for negative selection in shaping the aneuploidy landscapes, we find compensation by paralogs to be among the top predictors of chromosome arm loss prevalence and demonstrate this relationship for one paralog interaction. Similar factors shape aneuploidy patterns in human CCLs, demonstrating their relevance for aneuploidy research. CONCLUSIONS: Our quantitative, interpretable machine learning models improve the understanding of the genomic properties that shape cancer aneuploidy landscapes.


Subject(s)
Aneuploidy , Neoplasms , Humans , Neoplasms/genetics , Neoplasms/pathology , Chromosome Deletion , Chromosomes , Machine Learning
14.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 41(4): 480-485, 2024 Apr 10.
Article in Chinese | MEDLINE | ID: mdl-38565516

ABSTRACT

OBJECTIVE: To explore the clinical characteristics of 1q21.1 microdeletion by using single nucleotide polymorphism microarrays (SNP array). METHODS: Eighteen cases of 1q21.1 microdeletion syndrome diagnosed at the Longgang District Maternal and Child Health Care Hospital of Shenzhen City from June 2017 to December 2022 were selected as the study subjects. Clinical data of the patients were collected. Results of chromosomal karyotyping and SNP assay were retrospectively analyzed. RESULTS: Among the 18 cases with 1q21.1 microdeletions, 13 had a deletion between BP3 and BP4, 4 had a deletion between BP1/BP2 and BP4, whilst 1 had a proximal 1q21.1 deletion (between BP2 and BP3) involving the Thrombocytopenia-absent radius (TAR) region. The deletions had spanned from 360 kb to 3.9 Mb, which encompassed the GJA5, GJA8, CHD1L, RBM8AB and other morbid genes. In three families, the proband child has inherited the same 1q21.1 microdeletion from their parents, whose clinical phenotype was normal or slightly abnormal. The clinical phenotypes of 1q21.1 microdeletion had included cognitive or behavioral deficits in 9 cases (9/18, 50.0%), growth retardation in 8 cases (8/18, 44.4%), craniofacial deformities in 7 cases (7/18, 38.8%), cardiovascular malformations in 5 cases (5/18, 27.8%), and microcephaly in 3 cases (3/18, 16.7%). CONCLUSION: 1q21.1 microdeletion syndrome has incomplete penetrance and varied expression such as intellectual impairment, growth and development delay, and microcephaly, with a wide range of non-specific phenotypes.


Subject(s)
Abnormalities, Multiple , Intellectual Disability , Megalencephaly , Microcephaly , Child , Humans , Microcephaly/genetics , Retrospective Studies , Chromosome Deletion , Phenotype , Molecular Biology , Intellectual Disability/genetics , DNA Helicases/genetics , DNA-Binding Proteins/genetics , Chromosomes, Human, Pair 1
15.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 41(5): 513-518, 2024 May 10.
Article in Chinese | MEDLINE | ID: mdl-38684293

ABSTRACT

OBJECTIVE: To determine the frequency and characteristics of AZF microdeletions of Y chromosome and karyotypic abnormalities among infertile male patients from southwest China. METHODS: 4 278 infertile male patients treated at West China Second University Hospital of Sichuan University from September 2018 to July 2023 were selected as the study subjects. Results of Y chromosome microdeletion detection and G-banded karyotyping analysis were retrospectively reviewed. RESULTS: Clinical data of the patients were collected, which have included 2 048 patients with azoospermia, 1 536 patients with oligozoospermia, 310 patients with mild to moderate oligozoospermia, and 384 patients with infertility but normal sperm concentration. An abnormal karyotype was found in 213 (8.80%) of 2 421 patients who had undergone karyotyping analysis. The frequency of Y chromosome microdeletions was 9.86% (422/4 278), which had occurred in 10.4%, 13.28%, 0.97% and 0.52% of the cases with azoospermia, severe oligozoospermia, mild to moderate oligozoospermia, and infertility with normal sperm concentration, respectively. CONCLUSION: Y chromosome microdeletion detection and karyotyping analysis are crucial for assessing the cause of male infertility. Early diagnosis can facilitate the selection of reproductive methods.


Subject(s)
Azoospermia , Chromosome Deletion , Chromosomes, Human, Y , Infertility, Male , Karyotyping , Oligospermia , Sex Chromosome Aberrations , Sex Chromosome Disorders of Sex Development , Humans , Male , Chromosomes, Human, Y/genetics , Infertility, Male/genetics , China , Adult , Oligospermia/genetics , Azoospermia/genetics , Sex Chromosome Disorders of Sex Development/genetics , Retrospective Studies , Abnormal Karyotype , Young Adult
16.
BMC Womens Health ; 24(1): 241, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38622524

ABSTRACT

18p deletion syndrome constitutes one of the most frequent autosomal terminal deletion syndromes, affecting one in 50,000 live births. The syndrome has un-specific clinical features which vary significantly between patients and may overlap with other genetic conditions. Its prenatal description is extremely rare as the fetal phenotype is often not present during pregnancy. Trisomy 8p Syndrome is characterized by heterogenous phenotype, with the most frequent components to be cardiac malformation, developmental and intellectual delay. Its prenatal diagnosis is very rare due to the unspecific sonographic features of the affected fetuses. We present a very rare case of a fetus with multiple anomalies diagnosed during the second trimester whose genomic analysis revealed a 18p Deletion and 8p trisomy Syndrome. This is the first case where this combination of DNA mutations has been described prenatally and the second case in general. The presentation of this case, as well as the detailed review of all described cases, aim to expand the existing knowledge regarding this rare condition facilitating its diagnosis in the future.


Subject(s)
Chromosome Disorders , Trisomy , Pregnancy , Female , Humans , Trisomy/diagnosis , Trisomy/genetics , Prenatal Diagnosis , Chromosome Disorders/diagnosis , Chromosome Disorders/genetics , Chromosome Deletion , Chromosomes, Human, Pair 8
17.
PLoS One ; 19(4): e0301989, 2024.
Article in English | MEDLINE | ID: mdl-38683764

ABSTRACT

Somatic Y chromosome loss in hematopoietic cells is associated with higher mortality in men. However, the status of the Y chromosome in cancer tissue is not fully known due to technical limitations, such as difficulties in labelling and sequencing DNA from the Y chromosome. We have developed a system to quantify Y chromosome gain or loss in patient-derived prostate cancer organoids. Using our system, we observed Y chromosome loss in 4 of the 13 (31%) patient-derived metastatic castration-resistant prostate cancer (mCRPC) organoids; interestingly, loss of Yq (long arm of the Y chromosome) was seen in 38% of patient-derived organoids. Additionally, potential associations were observed between mCRPC and Y chromosome nullisomy. The prevalence of Y chromosome loss was similar in primary and metastatic tissue, suggesting that Y chromosome loss is an early event in prostate cancer evolution and may not a result of drug resistance or organoid derivation. This study reports quantification of Y chromosome loss and gain in primary and metastatic prostate cancer tissue and lays the groundwork for further studies investigating the clinical relevance of Y chromosome loss or gain in mCRPC.


Subject(s)
Chromosome Painting , Chromosomes, Human, Y , Neoplasm Metastasis , Male , Humans , Chromosomes, Human, Y/genetics , Neoplasm Metastasis/genetics , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Prostatic Neoplasms, Castration-Resistant/genetics , Prostatic Neoplasms, Castration-Resistant/pathology , Organoids/pathology , Chromosome Deletion
18.
BMC Anesthesiol ; 24(1): 143, 2024 Apr 13.
Article in English | MEDLINE | ID: mdl-38614993

ABSTRACT

BACKGROUND: The Koolen-de Vries syndrome (KdVS) is a relatively new rare disease caused by micro-deletion of 17q21.31 which was first reported by Koolen in 2006. Typical phenotypes for KdVS include hypotonia, developmental delay, moderate intellectual disability, and characteristic facial dysmorphism. Up to now, there was only one case report about anesthesia management of patient diagnosed KdVS. It was a 2-year-old girl who experienced an MRI exam under anesthesia. CASE PRESENTATION: We described a 21-month-old boy who planned to undergo an orchidopexy under general anesthesia diagnosed with KdVS. He had an intellectual disability, characteristic facial dysmorphism, tracheo/laryngomalacia, patent foramen ovale, and cryptorchidism related to KdVS. Due to the complex condition especially the presence of tracheo/laryngomalacia, we took some special measures, including reducing the amount of long-acting opioid, keeping the spontaneous breath, performing a caudal block, and applying the laryngeal mask. But the laryngeal mask was changed to an endotracheal tube because it failed to provide adequate ventilation. The boy experienced mild laryngeal spasm and hypoxia after extubation, but lateral position and etomidate eased his breathing problem and re-intubation was avoided. It is indicated that anesthesia management for patients with orphan disease is a real challenge for all anesthesia providers. CONCLUSIONS: The Koolen-de Vries syndrome is a relatively new orphan disease involving multiple systems. Keeping spontaneous breath, evaluating airway potency to anesthetics, applying endotracheal tube, and post-extubation lateral or prone position may be helpful for airway management for patient with hypotonia and tracheo/laryngomalacia. KdVS patient needs prolonged post-anesthesia monitoring and/or medication for airway complications.


Subject(s)
Abnormalities, Multiple , Chromosome Deletion , Intellectual Disability , Laryngomalacia , Humans , Infant , Male , Anesthesia, General , Chromosomes, Human, Pair 17 , Muscle Hypotonia , Rare Diseases
19.
Int J Mol Sci ; 25(8)2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38673816

ABSTRACT

Until a few years ago, it was believed that the gradual mosaic loss of the Y chromosome (mLOY) was a normal age-related process. However, it is now known that mLOY is associated with a wide variety of pathologies in men, such as cardiovascular diseases, neurodegenerative disorders, and many types of cancer. Nevertheless, the mechanisms that generate mLOY in men have not been studied so far. This task is of great importance because it will allow focusing on possible methods of prophylaxis or therapy for diseases associated with mLOY. On the other hand, it would allow better understanding of mLOY as a possible marker for inferring the age of male samples in cases of human identification. Due to the above, in this work, a comprehensive review of the literature was conducted, presenting the most relevant information on the possible molecular mechanisms by which mLOY is generated, as well as its implications for men's health and its possible use as a marker to infer age.


Subject(s)
Chromosomes, Human, Y , Men's Health , Humans , Chromosomes, Human, Y/genetics , Male , Aging/genetics , Mosaicism , Chromosome Deletion
20.
Brain Tumor Pathol ; 41(2): 43-49, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38564040

ABSTRACT

Oligodendroglioma, IDH-mutant and 1p/19q-codeleted is known for their relative chemosensitivity and indolent clinical course among diffuse gliomas of adult type. Based on the data from phase 3 clinical trials, the standard of post-surgical care for those tumors is considered to be initial chemoradiotherapy regardless of histopathological grade, particularly with PCV. However, partly due to its renewed definition in late years, prognostic factors in patients with those tumors are not well established. Moreover, the survival rate declines over 15 years, with only a 37% OS rate at 20 years for grade 3 tumors, even with the current standard of care. Given that most of this disease occurs in young or middle-aged adults, further improvements in treatment and management are necessary. Here, we discuss prognostic factors, standard of care and chemotherapy, and future perspectives with neoadjuvant strategy in those tumors.


Subject(s)
Brain Neoplasms , Chromosomes, Human, Pair 19 , Chromosomes, Human, Pair 1 , Isocitrate Dehydrogenase , Mutation , Neoadjuvant Therapy , Oligodendroglioma , Standard of Care , Humans , Oligodendroglioma/genetics , Oligodendroglioma/therapy , Oligodendroglioma/pathology , Isocitrate Dehydrogenase/genetics , Brain Neoplasms/genetics , Brain Neoplasms/therapy , Brain Neoplasms/pathology , Prognosis , Chromosomes, Human, Pair 1/genetics , Chromosomes, Human, Pair 19/genetics , Adult , Chromosome Deletion , Survival Rate , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL
...