Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 9.663
Filter
1.
Sci Data ; 11(1): 577, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38834611

ABSTRACT

Solanum pimpinellifolium, the closest wild relative of the domesticated tomato, has high potential for use in breeding programs aimed at developing multi-pathogen resistance and quality improvement. We generated a chromosome-level genome assembly of S. pimpinellifolium LA1589, with a size of 833 Mb and a contig N50 of 31 Mb. We anchored 98.80% of the contigs into 12 pseudo-chromosomes, and identified 74.47% of the sequences as repetitive sequences. The genome evaluation revealed BUSCO and LAI score of 98.3% and 14.49, respectively, indicating high quality of this assembly. A total of 41,449 protein-coding genes were predicted in the genome, of which 89.17% were functionally annotated. This high-quality genome assembly serves as a valuable resource for accelerating the biological discovery and molecular breeding of this important horticultural crop.


Subject(s)
Chromosomes, Plant , Genome, Plant , Solanum , Solanum/genetics , Molecular Sequence Annotation
2.
Sci Rep ; 14(1): 12816, 2024 06 04.
Article in English | MEDLINE | ID: mdl-38834653

ABSTRACT

Previous studies showed that Australian wheat cultivars Janz and Sunco carry leaf rust and stem rust resistance genes Lr24 and Sr24 derived from Thinopyrum ponticum chromosome arm 3AgL. However, the size of the alien segments carrying Lr24 and Sr24 in the lines were not determined. In this study, we used non-denaturing fluorescence in situ hybridization (ND-FISH), genomic in situ hybridization (GISH), and PCR-based landmark unique gene (PLUG) markers to visualize the alien segments in Janz and Sunco, and further compared them with the segments in US cultivars Agent and Amigo. The fraction length (FL) of the alien translocation in Agent was 0.70-1.00, whereas those in Janz, Sunco, and Amigo were smaller, at FL 0.85-1.00. It was deduced that the alien gene RAg encoding for red grain color and rust resistance genes Lr24 and Sr24 on chromosome arm 3AgL were in bins of FL 0.70-0.85 and 0.85-1.00, respectively. We retrieved and extracted nucleotide-binding site-leucine-rich repeat (NBS-LRR) receptor genes corresponding to the region of Lr24 and Sr24 on chromosomes 3E, and 3J, 3Js and 3St from the reference genome sequences of Th. elongatum and Th. intermedium, respectively. A set of molecular markers developed for Lr24 and Sr24 from those extracted NBS-LRR genes will provide valuable information for fine mapping and cloning of these genes.


Subject(s)
Chromosomes, Plant , Disease Resistance , Genes, Plant , Plant Diseases , Triticum , Triticum/genetics , Triticum/microbiology , Disease Resistance/genetics , Plant Diseases/microbiology , Plant Diseases/genetics , Chromosomes, Plant/genetics , In Situ Hybridization, Fluorescence , Basidiomycota , Chromosome Mapping
3.
Theor Appl Genet ; 137(7): 147, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38834870

ABSTRACT

KEY MESSAGE: Major QTL for grain number per spike were identified on chromosomes 2B and 2D. Haplotypes and candidate genes of QGns.cib-2B.1 were analyzed. Grain number per spike (GNS) is one of the main components of wheat yield. Genetic dissection of their regulatory factors is essential to improve the yield potential. In present study, a recombinant inbred line population comprising 180 lines developed from the cross between a high GNS line W7268 and a cultivar Chuanyu12 was employed to identify quantitative trait loci (QTL) associated with GNS across six environments. Two major QTL, QGns.cib-2B.1 and QGns.cib-2D.1, were detected in at least four environments with the phenotypic variations of 12.99-27.07% and 8.50-13.79%, respectively. And significant interactions were observed between the two major QTL. In addition, QGns.cib-2B.1 is a QTL cluster for GNS, grain number per spikelet and fertile tiller number, and they were validated in different genetic backgrounds using Kompetitive Allele Specific PCR (KASP) markers. QGns.cib-2B.1 showed pleotropic effects on other yield-related traits including plant height, spike length, and spikelet number per spike, but did not significantly affect thousand grain weight which suggested that it might be potentially applicable in breeding program. Comparison analysis suggested that QGns.cib-2B.1 might be a novel QTL. Furthermore, haplotype analysis of QGns.cib-2B.1 indicated that it is a hot spot of artificial selection during wheat improvement. Based on the expression patterns, gene annotation, orthologs analysis and sequence variations, the candidate genes of QGns.cib-2B.1 were predicted. Collectively, the major QTL and KASP markers reported here provided a wealth of information for the genetic basis of GNS and grain yield improvement.


Subject(s)
Chromosome Mapping , Chromosomes, Plant , Haplotypes , Phenotype , Quantitative Trait Loci , Triticum , Triticum/genetics , Triticum/growth & development , Chromosomes, Plant/genetics , Chromosome Mapping/methods , Genetic Markers , Edible Grain/genetics , Edible Grain/growth & development , Seeds/growth & development , Seeds/genetics , Plant Breeding , Alleles , Genes, Plant
4.
Planta ; 260(1): 17, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38834908

ABSTRACT

MAIN CONCLUSION: Wheat lines harboring wild-relative chromosomes can be karyotypically unstable during long-term maintenance. Tissue culture exacerbates chromosomal instability but appears inefficient to induce somatic homoeologous exchange between alien and wheat chromosomes. We assessed if long-term refrigerator storage with regular renewal via self-fertilization, a widely used practice for crop germplasm maintenance, would ensure genetic fidelity of alien addition lines, and explored the possibility of inducing somatic homoeologues exchange by tissue culture. We cytogenetically characterized sampled stock seeds of originally confirmed 12 distinct wheat-Thinopyrum intermedium alien addition lines (dubbed TAI lines), and subjected immature embryos of the TAI lines to tissue culture. We find eight of the 12 TAI lines were karyotypically departed from their original identity as bona fide disomic alien addition lines due to extensive loss of whole-chromosomes of both Th. intermedium and wheat origins during the ca. 3-decade storage. Rampant numerical chromosome variations (NCVs) involving both alien and wheat chromosomes were detected in regenerated plants of all 12 studied TAI lines, but at variable rates among the wheat sub-genomes and chromosomes. Compared with NCVs, structural chromosome variations (SCVs) occurred at substantially lower rates, and no SCV involving the added alien chromosomes was observed. The NCVs manifested only moderate effects on phenotypes of the regenerated plants under field conditions.


Subject(s)
Chromosomal Instability , Chromosomes, Plant , Tissue Culture Techniques , Triticum , Triticum/genetics , Triticum/growth & development , Chromosomes, Plant/genetics , Seeds/genetics , Seeds/growth & development , Poaceae/genetics , Poaceae/physiology , Karyotype , Karyotyping
5.
Theor Appl Genet ; 137(7): 148, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38836887

ABSTRACT

KEY MESSAGE: Three stable QTL for grain zinc concentration were identified in wheat landrace Chinese Spring. Favorable alleles were more frequent in landraces than in modern wheat cultivars. Wheat is a major source of dietary energy for the growing world population. Developing cultivars with enriched zinc and iron can potentially alleviate human micronutrient deficiency. In this study, a recombinant inbred line (RIL) population with 245 lines derived from cross Zhou 8425B/Chinese Spring was used to detect quantitative trait loci (QTL) for grain zinc concentration (GZnC) and grain iron concentration (GFeC) across four environments. Three stable QTL for GZnC with all favorable alleles from Chinese Spring were identified on chromosomes 3BL, 5AL, and 5BL. These QTL explaining maxima of 8.7%, 5.8%, and 7.1% of phenotypic variances were validated in 125 resequenced wheat accessions encompassing both landraces and modern cultivars using six kompetitive allele specific PCR (KASP) assays. The frequencies of favorable alleles for QGZnCzc.caas-3BL, QGZnCzc.caas-5AL and QGZnCzc.caas-5BL were higher in landraces (90.4%, 68.0%, and 100.0%, respectively) compared to modern cultivars (45.9%, 35.4%, and 40.9%), suggesting they were not selected in breeding programs. Candidate gene association studies on GZnC in the cultivar panel further delimited the QTL into 8.5 Mb, 4.1 Mb, and 47.8 Mb regions containing 46, 4, and 199 candidate genes, respectively. The 5BL QTL located in a region where recombination was suppressed. Two stable and three less stable QTL for GFeC with favorable alleles also from Chinese Spring were identified on chromosomes 4BS (Rht-B1a), 4DS (Rht-D1a), 1DS, 3AS, and 6DS. This study sheds light on the genetic basis of GZnC and GFeC in Chinese Spring and provides useful molecular markers for wheat biofortification.


Subject(s)
Alleles , Chromosome Mapping , Iron , Phenotype , Quantitative Trait Loci , Triticum , Zinc , Triticum/genetics , Zinc/metabolism , Iron/metabolism , Edible Grain/genetics , Chromosomes, Plant/genetics , Seeds/genetics , Seeds/chemistry , Genotype
6.
Sci Rep ; 14(1): 13083, 2024 06 07.
Article in English | MEDLINE | ID: mdl-38844568

ABSTRACT

In bread wheat, a literature search gave 228 QTLs for six traits, including resistance against spot blotch and the following five other related traits: (i) stay green; (ii) flag leaf senescence; (iii) green leaf area duration; (iv) green leaf area of the main stem; and (v) black point resistance. These QTLs were used for metaQTL (MQTL) analysis. For this purpose, a consensus map with 72,788 markers was prepared; 69 of the above 228 QTLs, which were suitable for MQTL analysis, were projected on the consensus map. This exercise resulted in the identification of 16 meta-QTLs (MQTLs) located on 11 chromosomes, with the PVE ranging from 5.4% (MQTL7) to 21.8% (MQTL5), and the confidence intervals ranging from 1.5 to 20.7 cM (except five MQTLs with a range of 36.1-57.8 cM). The number of QTLs associated with individual MQTLs ranged from a maximum of 17 in MQTL3 to 8 each in MQTL5 and MQTL8 and 5 each in MQTL7 and MQTL14. The 16 MQTLs, included 12 multi-trait MQTLs; one of the MQTL also overlapped a genomic region carrying the major spot blotch resistance gene Sb1. Of the total 16 MQTLs, 12 MQTLs were also validated through marker-trait associations that were available from earlier genome-wide association studies. The genomic regions associated with MQTLs were also used for the identification of candidate genes (CGs) and led to the identification of 516 CGs encoding 508 proteins; 411 of these proteins are known to be associated with resistance against several biotic stresses. In silico expression analysis of CGs using transcriptome data allowed the identification of 71 differentially expressed CGs, which were examined for further possible studies. The findings of the present study should facilitate fine-mapping and cloning of genes, enabling Marker Assisted Selection.


Subject(s)
Chromosome Mapping , Disease Resistance , Plant Diseases , Quantitative Trait Loci , Triticum , Triticum/genetics , Triticum/microbiology , Disease Resistance/genetics , Plant Diseases/genetics , Plant Diseases/microbiology , Chromosomes, Plant/genetics , Genes, Plant , Phenotype , Bread
7.
Gigascience ; 132024 Jan 02.
Article in English | MEDLINE | ID: mdl-38837946

ABSTRACT

BACKGROUND: Theobroma grandiflorum (Malvaceae), known as cupuassu, is a tree indigenous to the Amazon basin, valued for its large fruits and seed pulp, contributing notably to the Amazonian bioeconomy. The seed pulp is utilized in desserts and beverages, and its seed butter is used in cosmetics. Here, we present the sequenced telomere-to-telomere genome of cupuassu, disclosing its genomic structure, evolutionary features, and phylogenetic relationships within the Malvaceae family. FINDINGS: The cupuassu genome spans 423 Mb, encodes 31,381 genes distributed in 10 chromosomes, and exhibits approximately 65% gene synteny with the Theobroma cacao genome, reflecting a conserved evolutionary history, albeit punctuated with unique genomic variations. The main changes are pronounced by bursts of long-terminal repeat retrotransposons at postspecies divergence, retrocopied and singleton genes, and gene families displaying distinctive patterns of expansion and contraction. Furthermore, positively selected genes are evident, particularly among retained and dispersed tandem and proximal duplicated genes associated with general fruit and seed traits and defense mechanisms, supporting the hypothesis of potential episodes of subfunctionalization and neofunctionalization following duplication, as well as impact from distinct domestication process. These genomic variations may underpin the differences observed in fruit and seed morphology, ripening, and disease resistance between cupuassu and the other Malvaceae species. CONCLUSIONS: The cupuassu genome offers a foundational resource for both breeding improvement and conservation biology, yielding insights into the evolution and diversity within the genus Theobroma.


Subject(s)
Evolution, Molecular , Genome, Plant , Phylogeny , Chromosomes, Plant , Genomics/methods , Malvaceae/genetics
8.
Sci Data ; 11(1): 589, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38839803

ABSTRACT

Ehretia macrophylla Wall, known as wild loquat, is an ecologically, economically, and medicinally significant tree species widely grown in China, Japan, Vietnam, and Nepal. In this study, we have successfully generated a haplotype-resolved chromosome-scale genome assembly of E. macrophylla by integrating PacBio HiFi long-reads, Illumina short-reads, and Hi-C data. The genome assembly consists of two haplotypes, with sizes of 1.82 Gb and 1.58 Gb respectively, and contig N50 lengths of 28.11 Mb and 21.57 Mb correspondingly. Additionally, 99.41% of the assembly was successfully anchored into 40 pseudo-chromosomes. We predicted 58,886 protein-coding genes, of which 99.60% were functionally annotated from databases. We furthermore detected 2.65 Gb repeat sequences, 659,290 rRNAs, 4,931 tRNAs and 4,688 other ncRNAs. The high-quality assembly of the genome offers a solid basis for furthering the fields of molecular breeding and functional genomics of E. macrophylla.


Subject(s)
Boraginaceae , Genome, Plant , Haplotypes , Chromosomes, Plant , Boraginaceae/genetics
9.
BMC Genomics ; 25(1): 567, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38840073

ABSTRACT

BACKGROUND: The auxin/indole-3-acetic acid (Aux/IAA) gene family is a crucial element of the auxin signaling pathway, significantly influencing plant growth and development. Hence, we conducted a comprehensive investigation of Aux/IAAs gene family using the Sp75 and Monoe-Viroflay genomes in spinach. RESULTS: A total of 24 definitive Aux/IAA genes were identified, exhibiting diverse attributes in terms of amino acid length, molecular weight, and isoelectric points. This diversity underscores potential specific roles within the family, such as growth regulation and stress response. Structural analysis revealed significant variations in gene length and molecular weight. These variations indicate distinct roles within the Aux/IAA gene family. Chromosomal distribution analysis exhibited a dispersed pattern, with chromosomes 4 and 1 hosting the highest and lowest numbers of Aux/IAA genes, respectively. Phylogenetic analysis grouped the identified genes into distinct clades, revealing potential evolutionary relationships. Notably, the phylogenetic tree highlighted specific gene clusters suggesting shared genetic ancestry and potential functional synergies within spinach. Expression analysis under NAA treatment unveiled gene-specific and time-dependent responses, with certain genes exhibiting distinct temporal expression patterns. Specifically, SpoIAA5 displayed a substantial increase at 2 h post-NAA treatment, while SpoIAA7 and SpoIAA9 demonstrated continuous rises, peaking at the 4-hour time point. CONCLUSIONS: These observations indicate a complex interplay of gene-specific and temporal regulation in response to auxin. Moreover, the comparison with other plant species emphasized both shared characteristics and unique features in Aux/IAA gene numbers, providing insights into the evolutionary dynamics of this gene family. This comprehensive characterization of Aux/IAA genes in spinach not only establishes the foundation for understanding their specific functions in spinach development but also provides a valuable resource for experimental validation and further exploration of their roles in the intricate network of auxin signaling pathways.


Subject(s)
Gene Expression Profiling , Gene Expression Regulation, Plant , Indoleacetic Acids , Multigene Family , Phylogeny , Spinacia oleracea , Spinacia oleracea/genetics , Spinacia oleracea/metabolism , Indoleacetic Acids/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Genome, Plant , Chromosomes, Plant/genetics , Evolution, Molecular
10.
Proc Natl Acad Sci U S A ; 121(24): e2319679121, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38830106

ABSTRACT

Whole-genome duplication (WGD; i.e., polyploidy) and chromosomal rearrangement (i.e., genome shuffling) significantly influence genome structure and organization. Many polyploids show extensive genome shuffling relative to their pre-WGD ancestors. No reference genome is currently available for Platanaceae (Proteales), one of the sister groups to the core eudicots. Moreover, Platanus × acerifolia (London planetree; Platanaceae) is a widely used street tree. Given the pivotal phylogenetic position of Platanus and its 2-y flowering transition, understanding its flowering-time regulatory mechanism has significant evolutionary implications; however, the impact of Platanus genome evolution on flowering-time genes remains unknown. Here, we assembled a high-quality, chromosome-level reference genome for P. × acerifolia using a phylogeny-based subgenome phasing method. Comparative genomic analyses revealed that P. × acerifolia (2n = 42) is an ancient hexaploid with three subgenomes resulting from two sequential WGD events; Platanus does not seem to share any WGD with other Proteales or with core eudicots. Each P. × acerifolia subgenome is highly similar in structure and content to the reconstructed pre-WGD ancestral eudicot genome without chromosomal rearrangements. The P. × acerifolia genome exhibits karyotypic stasis and gene sub-/neo-functionalization and lacks subgenome dominance. The copy number of flowering-time genes in P. × acerifolia has undergone an expansion compared to other noncore eudicots, mainly via the WGD events. Sub-/neo-functionalization of duplicated genes provided the genetic basis underlying the unique flowering-time regulation in P. × acerifolia. The P. × acerifolia reference genome will greatly expand understanding of the evolution of genome organization, genetic diversity, and flowering-time regulation in angiosperms.


Subject(s)
Evolution, Molecular , Genome, Plant , Phylogeny , Polyploidy , Chromosomes, Plant/genetics , Gene Duplication
11.
BMC Genomics ; 25(1): 434, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38693497

ABSTRACT

BACKGROUND: WOX genes are a class of plant-specific transcription factors. The WUSCHEL-related homeobox (WOX) family is a member of the homeobox transcription factor superfamily. Previous studies have shown that WOX members play important roles in plant growth and development. However, studies of the WOX gene family in blueberry plants have not been reported. RESULTS: In order to understand the biological function of the WOX gene family in blueberries, bioinformatics were used methods to identify WOX gene family members in the blueberry genome, and analyzed the basic physical and chemical properties, gene structure, gene motifs, promoter cis-acting elements, chromosome location, evolutionary relationships, expression pattern of these family members and predicted their functions. Finally, 12 genes containing the WOX domain were identified and found to be distributed on eight chromosomes. Phylogenetic tree analysis showed that the blueberry WOX gene family had three major branches: ancient branch, middle branch, and WUS branch. Blueberry WOX gene family protein sequences differ in amino acid number, molecular weight, isoelectric point and hydrophobicity. Predictive analysis of promoter cis-acting elements showed that the promoters of the VdWOX genes contained abundant light response, hormone, and stress response elements. The VdWOX genes were induced to express in both stems and leaves in response to salt and drought stress. CONCLUSIONS: Our results provided comprehensive characteristics of the WOX gene family and important clues for further exploration of its role in the growth, development and resistance to various stress in blueberry plants.


Subject(s)
Blueberry Plants , Phylogeny , Promoter Regions, Genetic , Blueberry Plants/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Regulation, Plant , Genome, Plant , Multigene Family , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Stress, Physiological/genetics , Chromosomes, Plant/genetics , Evolution, Molecular , Computational Biology/methods
12.
BMC Genomics ; 25(1): 442, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702658

ABSTRACT

Genes containing the SET domain can catalyse histone lysine methylation, which in turn has the potential to cause changes to chromatin structure and regulation of the transcription of genes involved in diverse physiological and developmental processes. However, the functions of SET domain-containing (StSET) genes in potato still need to be studied. The objectives of our study can be summarized as in silico analysis to (i) identify StSET genes in the potato genome, (ii) systematically analyse gene structure, chromosomal distribution, gene duplication events, promoter sequences, and protein domains, (iii) perform phylogenetic analyses, (iv) compare the SET domain-containing genes of potato with other plant species with respect to protein domains and orthologous relationships, (v) analyse tissue-specific expression, and (vi) study the expression of StSET genes in response to drought and heat stresses. In this study, we identified 57 StSET genes in the potato genome, and the genes were physically mapped onto eleven chromosomes. The phylogenetic analysis grouped these StSET genes into six clades. We found that tandem duplication through sub-functionalisation has contributed only marginally to the expansion of the StSET gene family. The protein domain TDBD (PFAM ID: PF16135) was detected in StSET genes of potato while it was absent in all other previously studied species. This study described three pollen-specific StSET genes in the potato genome. Expression analysis of four StSET genes under heat and drought in three potato clones revealed that these genes might have non-overlapping roles under different abiotic stress conditions and durations. The present study provides a comprehensive analysis of StSET genes in potatoes, and it serves as a basis for further functional characterisation of StSET genes towards understanding their underpinning biological mechanisms in conferring stress tolerance.


Subject(s)
Gene Expression Regulation, Plant , Genome, Plant , Multigene Family , Phylogeny , Solanum tuberosum , Solanum tuberosum/genetics , Solanum tuberosum/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Promoter Regions, Genetic , Chromosomes, Plant/genetics , Stress, Physiological/genetics , Gene Duplication , PR-SET Domains/genetics , Chromosome Mapping , Gene Expression Profiling , Droughts
13.
Sci Data ; 11(1): 460, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38710725

ABSTRACT

Blood orange (BO) is a rare red-fleshed sweet orange (SWO) with a high anthocyanin content and is associated with numerous health-related benefits. Here, we reported a high-quality chromosome-scale genome assembly for Neixiu (NX) BO, reaching 336.63 Mb in length with contig and scaffold N50 values of 30.6 Mb. Furthermore, 96% of the assembled sequences were successfully anchored to 9 pseudo-chromosomes. The genome assembly also revealed the presence of 37.87% transposon elements and 7.64% tandem repeats, and the annotation of 30,395 protein-coding genes. A high level of genome synteny was observed between BO and SWO, further supporting their genetic similarity. The speciation event that gave rise to the Citrus species predated the duplication event found within them. The genome-wide variation between NX and SWO was also compared. This first high-quality BO genome will serve as a fundamental basis for future studies on functional genomics and genome evolution.


Subject(s)
Citrus sinensis , Genome, Plant , Citrus sinensis/genetics , Chromosomes, Plant , DNA Transposable Elements , Synteny
14.
Theor Appl Genet ; 137(5): 116, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38698276

ABSTRACT

KEY MESSAGE: An adult plant gene for resistance to stripe rust was narrowed down to the proximal one-third of the 2NvS segment translocated from Aegilops ventricosa to wheat chromosome arm 2AS, and based on the gene expression analysis, two candidate genes were identified showing a stronger response at the adult plant stage compared to the seedling stage. The 2NvS translocation from Aegilops ventricosa, known for its resistance to various diseases, has been pivotal in global wheat breeding for more than three decades. Here, we identified an adult plant resistance (APR) gene in the 2NvS segment in wheat line K13-868. Through fine mapping in a segregating near-isogenic line (NIL) derived population of 6389 plants, the candidate region for the APR gene was narrowed down to between 19.36 Mb and 33 Mb in the Jagger reference genome. Transcriptome analysis in NILs strongly suggested that this APR gene conferred resistance to stripe rust by triggering plant innate immune responses. Based on the gene expression analysis, two disease resistance-associated genes within the candidate region, TraesJAG2A03G00588940 and TraesJAG2A03G00590140, exhibited a stronger response to Puccinia striiformis f. sp. tritici (Pst) infection at the adult plant stage than at the seedling stage, indicating that they could be potential candidates for the resistance gene. Additionally, we developed a co-dominant InDel marker, InDel_31.05, for detecting this APR gene. Applying this marker showed that over one-half of the wheat varieties approved in 2021 and 2022 in Sichuan province, China, carry this gene. Agronomic trait evaluation of NILs indicated that the 2NvS segment effectively mitigated the negative effects of stripe rust on yield without affecting other important agronomic traits. This study provided valuable insights for cloning and breeding through the utilization of the APR gene present in the 2NvS segment.


Subject(s)
Aegilops , Basidiomycota , Chromosome Mapping , Disease Resistance , Gene Expression Profiling , Genes, Plant , Plant Diseases , Triticum , Triticum/genetics , Triticum/microbiology , Disease Resistance/genetics , Plant Diseases/genetics , Plant Diseases/microbiology , Basidiomycota/pathogenicity , Basidiomycota/physiology , Aegilops/genetics , Aegilops/microbiology , Plant Breeding , Transcriptome , Chromosomes, Plant/genetics , Puccinia/pathogenicity , Puccinia/physiology , Gene Expression Regulation, Plant
15.
Theor Appl Genet ; 137(5): 117, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38700534

ABSTRACT

KEY MESSAGE: A large-effect QTL was fine mapped, which revealed 79 gene models, with 10 promising candidate genes, along with a novel inversion. In commercial maize breeding, doubled haploid (DH) technology is arguably the most efficient resource for rapidly developing novel, completely homozygous lines. However, the DH strategy, using in vivo haploid induction, currently requires the use of mutagenic agents which can be not only hazardous, but laborious. This study focuses on an alternative approach to develop DH lines-spontaneous haploid genome duplication (SHGD) via naturally restored haploid male fertility (HMF). Inbred lines A427 and Wf9, the former with high HMF and the latter with low HMF, were selected to fine-map a large-effect QTL associated with SHGD-qshgd1. SHGD alleles were derived from A427, with novel haploid recombinant groups having varying levels of the A427 chromosomal region recovered. The chromosomal region of interest is composed of 45 megabases (Mb) of genetic information on chromosome 5. Significant differences between haploid recombinant groups for HMF were identified, signaling the possibility of mapping the QTL more closely. Due to suppression of recombination from the proximity of the centromere, and a newly discovered inversion region, the associated QTL was only confined to a 25 Mb region, within which only a single recombinant was observed among ca. 9,000 BC1 individuals. Nevertheless, 79 gene models were identified within this 25 Mb region. Additionally, 10 promising candidate genes, based on RNA-seq data, are described for future evaluation, while the narrowed down genome region is accessible for straightforward introgression into elite germplasm by BC methods.


Subject(s)
Chromosome Mapping , Haploidy , Quantitative Trait Loci , Zea mays , Zea mays/genetics , Chromosome Mapping/methods , Plant Breeding , Genome, Plant , Phenotype , Alleles , Chromosomes, Plant/genetics , Genes, Plant
16.
BMC Genomics ; 25(1): 524, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38802777

ABSTRACT

BACKGROUND: The filamentous temperature-sensitive H protease (ftsH) gene family belongs to the ATP-dependent zinc metalloproteins, and ftsH genes play critical roles in plant chloroplast development and photosynthesis. RESULTS: In this study, we performed genome-wide identification and a systematic analysis of soybean ftsH genes. A total of 18 GmftsH genes were identified. The subcellular localization was predicted to be mainly in cell membranes and chloroplasts, and the gene structures, conserved motifs, evolutionary relationships, and expression patterns were comprehensively analyzed. Phylogenetic analysis of the ftsH gene family from soybean and various other species revealed six distinct clades, all of which showed a close relationship to Arabidopsis thaliana. The members of the GmftsH gene family were distributed on 13 soybean chromosomes, with intron numbers ranging from 3 to 15, 13 pairs of repetitive segment. The covariance between these genes and related genes in different species of Oryza sativa, Zea mays, and Arabidopsis thaliana was further investigated. The transcript expression data revealed that the genes of this family showed different expression patterns in three parts, the root, stem, and leaf, and most of the genes were highly expressed in the leaves of the soybean plants. Fluorescence-based real-time quantitative PCR (qRT-PCR) showed that the expression level of GmftsH genes varied under different stress treatments. Specifically, the genes within this family exhibited various induction levels in response to stress conditions of 4℃, 20% PEG-6000, and 100 mmol/L NaCl. These findings suggest that the GmftsH gene family may play a crucial role in the abiotic stress response in soybeans. It was also found that the GmftsH7 gene was localized on the cell membrane, and its expression was significantly upregulated under 4 ℃ treatment. In summary, by conducting a genome-wide analysis of the GmftsH gene family, a strong theoretical basis is established for future studies on the functionality of GmftsH genes. CONCLUSIONS: This research can potentially serve as a guide for enhancing the stress tolerance characteristics of soybean.


Subject(s)
Gene Expression Regulation, Plant , Glycine max , Multigene Family , Phylogeny , Glycine max/genetics , Glycine max/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Genome, Plant , Gene Expression Profiling , Arabidopsis/genetics , Stress, Physiological/genetics , Genome-Wide Association Study , Chromosomes, Plant/genetics
17.
PeerJ ; 12: e17370, 2024.
Article in English | MEDLINE | ID: mdl-38737737

ABSTRACT

Cysteine-rich receptor-like kinases (CRKs) play many important roles during plant development, including defense responses under both biotic and abiotic stress, reactive oxygen species (ROS) homeostasis, callose deposition and programmed cell death (PCD). However, there are few studies on the involvement of the CRK family in male sterility due to heat stress in wheat (Triticum aestivum L.). In this study, a genome-wide characterization of the CRK family was performed to investigate the structural and functional attributes of the wheat CRKs in anther sterility caused by heat stress. A total of 95 CRK genes were unevenly distributed on 18 chromosomes, with the most genes distributed on chromosome 2B. Paralogous homologous genes with Ka/Ks ratios less than 1 may have undergone strong purifying selection during evolution and are more functionally conserved. The collinearity analysis results of CRK genes showed that wheat and Arabidopsis (A. thaliana), foxtail millet, Brachypodium distachyon (B. distachyon), and rice have three, 12, 15, and 11 pairs of orthologous genes, respectively. In addition, the results of the network interactions of genes and miRNAs showed that five miRNAs were in the hub of the interactions map, namely tae-miR9657b-5p, tae-miR9780, tae-miR9676-5p, tae-miR164, and tae-miR531. Furthermore, qRT-PCR validation of the six TaCRK genes showed that they play key roles in the development of the mononuclear stage anthers, as all six genes were expressed at highly significant levels in heat-stressed male sterile mononuclear stage anthers compared to normal anthers. We hypothesized that the TaCRK gene is significant in the process of high-temperature-induced sterility in wheat based on the combination of anther phenotypes, paraffin sections, and qRT-PCR data. These results improve our understanding of their relationship.


Subject(s)
Gene Expression Regulation, Plant , Plant Infertility , Triticum , Triticum/genetics , Plant Infertility/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Genome, Plant/genetics , Hot Temperature/adverse effects , Multigene Family , Chromosomes, Plant/genetics , Heat-Shock Response/genetics , Gene Expression Profiling
18.
BMC Plant Biol ; 24(1): 410, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760710

ABSTRACT

Rosa roxburghii Tratt, a valuable plant in China with long history, is famous for its fruit. It possesses various secondary metabolites, such as L-ascorbic acid (vitamin C), alkaloids and poly saccharides, which make it a high nutritional and medicinal value. Here we characterized the chromosome-level genome sequence of R. roxburghii, comprising seven pseudo-chromosomes with a total size of 531 Mb and a heterozygosity of 0.25%. We also annotated 45,226 coding gene loci after masking repeat elements. Orthologs for 90.1% of the Complete Single-Copy BUSCOs were found in the R. roxburghii annotation. By aligning with protein sequences from public platform, we annotated 85.89% genes from R. roxburghii. Comparative genomic analysis revealed that R. roxburghii diverged from Rosa chinensis approximately 5.58 to 13.17 million years ago, and no whole-genome duplication event occurred after the divergence from eudicots. To fully utilize this genomic resource, we constructed a genomic database RroFGD with various analysis tools. Otherwise, 69 enzyme genes involved in L-ascorbate biosynthesis were identified and a key enzyme in the biosynthesis of vitamin C, GDH (L-Gal-1-dehydrogenase), is used as an example to introduce the functions of the database. This genome and database will facilitate the future investigations into gene function and molecular breeding in R. roxburghii.


Subject(s)
Chromosomes, Plant , Genome, Plant , Rosa , Rosa/genetics , Rosa/metabolism , Chromosomes, Plant/genetics , Databases, Genetic , Secondary Metabolism/genetics , Ascorbic Acid/metabolism , Ascorbic Acid/biosynthesis
19.
Sci Rep ; 14(1): 11010, 2024 05 14.
Article in English | MEDLINE | ID: mdl-38745019

ABSTRACT

The presence of incompatibility alleles in primary amphidiploids constitutes a reproductive barrier in newly synthesized wheat-rye hybrids. To overcome this barrier, the genome stabilization process includes large-scale chromosome rearrangements. In incompatible crosses resulting in fertile amphidiploids, the elimination of one of the incompatible alleles Eml-A1 or Eml-R1b can occur already in the somatic tissue of the wheat × rye hybrid embryo. We observed that the interaction of incompatible loci Eml-A1 of wheat and Eml-R1b of rye after overcoming embryo lethality leads to hybrid sterility in primary triticale. During subsequent seed reproductions (R1, R2 or R3) most of the chromosomes of A, B, D and R subgenomes undergo rearrangement or eliminations to increase the fertility of the amphidiploid by natural selection. Genotyping-by-sequencing (GBS) coverage analysis showed that improved fertility is associated with the elimination of entire and partial chromosomes carrying factors that either cause the disruption of plant development in hybrid plants or lead to the restoration of the euploid number of chromosomes (2n = 56) in the absence of one of the incompatible alleles. Highly fertile offspring obtained in compatible and incompatible crosses can be successfully adapted for the production of triticale pre-breeding stocks.


Subject(s)
Chromosomes, Plant , Crosses, Genetic , Hybridization, Genetic , Secale , Triticum , Triticum/genetics , Secale/genetics , Chromosomes, Plant/genetics , Alleles , Genotyping Techniques
20.
BMC Genomics ; 25(1): 468, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38745142

ABSTRACT

BACKGROUND: Plant-specific TIFY proteins are widely found in terrestrial plants and play important roles in plant adversity responses. Although the genome of loquat at the chromosome level has been published, studies on the TIFY family in loquat are lacking. Therefore, the EjTIFY gene family was bioinformatically analyzed by constructing a phylogenetic tree, chromosomal localization, gene structure, and adversity expression profiling in this study. RESULTS: Twenty-six EjTIFY genes were identified and categorized into four subfamilies (ZML, JAZ, PPD, and TIFY) based on their structural domains. Twenty-four EjTIFY genes were irregularly distributed on 11 of the 17 chromosomes, and the remaining two genes were distributed in fragments. We identified 15 covariate TIFY gene pairs in the loquat genome, 13 of which were involved in large-scale interchromosomal segmental duplication events, and two of which were involved in tandem duplication events. Many abiotic stress cis-elements were widely present in the promoter region. Analysis of the Ka/Ks ratio showed that the paralogous homologs of the EjTIFY family were mainly subjected to purifying selection. Analysis of the RNA-seq data revealed that a total of five differentially expressed genes (DEGs) were expressed in the shoots under gibberellin treatment, whereas only one gene was significantly differentially expressed in the leaves; under both low-temperature and high-temperature stresses, there were significantly differentially expressed genes, and the EjJAZ15 gene was significantly upregulated under both low- and high-temperature stress. RNA-seq and qRT-PCR expression analysis under salt stress conditions revealed that EjJAZ2, EjJAZ4, and EjJAZ9 responded to salt stress in loquat plants, which promoted resistance to salt stress through the JA pathway. The response model of the TIFY genes in the jasmonic acid pathway under salt stress in loquat was systematically summarized. CONCLUSIONS: These results provide a theoretical basis for exploring the characteristics and functions of additional EjTIFY genes in the future. This study also provides a theoretical basis for further research on breeding for salt stress resistance in loquat. RT-qPCR analysis revealed that the expression of one of the three EjTIFY genes increased and the expression of two decreased under salt stress conditions, suggesting that EjTIFY exhibited different expression patterns under salt stress conditions.


Subject(s)
Eriobotrya , Gene Expression Regulation, Plant , Multigene Family , Phylogeny , Plant Proteins , Stress, Physiological , Eriobotrya/genetics , Stress, Physiological/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Profiling , Genome, Plant , Chromosomes, Plant/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...