Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.808
Filter
1.
Genome Biol ; 25(1): 144, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38822397

ABSTRACT

BACKGROUND: Variation in X chromosome inactivation (XCI) in human-induced pluripotent stem cells (hiPSCs) can impact their ability to model biological sex biases. The gene-wise landscape of X chromosome gene dosage remains unresolved in female hiPSCs. To characterize patterns of de-repression and escape from inactivation, we performed a systematic survey of allele specific expression in 165 female hiPSC lines. RESULTS: XCI erosion is non-random and primarily affects genes that escape XCI in human tissues. Individual genes and cell lines vary in the frequency and degree of de-repression. Bi-allelic expression increases gradually after modest decrease of XIST in cultures, whose loss is commonly used to mark lines with eroded XCI. We identify three clusters of female lines at different stages of XCI. Increased XCI erosion amplifies female-biased expression at hypomethylated sites and regions normally occupied by repressive histone marks, lowering male-biased differences in the X chromosome. In autosomes, erosion modifies sex differences in a dose-dependent way. Male-biased genes are enriched for hypermethylated regions, and de-repression of XIST-bound autosomal genes in female lines attenuates normal male-biased gene expression in eroded lines. XCI erosion can compensate for a dominant loss of function effect in several disease genes. CONCLUSIONS: We present a comprehensive view of X chromosome gene dosage in hiPSCs and implicate a direct mechanism for XCI erosion in regulating autosomal gene expression in trans. The uncommon and variable reactivation of X chromosome genes in female hiPSCs can provide insight into X chromosome's role in regulating gene expression and sex differences in humans.


Subject(s)
Chromosomes, Human, X , Induced Pluripotent Stem Cells , RNA, Long Noncoding , X Chromosome Inactivation , Humans , Induced Pluripotent Stem Cells/metabolism , Female , Chromosomes, Human, X/genetics , Male , RNA, Long Noncoding/genetics , Alleles , Gene Expression Regulation , DNA Methylation
2.
Birth Defects Res ; 116(5): e2349, 2024 May.
Article in English | MEDLINE | ID: mdl-38778782

ABSTRACT

BACKGROUND: To describe and conclude the in vitro fertilization (IVF) results of patients with X chromosome abnormality. METHODS: A retrospective case series was conducted. According to the number of normal X, patients were allocated into two groups: Group A (patients with only a normal X, while other X has any types of abnormalities) and Group B (patients have two or more normal X chromosomes). Clinical data, including basic information, fertility information, and IVF outcomes, were collected. RESULTS: Fourteen patients with X chromosome abnormality were included, among which 13 patients underwent a total of 29 cycles. Patients in Group B had five successful pregnancies and three live births, while no patient in Group A had a clinical pregnancy. Furthermore, the blastocyst formation rate and incidence of pregnancy were significantly lower in Group A (Z = -3.135, p = .002; Z = -2.946, p = .003, respectively). When controlled covariates, the karyotype of one normal X was also a risk factor for both blastocyst formation rate and success pregnancy (ß = .820, 95% confidence interval [CI] = 0.458-1.116, ß = .333, 95% CI = 0.017-0.494, respectively). CONCLUSIONS: Our results revealed that women with only one normal X might suffer from worse IVF outcomes, mainly blastocyst formation rate, compared with those who had two or more normal X, including mosaic Turner syndrome and 47,XXX.


Subject(s)
Chromosomes, Human, X , Fertilization in Vitro , Pregnancy Outcome , Humans , Female , Pregnancy , Fertilization in Vitro/methods , Adult , Chromosomes, Human, X/genetics , Retrospective Studies , Sex Chromosome Aberrations , Blastocyst/metabolism , Live Birth/genetics , Turner Syndrome/genetics , Pregnancy Rate
3.
Nat Commun ; 15(1): 3980, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38730231

ABSTRACT

Schizophrenia is a complex neuropsychiatric disorder with sexually dimorphic features, including differential symptomatology, drug responsiveness, and male incidence rate. Prior large-scale transcriptome analyses for sex differences in schizophrenia have focused on the prefrontal cortex. Analyzing BrainSeq Consortium data (caudate nucleus: n = 399, dorsolateral prefrontal cortex: n = 377, and hippocampus: n = 394), we identified 831 unique genes that exhibit sex differences across brain regions, enriched for immune-related pathways. We observed X-chromosome dosage reduction in the hippocampus of male individuals with schizophrenia. Our sex interaction model revealed 148 junctions dysregulated in a sex-specific manner in schizophrenia. Sex-specific schizophrenia analysis identified dozens of differentially expressed genes, notably enriched in immune-related pathways. Finally, our sex-interacting expression quantitative trait loci analysis revealed 704 unique genes, nine associated with schizophrenia risk. These findings emphasize the importance of sex-informed analysis of sexually dimorphic traits, inform personalized therapeutic strategies in schizophrenia, and highlight the need for increased female samples for schizophrenia analyses.


Subject(s)
Caudate Nucleus , Dorsolateral Prefrontal Cortex , Hippocampus , Quantitative Trait Loci , Schizophrenia , Sex Characteristics , Humans , Schizophrenia/genetics , Schizophrenia/metabolism , Female , Male , Hippocampus/metabolism , Caudate Nucleus/metabolism , Dorsolateral Prefrontal Cortex/metabolism , Adult , Transcriptome , Gene Expression Profiling , Sex Factors , Chromosomes, Human, X/genetics , Prefrontal Cortex/metabolism
4.
Genes (Basel) ; 15(5)2024 May 08.
Article in English | MEDLINE | ID: mdl-38790223

ABSTRACT

Rett Syndrome (RTT) is a severe neurodevelopmental disorder predominately diagnosed in females and primarily caused by pathogenic variants in the X-linked gene Methyl-CpG Binding Protein 2 (MECP2). Most often, the disease causing the MECP2 allele resides on the paternal X chromosome while a healthy copy is maintained on the maternal X chromosome with inactivation (XCI), resulting in mosaic expression of one allele in each cell. Preferential inactivation of the paternal X chromosome is theorized to result in reduced disease severity; however, establishing such a correlation is complicated by known MECP2 genotype effects and an age-dependent increase in severity. To mitigate these confounding factors, we developed an age- and genotype-normalized measure of RTT severity by modeling longitudinal data collected in the US Rett Syndrome Natural History Study. This model accurately reflected individual increase in severity with age and preserved group-level genotype specific differences in severity, allowing for the creation of a normalized clinical severity score. Applying this normalized score to a RTT XCI dataset revealed that XCI influence on disease severity depends on MECP2 genotype with a correlation between XCI and severity observed only in individuals with MECP2 variants associated with increased clinical severity. This normalized measure of RTT severity provides the opportunity for future discovery of additional factors contributing to disease severity that may be masked by age and genotype effects.


Subject(s)
Methyl-CpG-Binding Protein 2 , Rett Syndrome , Severity of Illness Index , X Chromosome Inactivation , Rett Syndrome/genetics , Rett Syndrome/pathology , X Chromosome Inactivation/genetics , Humans , Methyl-CpG-Binding Protein 2/genetics , Female , Child , Chromosomes, Human, X/genetics , Genotype , Child, Preschool , Adolescent , Adult , Male , Alleles , Young Adult
5.
Ital J Pediatr ; 50(1): 93, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38715086

ABSTRACT

BACKGROUND: we aim to discuss the origin and the differences of the phenotypic features and the management care of rare form of disorder of sex development due to Mosaic monosomy X and Y chromosome materiel. METHODS: We report our experience with patients harboring mosaic monosomy X and Y chromosome material diagnosed by blood cells karyotypes and cared for in our department from 2005 to 2022. RESULTS: We have included five infants in our study. The current average age was 8 years. In four cases, the diagnosis was still after born and it was at the age of 15 years in one case. Physical examination revealed a variable degree of virilization, ranging from a normal male phallus with unilateral ectopic gonad to ambiguous with a genital tubercle and bilateral not palpable gonads in four cases and normal female external genitalia in patient 5. Karyotype found 45, X/46, XY mosaicism in patient 1 and 2 and 45, X/46, X, der (Y) mosaicism in patient 3, 4 and 5. Three cases were assigned to male gender and two cases were assigned to female. After radiologic and histologic exploration, four patients had been explored by laparoscopy to perform gonadectomy in two cases and Mullerian derivative resection in the other. Urethroplasty was done in two cases of posterior hypospadias. Gender identity was concordant with the sex of assignment at birth in only 3 cases. CONCLUSION: Because of the phenotypic heterogeneity of this sexual disorders and the variability of its management care, then the decision should rely on a multidisciplinary team approach.


Subject(s)
Chromosomes, Human, Y , Mosaicism , Phenotype , Humans , Male , Female , Child , Adolescent , Chromosomes, Human, Y/genetics , Chromosomes, Human, X/genetics , Infant , Turner Syndrome/genetics , Turner Syndrome/therapy , Karyotyping , Monosomy/genetics , Child, Preschool , Disorders of Sex Development/genetics , Disorders of Sex Development/therapy , Disorders of Sex Development/diagnosis
6.
Cell Mol Life Sci ; 81(1): 194, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38653846

ABSTRACT

Sex chromosome aneuploidies are among the most common variations in human whole chromosome copy numbers, with an estimated prevalence in the general population of 1:400 to 1:1400 live births. Unlike whole-chromosome aneuploidies of autosomes, those of sex chromosomes, such as the 47, XXY aneuploidy that causes Klinefelter Syndrome (KS), often originate from the paternal side, caused by a lack of crossover (CO) formation between the X and Y chromosomes. COs must form between all chromosome pairs to pass meiotic checkpoints and are the product of meiotic recombination that occurs between homologous sequences of parental chromosomes. Recombination between male sex chromosomes is more challenging compared to both autosomes and sex chromosomes in females, as it is restricted within a short region of homology between X and Y, called the pseudo-autosomal region (PAR). However, in normal individuals, CO formation occurs in PAR with a higher frequency than in any other region, indicating the presence of mechanisms that promote the initiation and processing of recombination in each meiotic division. In recent years, research has made great strides in identifying genes and mechanisms that facilitate CO formation in the PAR. Here, we outline the most recent and relevant findings in this field. XY chromosome aneuploidy in humans has broad-reaching effects, contributing significantly also to Turner syndrome, spontaneous abortions, oligospermia, and even infertility. Thus, in the years to come, the identification of genes and mechanisms beyond XY aneuploidy is expected to have an impact on the genetic counseling of a wide number of families and adults affected by these disorders.


Subject(s)
Chromosome Pairing , Chromosome Segregation , Meiosis , Humans , Animals , Chromosome Pairing/genetics , Male , Meiosis/genetics , Mice , Chromosome Segregation/genetics , Female , Aneuploidy , Chromosomes, Human, X/genetics , Chromosomes, Human, Y/genetics , Sex Chromosomes/genetics , Crossing Over, Genetic/genetics
7.
BMC Pediatr ; 24(1): 263, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38649921

ABSTRACT

BACKGROUND: The diagnosis of supernumerary X & Y chromosome variations has increased following the implementation of genetic testing in pediatric practice. Empirical evidence suggests that the delivery of the diagnosis has a lasting impact on how affected individuals and their parents perceive and adapt to the diagnosis. The purpose of this review is to synthesize the literature to obtain useful recommendations for delivering a pediatric diagnosis of a sex chromosome multisomy (SCM) based upon a growing body of quantitative and qualitative literature on patient experiences. METHODS: We conducted an integrative literature review using PubMed, Web of Science and CINAHL employing keywords "genetic diagnosis delivery," "genetic diagnosis disclosure," "sex chromosome aneuploidy," "Klinefelter syndrome" or ""47, XXY," "Jacob syndrome" or "47, XYY," "Trisomy X," "Triple X" or "47, XXX," and "48 XXYY from January 1, 2000, to October 31, 2023. RESULTS: Literature supports that patients and parents value the provision of up-to-date information and connection with supportive resources. Discussion of next steps of care, including relevant referrals, prevents perceptions of provider abandonment and commitment to ongoing support. Proactively addressing special concerns such as disclosing the diagnosis to their child, family, and community is also beneficial. Tables are provided for useful information resources, medical specialties that may be required to support patients, and common misconceptions that interfere with accurate information about the diagnosis. CONCLUSION: Patient experiences suggest there should be heightened attention to diagnosis delivery, in reference to the broader ethical and social impacts of a SCM diagnosis. We present recommendations for optimal disclosure of a SCM diagnosis in early and late childhood, adolescence, and young adulthood.


Subject(s)
Genetic Testing , Humans , Child , Adolescent , Genetic Testing/methods , Young Adult , Sex Chromosome Aberrations , Male , Evidence-Based Medicine , Chromosomes, Human, X , Chromosomes, Human, Y/genetics , Parents
8.
BMC Genomics ; 25(1): 371, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38627676

ABSTRACT

BACKGROUND: X-chromosome inactivation (XCI) is an epigenetic process that occurs during early development in mammalian females by randomly silencing one of two copies of the X chromosome in each cell. The preferential inactivation of either the maternal or paternal copy of the X chromosome in a majority of cells results in a skewed or non-random pattern of X inactivation and is observed in over 25% of adult females. Identifying skewed X inactivation is of clinical significance in patients with suspected rare genetic diseases due to the possibility of biased expression of disease-causing genes present on the active X chromosome. The current clinical test for the detection of skewed XCI relies on the methylation status of the methylation-sensitive restriction enzyme (Hpall) binding site present in proximity of short tandem polymorphic repeats on the androgen receptor (AR) gene. This approach using one locus results in uninformative or inconclusive data for 10-20% of tests. Further, recent studies have shown inconsistency between methylation of the AR locus and the state of inactivation of the X chromosome. Herein, we develop a method for estimating X inactivation status, using exome and transcriptome sequencing data derived from blood in 227 female samples. We built a reference model for evaluation of XCI in 135 females from the GTEx consortium. We tested and validated the model on 11 female individuals with different types of undiagnosed rare genetic disorders who were clinically tested for X-skew using the AR gene assay and compared results to our outlier-based analysis technique. RESULTS: In comparison to the AR clinical test for identification of X inactivation, our method was concordant with the AR method in 9 samples, discordant in 1, and provided a measure of X inactivation in 1 sample with uninformative clinical results. We applied this method on an additional 81 females presenting to the clinic with phenotypes consistent with different hereditary disorders without a known genetic diagnosis. CONCLUSIONS: This study presents the use of transcriptome and exome sequencing data to provide an accurate and complete estimation of X-inactivation and skew status in a cohort of female patients with different types of suspected rare genetic disease.


Subject(s)
Exome , X Chromosome Inactivation , Adult , Humans , Female , Transcriptome , Exome Sequencing , Chromosomes, Human, X/genetics
9.
Nature ; 628(8008): 648-656, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38538789

ABSTRACT

Dynamically organized chromatin complexes often involve multiplex chromatin interactions and sometimes chromatin-associated RNA1-3. Chromatin complex compositions change during cellular differentiation and ageing, and are expected to be highly heterogeneous among terminally differentiated single cells4-7. Here we introduce the multinucleic acid interaction mapping in single cells (MUSIC) technique for concurrent profiling of multiplex chromatin interactions, gene expression and RNA-chromatin associations within individual nuclei. When applied to 14 human frontal cortex samples from older donors, MUSIC delineated diverse cortical cell types and states. We observed that nuclei exhibiting fewer short-range chromatin interactions were correlated with both an 'older' transcriptomic signature and Alzheimer's disease pathology. Furthermore, the cell type exhibiting chromatin contacts between cis expression quantitative trait loci and a promoter tends to be that in which these cis expression quantitative trait loci specifically affect the expression of their target gene. In addition, female cortical cells exhibit highly heterogeneous interactions between XIST non-coding RNA and chromosome X, along with diverse spatial organizations of the X chromosomes. MUSIC presents a potent tool for exploration of chromatin architecture and transcription at cellular resolution in complex tissues.


Subject(s)
Aging , Cell Nucleus , Chromatin , Frontal Lobe , RNA , Single-Cell Analysis , Aged , Female , Humans , Male , Aging/genetics , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Cell Nucleus/genetics , Cellular Senescence/genetics , Chromatin/genetics , Chromatin/metabolism , Chromosomes, Human, X/genetics , Chromosomes, Human, X/metabolism , Frontal Lobe/metabolism , Gene Expression Profiling/methods , Promoter Regions, Genetic , Quantitative Trait Loci , RNA/genetics , RNA/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Single-Cell Analysis/methods , Transcription, Genetic
10.
Sci Rep ; 14(1): 7369, 2024 03 28.
Article in English | MEDLINE | ID: mdl-38548827

ABSTRACT

Tandem repeat genetic profiles used in forensic applications varies between populations. Despite the diversity and security issues in the Sahel that require the identification of victims (soldiers and civilians), Burkina Faso (BF) remains understudied. To fill this information gap, 396 unrelated individuals from BF were genotyped using a MICROREADER 21 ID System kit. All 20 short tandem repeat (STR) loci tested passed the Hardy-Weinberg equilibrium (HWE) test. The combined powers of exclusion for duos (CPE duos) and trios (CPE trios) for the 20 tested loci were 0.9999998 and 0.9999307, respectively. The probability that two individuals would share the same DNA profiles among the BF population was 9.80898 × 10-26. For the X-chromosome STR analysis, 292 individuals were included in this study using a MICROREADER 19X Direct ID System kit. Among the 19 loci, no significant deviations from HWE test were observed in female samples after Bonferroni correction (p < 0.05/19 = 0.0026), except for loci GATA165B12 and DXS7423. The results showed that the combined power of exclusion (CPE) and the combined power of discrimination in females (CPDF) and males (CPDM) were 0.999999760893, 0.999999999992, and 1, respectively. Comparison with other African sub-populations showed that geographical proximity is a reliable indicator of genetic relatedness.


Subject(s)
Chromosomes, Human, X , Genetics, Population , Male , Humans , Female , Gene Frequency , Burkina Faso , Chromosomes, Human, X/genetics , Microsatellite Repeats/genetics , China
11.
Cell Mol Life Sci ; 81(1): 156, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38551746

ABSTRACT

X chromosome inactivation (XCI) is a process that equalizes the expression of X-linked genes between males and females. It relies on Xist, continuously expressed in somatic cells during XCI maintenance. However, how Xist impacts XCI maintenance and its functional motifs remain unclear. In this study, we conducted a comprehensive analysis of Xist, using rabbits as an ideal non-primate model. Homozygous knockout of exon 1, exon 6, and repeat A in female rabbits resulted in embryonic lethality. However, X∆ReAX females, with intact X chromosome expressing Xist, showed no abnormalities. Interestingly, there were no significant differences between females with homozygous knockout of exons 2-5 and wild-type rabbits, suggesting that exons 2, 3, 4, and 5 are less important for XCI. These findings provide evolutionary insights into Xist function.


Subject(s)
RNA, Long Noncoding , X Chromosome Inactivation , Humans , Male , Animals , Rabbits , Female , X Chromosome Inactivation/genetics , RNA, Long Noncoding/genetics , Chromosomes, Human, X , X Chromosome/genetics , Exons/genetics
12.
Front Endocrinol (Lausanne) ; 15: 1324160, 2024.
Article in English | MEDLINE | ID: mdl-38481442

ABSTRACT

Purpose: Analyze the relationship between changes in the proportion of X-chromosome deletions and clinical manifestations in children with Turner syndrome (TS). Methods: X-chromosome number abnormalities in 8,635 children with growth retardation were identified using fluorescence in situ hybridization (FISH). Meanwhile, the relationship between the proportion of X-chromosome deletions and the clinical manifestations of TS, such as face and body phenotype, cardiovascular, renal, and other comorbidities in children with TS was analyzed. Results: A total of 389 children had X-chromosome number abnormalities, with an average age at diagnosis of 9.2 years. There was a significant increase in diagnoses around the ages of 3 and 7 years and highest number of diagnoses at 10 years of age. 130 with XO (complete loss of an X-chromosome), 205 with XO/XX, 8 with XO/XXX, 23 with XO/XX/XXX, 19 with XO/XY, and 4 with XO/XY/XYY. Body and facial phenotypes increased with higher mosaicism proportions, with a relatively high correlation shown with Pearson correlation analysis (r = 0.26, p = 1.7e-06). The incidence of congenital heart malformations was 25.56%, mainly involving a bicuspid aortic valve, and were more common in patients who had complete loss of an X-chromosome. However, this relationship was not present for renal disease (p = 0.26), central nervous system, thyroid, or liver disease. Conclusion: The mosaicism (XO/XX) is the most common karyotype of TS in screened cases. The phenotypes in children with TS may increase with the proportion of X-chromosome deletions, but the renal disease and comorbidities did not show the same characteristics.


Subject(s)
Kidney Diseases , Turner Syndrome , Child , Humans , Turner Syndrome/complications , Turner Syndrome/epidemiology , Turner Syndrome/genetics , Chromosome Deletion , In Situ Hybridization, Fluorescence , Chromosomes, Human, X/genetics , Karyotyping , Kidney Diseases/genetics
13.
Lupus Sci Med ; 11(1)2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38458775

ABSTRACT

OBJECTIVES: X chromosome has been considered as a risk factor for SLE, which is a prototype of autoimmune diseases with a significant sex difference (female:male ratio is around 9:1). Our study aimed at exploring the association of genetic variants in X chromosome and investigating the influence of trisomy X in the development of SLE. METHODS: X chromosome-wide association studies were conducted using data from both Thai (835 patients with SLE and 2995 controls) and Chinese populations (1604 patients with SLE and 3324 controls). Association analyses were performed separately in females and males, followed by a meta-analysis of the sex-specific results. In addition, the dosage of X chromosome in females with SLE were also examined. RESULTS: Our analyses replicated the association of TMEM187-IRAK1-MECP2, TLR7, PRPS2 and GPR173 loci with SLE. We also identified two loci suggestively associated with SLE. In addition, making use of the difference in linkage disequilibrium between Thai and Chinese populations, a synonymous variant in TMEM187 was prioritised as a likely causal variant. This variant located in an active enhancer of immune-related cells, with the risk allele associated with decreased expression level of TMEM187. More importantly, we identified trisomy X (47,XXX) in 5 of 2231 (0.22%) females with SLE. The frequency is significantly higher than that found in the female controls (0.08%; two-sided exact binomial test P=0.002). CONCLUSION: Our study confirmed previous SLE associations in X chromosome, and identified two loci suggestively associated with SLE. More importantly, our study indicated a higher risk of SLE for females with trisomy X.


Subject(s)
Lupus Erythematosus, Systemic , Sex Chromosome Disorders of Sex Development , Trisomy , Humans , Male , Female , Lupus Erythematosus, Systemic/epidemiology , Lupus Erythematosus, Systemic/genetics , Genetic Predisposition to Disease , Thailand/epidemiology , Sex Chromosome Aberrations , Chromosomes, Human, X/genetics , China , Membrane Proteins
14.
Genetics ; 226(4)2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38366786

ABSTRACT

The X chromosome, being hemizygous in males, is exposed one-third of the time increasing the visibility of new mutations to natural selection, potentially leading to different evolutionary dynamics than autosomes. Recently, we found an enrichment of hard selective sweeps over soft selective sweeps on the X chromosome relative to the autosomes in a North American population of Drosophila melanogaster. To understand whether this enrichment is a universal feature of evolution on the X chromosome, we analyze diversity patterns across 6 commonly studied Drosophila species. We find an increased proportion of regions with steep reductions in diversity and elevated homozygosity on the X chromosome compared to autosomes. To assess if these signatures are consistent with positive selection, we simulate a wide variety of evolutionary scenarios spanning variations in demography, mutation rate, recombination rate, background selection, hard sweeps, and soft sweeps and find that the diversity patterns observed on the X are most consistent with hard sweeps. Our findings highlight the importance of sex chromosomes in driving evolutionary processes and suggest that hard sweeps have played a significant role in shaping diversity patterns on the X chromosome across multiple Drosophila species.


Subject(s)
Drosophila melanogaster , Drosophila , Humans , Male , Animals , Drosophila/genetics , Drosophila melanogaster/genetics , Evolution, Molecular , X Chromosome/genetics , Selection, Genetic , Chromosomes, Human, X
15.
J Neurodev Disord ; 16(1): 5, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38424476

ABSTRACT

X-linked genetic causes of intellectual disability (ID) account for a substantial proportion of cases and remain poorly understood, in part due to the heterogeneous expression of X-linked genes in females. This is because most genes on the X chromosome are subject to random X chromosome inactivation (XCI) during early embryonic development, which results in a mosaic pattern of gene expression for a given X-linked mutant allele. This mosaic expression produces substantial complexity, especially when attempting to study the already complicated neural circuits that underly behavior, thus impeding the understanding of disease-related pathophysiology and the development of therapeutics. Here, we review a few selected X-linked forms of ID that predominantly affect heterozygous females and the current obstacles for developing effective therapies for such disorders. We also propose a genetic strategy to overcome the complexity presented by mosaicism in heterozygous females and highlight specific tools for studying synaptic and circuit mechanisms, many of which could be shared across multiple forms of intellectual disability.


Subject(s)
Intellectual Disability , Female , Humans , Pregnancy , Chromosomes, Human, X , Genes, X-Linked/genetics , Intellectual Disability/genetics , Mosaicism , X Chromosome Inactivation/genetics
16.
J Appl Genet ; 65(2): 395-398, 2024 May.
Article in English | MEDLINE | ID: mdl-38368284

ABSTRACT

A 9-year-old Thoroughbred mare with normal external genitalia and regular oestrus symptoms was gynecologically examined prior to insemination. This primary examination revealed the presence of a hypoplastic uterus and the lack of normal ovaries, and the mare was therefore subjected to more detailed diagnostics, including endocrinological, genetic, and clinical tests. Diagnostic imaging with the use of ultrasonography and endoscopy confirmed the underdevelopment of internal genitalia. Analysis of circulating sex hormones revealed very low concentrations of progesterone and oestradiol. Finally, cytogenetic analysis showed the presence of non-mosaic X trisomy (65,XXX), an aneuploidy of sex chromosomes that is rarely detected in horses. This finding was also confirmed by molecular methods, including highly sensitive droplet digital PCR (ddPCR) and microsatellite markers genotyping. Our study reveals the need for gynaecological and genetic evaluation of broodmares, even if their phenotype (including developed external genitalia and oestrus symptoms) shows no signs of potential abnormalities.


Subject(s)
Sex Chromosome Aberrations , Sex Chromosome Disorders of Sex Development , Trisomy , Animals , Female , Chromosomes, Human, X , Cytogenetic Analysis , Horses/genetics , Sex Chromosome Aberrations/veterinary , Trisomy/genetics
18.
Leg Med (Tokyo) ; 68: 102416, 2024 May.
Article in English | MEDLINE | ID: mdl-38325234

ABSTRACT

X-chromosome short tandem repeats (X-STRs) are useful for human identification, especially in complex kinship scenarios. Since forensic statistical parameters vary among populations and the X-STRs population data for the diverse population of Peninsular Malaysia's are unavailable, this attempt for Indians (n = 201) appears forensically relevant to support the 12 X-STRs markers' evidential value for human identification in Malaysia. The Qiagen Investigator® Argus X-12 QS kit showed that DXS10135 was the most polymorphic locus with high genetic diversity, polymorphism information richness, heterozygosity, and exclusion power. Based on allele frequencies, the strength of discrimination and mean exclusion chance (MECKrüger, MECKishida, MECDesmarais, and MECDesmaraisDuo) values for the Malaysian Indians were ≥0.999997790686228. As for haplotype frequencies, the overall discrimination power and mean exclusion probability (MECKrüger, MECKishida, MECDesmarais, and MECDesmaraisDuo) were ≥0.9999984801951. The genetic distance, neighbor-joining phylogenetic tree, and principal component analysis also supported the evidential value of the 12 X-STRs markers for forensic practical caseworks in Malaysia.


Subject(s)
Chromosomes, Human, X , Gene Frequency , Genetic Variation , Microsatellite Repeats , Humans , Malaysia , Microsatellite Repeats/genetics , Chromosomes, Human, X/genetics , Genetics, Population/methods , Forensic Genetics/methods , India , Genetic Markers , DNA Fingerprinting/methods , Male , Haplotypes , Female , Polymorphism, Genetic
19.
Nat Commun ; 15(1): 1165, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38326311

ABSTRACT

The t(X,17) chromosomal translocation, generating the ASPSCR1::TFE3 fusion oncoprotein, is the singular genetic driver of alveolar soft part sarcoma (ASPS) and some Xp11-rearranged renal cell carcinomas (RCCs), frustrating efforts to identify therapeutic targets for these rare cancers. Here, proteomic analysis identifies VCP/p97, an AAA+ ATPase with known segregase function, as strongly enriched in co-immunoprecipitated nuclear complexes with ASPSCR1::TFE3. We demonstrate that VCP is a likely obligate co-factor of ASPSCR1::TFE3, one of the only such fusion oncoprotein co-factors identified in cancer biology. Specifically, VCP co-distributes with ASPSCR1::TFE3 across chromatin in association with enhancers genome-wide. VCP presence, its hexameric assembly, and its enzymatic function orchestrate the oncogenic transcriptional signature of ASPSCR1::TFE3, by facilitating assembly of higher-order chromatin conformation structures demonstrated by HiChIP. Finally, ASPSCR1::TFE3 and VCP demonstrate co-dependence for cancer cell proliferation and tumorigenesis in vitro and in ASPS and RCC mouse models, underscoring VCP's potential as a novel therapeutic target.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Animals , Mice , Humans , Proteomics , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/pathology , Translocation, Genetic , Oncogene Proteins, Fusion/genetics , Oncogene Proteins, Fusion/metabolism , Kidney Neoplasms/genetics , Chromatin/genetics , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Chromosomes, Human, X/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Valosin Containing Protein/genetics
20.
Mol Biol Evol ; 41(2)2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38306314

ABSTRACT

Allele-specific gene expression evolves rapidly on heteromorphic sex chromosomes. Over time, the accumulation of mutations on the Y chromosome leads to widespread loss of gametolog expression, relative to the X chromosome. It remains unclear if expression evolution on degrading Y chromosomes is primarily driven by mutations that accumulate through processes of selective interference, or if positive selection can also favor the down-regulation of coding regions on the Y chromosome that contain deleterious mutations. Identifying the relative rates of cis-regulatory sequence evolution across Y chromosomes has been challenging due to the limited number of reference assemblies. The threespine stickleback (Gasterosteus aculeatus) Y chromosome is an excellent model to identify how regulatory mutations accumulate on Y chromosomes due to its intermediate state of divergence from the X chromosome. A large number of Y-linked gametologs still exist across 3 differently aged evolutionary strata to test these hypotheses. We found that putative enhancer regions on the Y chromosome exhibited elevated substitution rates and decreased polymorphism when compared to nonfunctional sites, like intergenic regions and synonymous sites. This suggests that many cis-regulatory regions are under positive selection on the Y chromosome. This divergence was correlated with X-biased gametolog expression, indicating the loss of expression from the Y chromosome may be favored by selection. Our findings provide evidence that Y-linked cis-regulatory regions exhibit signs of positive selection quickly after the suppression of recombination and allow comparisons with recent theoretical models that suggest the rapid divergence of regulatory regions may be favored to mask deleterious mutations on the Y chromosome.


Subject(s)
Evolution, Molecular , Smegmamorpha , Humans , Animals , Y Chromosome/genetics , Sex Chromosomes , Chromosomes, Human, Y , Chromosomes, Human, X , Smegmamorpha/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...