Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.793
Filter
1.
Taiwan J Obstet Gynecol ; 63(3): 418-421, 2024 May.
Article in English | MEDLINE | ID: mdl-38802211

ABSTRACT

OBJECTIVE: Herein, we present a case of mosaic trisomy 6 detected by amniocentesis. CASE REPORT: Amniocentesis (G-banding) was performed at 17 weeks of gestation; the results were 47,XY,+6[3]/46,XY[12]. Fetal screening ultrasonography showed no morphological abnormalities, and the parents desired to continue the pregnancy. The infant was delivered vaginally at 39 weeks' gestation. The male infant weighed 3002 g at birth with no morphological abnormalities. G-banding karyotype analysis performed on the infant's peripheral blood revealed 46,XY[20]. FISH analysis revealed trisomy signals on chromosome 6 in 1-4 out of 100 cells from the placenta. The single nucleotide polymorphism microarray of the umbilical cord blood revealed no abnormalities. Methylation analysis of umbilical cord blood revealed no abnormalities in PLAGL1. No disorders were observed at one year of age. CONCLUSION: When amniocentesis reveals chromosomal mosaicism, it is essential to provide a thorough fetal ultrasound examination and careful genetic counseling to support the couples' decision-making.


Subject(s)
Amniocentesis , Chromosomes, Human, Pair 6 , Mosaicism , Trisomy , Humans , Mosaicism/embryology , Female , Pregnancy , Trisomy/genetics , Trisomy/diagnosis , Male , Adult , Chromosomes, Human, Pair 6/genetics , Infant, Newborn , Ultrasonography, Prenatal , Karyotyping , In Situ Hybridization, Fluorescence
3.
Transl Psychiatry ; 14(1): 194, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38649377

ABSTRACT

Recent research has highlighted the role of complement genes in shaping the microstructure of the brain during early development, and in contributing to common allele risk for Schizophrenia. We hypothesised that common risk variants for schizophrenia within complement genes will associate with structural changes in white matter microstructure within tracts innervating the frontal lobe. Results showed that risk alleles within the complement gene set, but also intergenic alleles, significantly predict axonal density in white matter tracts connecting frontal cortex with parietal, temporal and occipital cortices. Specifically, risk alleles within the Major Histocompatibility Complex region in chromosome 6 appeared to drive these associations. No significant associations were found for the orientation dispersion index. These results suggest that changes in axonal packing - but not in axonal coherence - determined by common risk alleles within the MHC genomic region - including variants related to the Complement system - appear as a potential neurobiological mechanism for schizophrenia.


Subject(s)
Alleles , Genetic Predisposition to Disease , Major Histocompatibility Complex , Schizophrenia , White Matter , Humans , Schizophrenia/genetics , Schizophrenia/pathology , White Matter/pathology , White Matter/diagnostic imaging , Female , Male , Adult , Major Histocompatibility Complex/genetics , Young Adult , Frontal Lobe/pathology , Frontal Lobe/diagnostic imaging , Middle Aged , Diffusion Tensor Imaging , Chromosomes, Human, Pair 6/genetics , Axons/pathology , Polymorphism, Single Nucleotide
4.
J Thromb Haemost ; 22(6): 1616-1626, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38484912

ABSTRACT

BACKGROUND: No F8 genetic abnormality is detected in approximately 1% to 2% of patients with severe hemophilia A (HA) using conventional genetic approaches. In these patients, deep intronic variation or F8 disrupting genomic rearrangement could be causal. OBJECTIVES: The study aimed to identify the causal variation in families with a history of severe HA for whom genetic investigations failed. METHODS: We performed whole F8 gene sequencing in 8 propositi. Genomic rearrangements were confirmed by Sanger sequencing of breakpoint junctions and/or quantitative polymerase chain reaction. RESULTS: A structural variant disrupting F8 was found in each propositus, so that all the 815 families with a history of severe HA registered in our laboratory received a conclusive genetic diagnosis. These structural variants consisted of 3 balanced inversions, 3 large insertions of gained regions, and 1 retrotransposition of a mobile element. The 3 inversions were 105 Mb, 1.97 Mb, and 0.362 Mb in size. Among the insertions of gained regions, one corresponded to the insertion of a 34 kb gained region from chromosome 6q27 in F8 intron 6, another was the insertion of a 447 kb duplicated region from chromosome 9p22.1 in F8 intron 14, and the last one was the insertion of an Xq28 349 kb gained in F8 intron 5. CONCLUSION: All the genetically unsolved cases of severe HA in this cohort were due to structural variants disrupting F8. This study highlights the effectiveness of whole F8 sequencing to improve the molecular diagnosis of HA when the conventional approach fails.


Subject(s)
Chromosome Inversion , Factor VIII , Hemophilia A , Introns , Phenotype , Humans , Hemophilia A/genetics , Hemophilia A/diagnosis , Factor VIII/genetics , Male , Genetic Predisposition to Disease , Severity of Illness Index , Pedigree , Chromosomes, Human, Pair 6/genetics , DNA Mutational Analysis , Chromosomes, Human, Pair 9/genetics , Sequence Analysis, DNA , Mutation , Female
5.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 41(3): 257-265, 2024 Mar 10.
Article in Chinese | MEDLINE | ID: mdl-38448011

ABSTRACT

OBJECTIVE: To assess the value of optical genome mapping (OGM) for the detection of chromosomal structural abnormalities including ring chromosomes, balanced translocations, and insertional translocations. METHODS: Clinical data of four patients who underwent pre-implantation genetic testing concurrently with OGM and chromosomal microarray analysis at the Center of Reproductive Medicine of the Sixth Affiliated Hospital of Sun Yat-sen University from January to October 2022 due to chromosomal structural abnormalities were selected as the study subjects. Some of the results were verified by multi-color fluorescence in situ hybridization. RESULTS: The OGM has successfully detected a balanced translocation and fine mapped the breakpoints in a patient. Among two patients with insertional translocations, OGM has provided more refined breakpoint locations than karyotyping analysis in a patient who had chromosome 3 inserted into chromosome 6 and determined the direction of the inserted fragment. However, OGM has failed to detect the chromosomal abnormality in a patient with chromosome 8 inserted into the Y chromosome. It has also failed to detect circular signals in a patient with ring chromosome mosaicism. CONCLUSION: OGM has successfully detected chromosomal structural variations in the four patients and provided assistance for their diagnosis.


Subject(s)
Chromosomes, Human, Pair 3 , Ring Chromosomes , Humans , In Situ Hybridization, Fluorescence , Chromosomes, Human, Pair 6 , Translocation, Genetic , Chromosome Mapping
6.
J Med Case Rep ; 18(1): 95, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38351155

ABSTRACT

BACKGROUND: Ependymomas are the third most common central nervous system tumor in the pediatric population; however, spinal ependymomas in children are rare. Ependymomas affecting the spinal cord most frequently occur in adults of 20-40 years of age. The current World Health Organization classification system for ependymomas is now composed of ten different entities based on histopathology, location, and molecular studies, with evidence that the new classification system more accurately predicts clinical outcomes. CASE PRESENTATION: We present the case of a 16-year-old Caucasian female patient with a history of type 2 neurofibromatosis with multiple schwannomas, meningioma, and spinal ependymoma. Chromosome analysis of the harvested spinal ependymoma tumor sample revealed a 46,XX,-6,+7,-22,+mar[16]/46,XX[4] karyotype. Subsequent OncoScan microarray analysis of the formalin-fixed paraffin-embedded tumor sample confirmed + 7, -22 and clarified that the marker chromosome represents chromothripsis of the entire chromosome 6 with more than 100 breakpoints. Fluorescent in situ hybridization and microarray analysis showed no evidence of MYCN amplification. The final integrated pathology diagnosis was spinal ependymoma (central nervous system World Health Organization grade 2 with no MYCN amplification. CONCLUSION: This case adds to the existing literature of pediatric patients with spinal ependymomas and expands the cytogenetic findings that may be seen in patients with this tumor type. This case also highlights the value of cytogenetics and microarray analysis in solid tumors to provide a more accurate molecular diagnosis.


Subject(s)
Chromothripsis , Ependymoma , Meningeal Neoplasms , Spinal Cord Neoplasms , Adult , Humans , Child , Female , Adolescent , Chromosomes, Human, Pair 6 , In Situ Hybridization, Fluorescence , Spinal Cord Neoplasms/diagnosis , Spinal Cord Neoplasms/genetics , Spinal Cord Neoplasms/pathology , Ependymoma/diagnosis , Ependymoma/genetics , Ependymoma/pathology
7.
Sci Rep ; 14(1): 1035, 2024 01 10.
Article in English | MEDLINE | ID: mdl-38200094

ABSTRACT

Aleutian disease (AD) is a multi-systemic infectious disease in American mink (Neogale vison) caused by Aleutian mink disease virus (AMDV). This study aimed to identify candidate regions and genes underlying selection for response against AMDV using whole-genome sequence (WGS) data. Three case-control selection signatures studies were conducted between animals (N = 85) producing high versus low antibody levels against AMDV, grouped by counter immunoelectrophoresis (CIEP) test and two enzyme-linked immunosorbent assays (ELISA). Within each study, selection signals were detected using fixation index (FST) and nucleotide diversity (θπ ratios), and validated by cross-population extended haplotype homozygosity (XP-EHH) test. Within- and between-studies overlapping results were then evaluated. Within-studies overlapping results indicated novel candidate genes related to immune and cellular responses (e.g., TAP2, RAB32), respiratory system function (e.g., SPEF2, R3HCC1L), and reproduction system function (e.g., HSF2, CFAP206) in other species. Between-studies overlapping results identified three large segments under strong selection pressure, including two on chromosome 1 (chr1:88,770-98,281 kb and chr1:114,133-120,473) and one on chromosome 6 (chr6:37,953-44,279 kb). Within regions with strong signals, we found novel candidate genes involved in immune and cellular responses (e.g., homologous MHC class II genes, ITPR3, VPS52) in other species. Our study brings new insights into candidate regions and genes controlling AD response.


Subject(s)
Aleutian Mink Disease Virus , Aleutian Mink Disease , Animals , Humans , Mink/genetics , Aleutian Mink Disease/genetics , Aleutian Mink Disease Virus/genetics , Chromosomes, Human, Pair 1 , Chromosomes, Human, Pair 6
8.
Pediatr Rheumatol Online J ; 22(1): 12, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-38183052

ABSTRACT

Haploinsufficiency of A20 (HA20) is a rare monogenic disease caused by heterozygous loss-of-function mutations in the tumor necrosis factor alpha-induced protein 3 (TNFAIP3) gene located on chromosome 6q23.3. The majority of disease-causing mutations in most cases of HA20 comprise single nucleotide variations, small insertions, or deletions in TNFAIP3, which result in a premature termination codon and subsequent disruption of its anti-inflammatory role. Large deletions have been reported sporadically. HA20 patients may present with a variety of autoinflammatory and autoimmune features during early childhood; however, cases with neonatal onset are rare. Here, we describe a Chinese neonate presenting with concomitant inflammatory and other syndromic manifestations caused by a 5.15 Mb interstitial deletion in chromosome 6; these deletions affect TNFAIP3. Taken together, the data extend the clinical and genetic spectra of HA20.


Subject(s)
Chromosomes, Human, Pair 6 , Haploinsufficiency , Sequence Deletion , Humans , Infant, Newborn , Asian People , Haploinsufficiency/genetics , Mutation , Rare Diseases , Chromosomes, Human, Pair 6/genetics
9.
J Hum Genet ; 69(1): 3-11, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37821671

ABSTRACT

Complex chromosomal rearrangements (CCRs) can result in spontaneous abortions, infertility, and malformations in newborns. In this study, we explored a familial CCR involving chromosome 6 by combining optical genomic mapping (OGM) and molecular cytogenetic methodologies. Within this family, the father and the paternal grandfather were both asymptomatic carriers of an identical balanced CCR, while the two offspring with an unbalanced paternal-origin CCR and two microdeletions presented with clinical manifestation. The first affected child, a 5-year-old boy, exhibited neurodevelopmental delay, while the second, a fetus, presented with hydrops fetalis. SNP-genotype analysis revealed a recombination event during gamete formation in the father that may have contributed to the deletion in his offspring. Meanwhile, the couple's haplotypes will facilitate the selection of normal gametes in the setting of assisted reproduction. Our study demonstrated the potential of OGM in identifying CCRs and its ability to work with current methodologies to refine precise breakpoints and construct accurate haplotypes for couples with a CCR.


Subject(s)
Chromosomes, Human, Pair 6 , Translocation, Genetic , Child, Preschool , Female , Humans , Infant, Newborn , Male , Pregnancy , Chromosome Aberrations , Chromosomes, Human, Pair 6/genetics , Cytogenetic Analysis , Genomics
10.
Sci Rep ; 13(1): 20820, 2023 11 27.
Article in English | MEDLINE | ID: mdl-38012279

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic has spread rapidly worldwide. To prevent its spread, mRNA-based vaccines made by Pfizer/BioNTech (BNT162b1) and Moderna (mRNA-1273) have been widely used, including in Japan. Various adverse events have been reported following the COVID-19 mRNA vaccination, with differences observed among individuals. However, analyses of the genetic background associated with the susceptibility to side effects have been limited. In the present study, we performed genome-wide association studies (GWAS) for self-reported adverse events of the COVID-19 mRNA vaccination in 4545 Japanese individuals and identified 14 associated loci. Among these, 6p21 was associated with 37.5 °C or higher fever, 38 °C or higher fever, and muscle pain. HLA allele association analysis revealed that various HLA alleles were associated with the adverse effects; HLA-DQA1*03:01 and HLA-A*11:01 were more reliably associated with the adverse effects. Our results may enable the preparation and management of adverse effects by identifying the susceptibility to these adverse events. Furthermore, we obtained valuable data that may lead to a better understanding of the mechanisms of action of the COVID-19 mRNA vaccines.


Subject(s)
COVID-19 Vaccines , COVID-19 , Chromosomes, Human, Pair 6 , East Asian People , Histocompatibility Antigens , Vaccination , Humans , BNT162 Vaccine , Chromosomes, Human, Pair 6/genetics , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , East Asian People/genetics , Genome-Wide Association Study , Histocompatibility Antigens/genetics , Internet , RNA, Messenger/genetics , Vaccination/adverse effects , Genetic Predisposition to Disease/ethnology , Genetic Predisposition to Disease/genetics
11.
Int J Mol Sci ; 24(17)2023 Sep 02.
Article in English | MEDLINE | ID: mdl-37686403

ABSTRACT

The GLABROUS1 Enhancer Binding Protein (GeBP) gene family is pivotal in regulating plant growth, development, and stress responses. However, the role of GeBP in Brassica rapa remains unclear. This study identifies 20 BrGeBP genes distributed across 6 chromosomes, categorized into 4 subfamilies. Analysis of their promoter sequences reveals multiple stress-related elements, including those responding to drought, low temperature, methyl jasmonate (MeJA), and gibberellin (GA). Gene expression profiling demonstrates wide expression of BrGeBPs in callus, stem, silique, and flower tissues. Notably, BrGeBP5 expression significantly decreases under low-temperature treatment, while BrGeBP3 and BrGeBP14 show increased expression during drought stress, followed by a decrease. Protein interaction predictions suggest that BrGeBP14 homolog, At5g28040, can interact with DES1, a known stress-regulating protein. Additionally, microRNA172 targeting BrGeBP5 is upregulated under cold tolerance. These findings underscore the vital role of BrGeBPs in abiotic stress tolerance. Specifically, BrGeBP3, BrGeBP5, and BrGeBP14 show great potential for regulating abiotic stress. This study contributes to understanding the function of BrGeBPs and provides valuable insights for studying abiotic stress in B. rapa.


Subject(s)
Brassica rapa , Droughts , Humans , Brassica rapa/genetics , Drought Resistance , Chromosomes, Human, Pair 6 , Cold Temperature , DNA-Binding Proteins
12.
PLoS One ; 18(8): e0286897, 2023.
Article in English | MEDLINE | ID: mdl-37624784

ABSTRACT

Anterior chamber depth (ACD) is a quantitative trait associated with primary angle closure glaucoma (PACG). Although ACD is highly heritable, known genetic variations explain a small fraction of the phenotypic variability. The purpose of this study was to identify additional ACD-influencing loci using strains of mice. Cohorts of 86 N2 and 111 F2 mice were generated from crosses between recombinant inbred BXD24/TyJ and wild-derived CAST/EiJ mice. Using anterior chamber optical coherence tomography, mice were phenotyped at 10-12 weeks of age, genotyped based on 93 genome-wide SNPs, and subjected to quantitative trait locus (QTL) analysis. In an analysis of ACD among all mice, six loci passed the significance threshold of p = 0.05 and persisted after multiple regression analysis. These were on chromosomes 6, 7, 11, 12, 15 and 17 (named Acdq6, Acdq7, Acdq11, Acdq12, Acdq15, and Acdq17, respectively). Our findings demonstrate a quantitative multi-genic pattern of ACD inheritance in mice and identify six previously unrecognized ACD-influencing loci. We have taken a unique approach to studying the anterior chamber depth phenotype by using mice as genetic tool to examine this continuously distributed trait.


Subject(s)
Anterior Chamber , Quantitative Trait Loci , Animals , Mice , Anterior Chamber/anatomy & histology , Anterior Chamber/physiology , Chromosomes, Human, Pair 6 , Genotype , Inheritance Patterns
13.
PLoS One ; 18(8): e0290450, 2023.
Article in English | MEDLINE | ID: mdl-37594968

ABSTRACT

Imprinted genes are regulated by DNA methylation of imprinted differentially methylated regions (iDMRs). An increasing number of patients with congenital imprinting disorders (IDs) exhibit aberrant methylation at multiple imprinted loci, multi-locus imprinting disturbance (MLID). We examined MLID and its possible impact on clinical features in patients with IDs. Genome-wide DNA methylation analysis (GWMA) using blood leukocyte DNA was performed on 13 patients with Beckwith-Wiedemann syndrome (BWS), two patients with Silver-Russell syndrome (SRS), and four controls. HumanMethylation850 BeadChip analysis for 77 iDMRs (809 CpG sites) identified three patients with BWS and one patient with SRS showing additional hypomethylation, other than the disease-related iDMRs, suggestive of MLID. Two regions were aberrantly methylated in at least two patients with BWS showing MLID: PPIEL locus (chromosome 1: 39559298 to 39559744), and FAM50B locus (chromosome 6: 3849096 to 3849469). All patients with BWS- and SRS-MLID did not show any other clinical characteristics associated with additional involved iDMRs. Exome analysis in three patients with BWS who exhibited multiple hypomethylation did not identify any causative variant related to MLID. This study indicates that a genome-wide approach can unravel MLID in patients with an apparently isolated ID. Patients with MLID showed only clinical features related to the original IDs. Long-term follow-up studies in larger cohorts are warranted to evaluate any possible phenotypic consequences of other disturbed imprinted loci.


Subject(s)
DNA Methylation , Genomic Imprinting , Humans , Exome , Chromosomes, Human, Pair 1 , Chromosomes, Human, Pair 6
14.
Transgenic Res ; 32(5): 487-496, 2023 10.
Article in English | MEDLINE | ID: mdl-37540410

ABSTRACT

ß1,3-galactose is the component of outer-chain elongation of complex N-glycans that, together with α1,4-fucose, forms Lewis a structures in plants. Previous studies have revealed that N-glycan maturation is mediated by sequential attachment of ß1,3-galactose and α1,4-fucose by individual ß1,3-galactosyltransferase (GalT) and α1,4-fucosyltransferase (1,4-FucT), respectively. Although GalT from several species has been studied, little information about GalT from rice is available. I therefore characterized three GalT candidate genes on different chromosomes in Oryza sativa. Seeds of rice lines that had T-DNA insertions in regions corresponding to individual putative GalT genes were obtained from a Rice Functional Genomic Express Database and plants grown until maturity. Homozygotes were selected from the next generation by genotyping PCR, and used for callus induction. Callus extracts of two independent T-DNA mutant rice which have T-DNA insertions at the same gene on chromosome 6 but in different exons showed highly reduced band intensity on a western blots using an anti-Lewis a antibody. Cell extracts and cultured media from suspension culture of the one of these mutant rice were further analysed by N-glycan profiling using matrix-associated laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF). Identified N-glycan species containing ß1,3-galactose from both cell extracts and cultured media of knock-out mutant were less than 0.5% of total N-glycans while that of WT cells were 9.8% and 49.1%, respectively. This suggests that GalT located on rice chromosome 6 plays a major role in N-glycan galactosylation, and mutations within it lead to blockage of Lewis a epitope formation.


Subject(s)
Oryza , Humans , Oryza/genetics , Chromosomes, Human, Pair 6 , Fucose , Galactose , Cell Extracts , Polysaccharides/genetics , Galactosyltransferases/genetics
15.
Altern Ther Health Med ; 29(7): 188-199, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37471662

ABSTRACT

Background: Uniparental disomy (UPD) is a well-known epigenomic anomaly characterized by the inheritance of both copies of a homologous pair of chromosomes (or part thereof) from the same parent. This genetic condition can have significant implications for prenatal diagnosis and management. Case Presentation: We present a case of a 29-year-old gravida 1 para 0 female who underwent amniocentesis at pregnancy Week 19 due to a high possibility of trisomy chromosome 6, as indicated by noninvasive prenatal testing (NIPT). However, fluorescence in situ hybridization (FISH) and whole-exome sequencing (WES) revealed no abnormalities. Subsequently, chromosomal microarray analysis (CMA) detected uniparental disomy of chromosome 6. Additionally, an ultrasound examination at 28 weeks of gestation revealed intrauterine growth restriction (IUGR). Given these findings, the parents made the decision to terminate the pregnancy. Conclusions: The combination of genetic counseling, FISH, karyotype analysis, WES, CMA, NIPT, and prenatal ultrasound can provide valuable insights for the prenatal diagnosis of UPD. These diagnostic approaches play a crucial role in identifying and managing cases of UPD, primarily when associated with intrauterine growth restrictions.


Subject(s)
Fetal Growth Retardation , Uniparental Disomy , Pregnancy , Humans , Female , Adult , Uniparental Disomy/diagnosis , Uniparental Disomy/genetics , Fetal Growth Retardation/diagnosis , Fetal Growth Retardation/genetics , In Situ Hybridization, Fluorescence , Chromosomes, Human, Pair 6 , Mosaicism , Trisomy
16.
Orphanet J Rare Dis ; 18(1): 59, 2023 03 19.
Article in English | MEDLINE | ID: mdl-36935482

ABSTRACT

BACKGROUND: Terminal 6q deletions are rare, and the number of well-defined published cases is limited. Since parents of children with these aberrations often search the internet and unite via international social media platforms, these dedicated platforms may hold valuable knowledge about additional cases. The Chromosome 6 Project is a collaboration between researchers and clinicians at the University Medical Center Groningen and members of a Chromosome 6 support group on Facebook. The aim of the project is to improve the surveillance of patients with chromosome 6 aberrations and the support for their families by increasing the available information about these rare aberrations. This parent-driven research project makes use of information collected directly from parents via a multilingual online questionnaire. Here, we report our findings on 93 individuals with terminal 6q deletions and 11 individuals with interstitial 6q26q27 deletions, a cohort that includes 38 newly identified individuals. RESULTS: Using this cohort, we can identify a common terminal 6q deletion phenotype that includes microcephaly, dysplastic outer ears, hypertelorism, vision problems, abnormal eye movements, dental abnormalities, feeding problems, recurrent infections, respiratory problems, spinal cord abnormalities, abnormal vertebrae, scoliosis, joint hypermobility, brain abnormalities (ventriculomegaly/hydrocephaly, corpus callosum abnormality and cortical dysplasia), seizures, hypotonia, ataxia, torticollis, balance problems, developmental delay, sleeping problems and hyperactivity. Other frequently reported clinical characteristics are congenital heart defects, kidney problems, abnormalities of the female genitalia, spina bifida, anal abnormalities, positional foot deformities, hypertonia and self-harming behaviour. The phenotypes were comparable up to a deletion size of 7.1 Mb, and most features could be attributed to the terminally located gene DLL1. Larger deletions that include QKI (> 7.1 Mb) lead to a more severe phenotype that includes additional clinical characteristics. CONCLUSIONS: Terminal 6q deletions cause a common but highly variable phenotype. Most clinical characteristics can be linked to the smallest terminal 6q deletions that include the gene DLL1 (> 500 kb). Based on our findings, we provide recommendations for clinical follow-up and surveillance of individuals with terminal 6q deletions.


Subject(s)
Abnormalities, Multiple , Nervous System Malformations , Social Media , Female , Humans , Abnormalities, Multiple/genetics , Chromosome Deletion , Chromosomes, Human, Pair 6 , Nervous System Malformations/genetics , Phenotype , Seizures/genetics
17.
Orphanet J Rare Dis ; 18(1): 60, 2023 03 19.
Article in English | MEDLINE | ID: mdl-36935495

ABSTRACT

BACKGROUND: Even with the introduction of new genetic techniques that enable accurate genomic characterization, knowledge about the phenotypic spectrum of rare chromosomal disorders is still limited, both in literature and existing databases. Yet this clinical information is of utmost importance for health professionals and the parents of children with rare diseases. Since existing databases are often hampered by the limited time and willingness of health professionals to input new data, we collected phenotype data directly from parents of children with a chromosome 6 disorder. These parents were reached via social media, and the information was collected via the online Chromosome 6 Questionnaire, which includes 115 main questions on congenital abnormalities, medical problems, behaviour, growth and development. METHODS: Here, we assess data consistency by comparing parent-reported phenotypes to phenotypes based on copies of medical files for the same individual (n = 20) and data availability by comparing the data available on specific characteristics reported by parents (n = 34) to data available in existing literature (n = 39). RESULTS: The reported answers to the main questions on phenotype characteristics were 85-95% consistent, and the consistency of answers to subsequent more detailed questions was 77-96%. For all but two main questions, significantly more data was collected from parents via the Chromosome 6 Questionnaire than was currently available in literature. For the topics developmental delay and brain abnormalities, no significant difference in the amount of available data was found. The only feature for which significantly more data was available in literature was a sub-question on the type of brain abnormality present. CONCLUSION: This is the first study to compare phenotype data collected directly from parents to data extracted from medical files on the same individuals. We found that the data was highly consistent, and phenotype data collected via the online Chromosome 6 Questionnaire resulted in more available information on most clinical characteristics when compared to phenotypes reported in literature reports thus far. We encourage active patient participation in rare disease research and have shown that parent-reported phenotypes are reliable and contribute to our knowledge of the phenotypic spectrum of rare chromosomal disorders.


Subject(s)
Brain Diseases , Chromosomes, Human, Pair 6 , Humans , Chromosome Aberrations , Research Design , Surveys and Questionnaires , Phenotype , Parents
18.
Orphanet J Rare Dis ; 18(1): 68, 2023 03 24.
Article in English | MEDLINE | ID: mdl-36964621

ABSTRACT

BACKGROUND: Terminal 6p deletions are rare, and information on their clinical consequences is scarce, which impedes optimal management and follow-up by clinicians. The parent-driven Chromosome 6 Project collaborates with families of affected children worldwide to better understand the clinical effects of chromosome 6 aberrations and to support clinical guidance. A microarray report is required for participation, and detailed phenotype information is collected directly from parents through a multilingual web-based questionnaire. Information collected from parents is then combined with case data from literature reports. Here, we present our findings on 13 newly identified patients and 46 literature cases with genotypically well-characterised terminal and subterminal 6p deletions. We provide phenotype descriptions for both the whole group and for subgroups based on deletion size and HI gene content. RESULTS: The total group shared a common phenotype characterised by ocular anterior segment dysgenesis, vision problems, brain malformations, congenital defects of the cardiac septa and valves, mild to moderate hearing impairment, eye movement abnormalities, hypotonia, mild developmental delay and dysmorphic features. These characteristics were observed in all subgroups where FOXC1 was included in the deletion, confirming a dominant role for this gene. Additional characteristics were seen in individuals with terminal deletions exceeding 4.02 Mb, namely complex heart defects, corpus callosum abnormalities, kidney abnormalities and orofacial clefting. Some of these additional features may be related to the loss of other genes in the terminal 6p region, such as RREB1 for the cardiac phenotypes and TUBB2A and TUBB2B for the cerebral phenotypes. In the newly identified patients, we observed previously unreported features including gastrointestinal problems, neurological abnormalities, balance problems and sleep disturbances. CONCLUSIONS: We present an overview of the phenotypic characteristics observed in terminal and subterminal 6p deletions. This reveals a common phenotype that can be highly attributable to haploinsufficiency of FOXC1, with a possible additional effect of other genes in the 6p25 region. We also delineate the developmental abilities of affected individuals and report on previously unrecognised features, showing the added benefit of collecting information directly from parents. Based on our overview, we provide recommendations for clinical surveillance to support clinicians, patients and families.


Subject(s)
Eye Abnormalities , Heart Defects, Congenital , Social Media , Humans , Phenotype , Chromosome Aberrations , Eye Abnormalities/genetics , Heart Defects, Congenital/genetics , Chromosome Deletion , Chromosomes, Human, Pair 6/genetics
19.
PLoS Genet ; 19(2): e1010633, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36735726

ABSTRACT

Centromeres in the legume genera Pisum and Lathyrus exhibit unique morphological characteristics, including extended primary constrictions and multiple separate domains of centromeric chromatin. These so-called metapolycentromeres resemble an intermediate form between monocentric and holocentric types, and therefore provide a great opportunity for studying the transitions between different types of centromere organizations. However, because of the exceedingly large and highly repetitive nature of metapolycentromeres, highly contiguous assemblies needed for these studies are lacking. Here, we report on the assembly and analysis of a 177.6 Mb region of pea (Pisum sativum) chromosome 6, including the 81.6 Mb centromere region (CEN6) and adjacent chromosome arms. Genes, DNA methylation profiles, and most of the repeats were uniformly distributed within the centromere, and their densities in CEN6 and chromosome arms were similar. The exception was an accumulation of satellite DNA in CEN6, where it formed multiple arrays up to 2 Mb in length. Centromeric chromatin, characterized by the presence of the CENH3 protein, was predominantly associated with arrays of three different satellite repeats; however, five other satellites present in CEN6 lacked CENH3. The presence of CENH3 chromatin was found to determine the spatial distribution of the respective satellites during the cell cycle. Finally, oligo-FISH painting experiments, performed using probes specifically designed to label the genomic regions corresponding to CEN6 in Pisum, Lathyrus, and Vicia species, revealed that metapolycentromeres evolved via the expansion of centromeric chromatin into neighboring chromosomal regions and the accumulation of novel satellite repeats. However, in some of these species, centromere evolution also involved chromosomal translocations and centromere repositioning.


Subject(s)
Chromosomes, Human, Pair 6 , Pisum sativum , Humans , Pisum sativum/genetics , Centromere/genetics , Chromatin/genetics , DNA, Satellite/genetics
20.
Leukemia ; 37(3): 636-649, 2023 03.
Article in English | MEDLINE | ID: mdl-36670235

ABSTRACT

A common problem in the study of human malignancy is the elucidation of cancer driver mechanisms associated with recurrent deletion of regions containing multiple genes. Taking B-cell acute lymphoblastic leukaemia (B-ALL) and large deletions of 6q [del(6q)] as a model, we integrated analysis of functional cDNA clone tracking assays with patient genomic and transcriptomic data, to identify the transcription factors FOXO3 and PRDM1 as candidate tumour suppressor genes (TSG). Analysis of cell cycle and transcriptomic changes following overexpression of FOXO3 or PRDM1 indicated that they co-operate to promote cell cycle exit at the pre-B cell stage. FOXO1 abnormalities are absent in B-ALL, but like FOXO3, FOXO1 expression suppressed growth of TCF3::PBX1 and ETV6::RUNX1 B-ALL in-vitro. While both FOXOs induced PRDM1 and other genes contributing to late pre-B cell development, FOXO1 alone induced the key transcription factor, IRF4, and chemokine, CXCR4. CRISPR-Cas9 screening identified FOXO3 as a TSG, while FOXO1 emerged as essential for B-ALL growth. We relate this FOXO3-specific leukaemia-protective role to suppression of glycolysis based on integrated analysis of CRISPR-data and gene sets induced or suppressed by FOXO1 and FOXO3. Pan-FOXO agonist Selinexor induced the glycolysis inhibitor TXNIP and suppressed B-ALL growth at low dose (ID50 < 50 nM).


Subject(s)
Forkhead Transcription Factors , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Humans , Forkhead Transcription Factors/metabolism , Forkhead Box Protein O3/genetics , Forkhead Box Protein O3/metabolism , Chromosomes, Human, Pair 6/metabolism , Gene Expression Regulation , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Positive Regulatory Domain I-Binding Factor 1/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...