Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 443
Filter
1.
Anat Histol Embryol ; 53(4): e13069, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38831730

ABSTRACT

This is the first study to describe the subtypes, number and distribution of mast cells (MC) in cat tongue by histochemical and immunohistochemical methods. Six male adult felines' tongue tissue samples consist of the study's material. Samples were fixed in 10% formaldehyde. MC number and distribution in the feline tongue were assessed using toluidine blue. Also, sections taken from blocks were stained in alcian blue/safranin O (AB/SO) combined dyes to determine the MC subtypes. The Streptavidin biotin complex method using anti-chymase and anti-tryptase primary antibodies was used for immunohistochemistry. Metachromatic MCs were mainly observed in the lamina propria close to the multilayered keratinized stratified squamous epithelium. The high number of MCs in this region may be because the dorsal surface of the tongue plays an essential role in the defence system of tongue tissue and, thus, of the body as a whole. Additionally, the number of MCs stained with AB (+) (1.7 ± 0.08) in the feline tongue was statistically higher than those with SO (+) (0.18 ± 0.02). This might be interpreted as an indication that MC heterogeneity may be due not only to their staining properties but also to their localization. It is also conceivable that the high histamine content may be a factor in this. Tryptase-positive MCs were found in the loose connective tissue around blood vessels, between the glands, as solitary cells, or in groups of several cells. Chymase-positive MCs were observed more individually rather than in groups. Moreover, chymase-positive MCs were detected to be located in the filiform papillae subepithelial and in the blood vessels' immediate vicinity. Animals often lick themselves to clean themselves and promote healing. For this reason, it is very important to protect the tongue, which is in direct contact with the external environment, against foreign agents. Considering both the functional and protective properties of the tongue, we concluded that MCs may play a role in oral cavity immunity and protective effect.


Subject(s)
Immunohistochemistry , Mast Cells , Tongue , Animals , Cats , Tongue/cytology , Male , Immunohistochemistry/veterinary , Tryptases/analysis , Tryptases/metabolism , Chymases/metabolism , Chymases/analysis
2.
Medicine (Baltimore) ; 103(20): e38117, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38758896

ABSTRACT

Human immunodeficiency virus (HIV) infection continues to pose significant global health challenges, necessitating advancements in diagnostic and prognostic approaches to optimize disease management. While primarily recognized for their roles in allergic responses, mast cells have emerged as potential markers with diagnostic and prognostic significance in the context of HIV/AIDS. This paper aims to synthesize current insights and delineate future directions regarding the utility of mast cell markers in diagnosing HIV infection, predicting disease progression, and guiding therapeutic strategies. Mast cells, equipped with distinct markers such as tryptase, chymase, carboxypeptidase A3, and c-kit/CD117 receptors, exhibit tissue-specific expression patterns that offer potential as diagnostic indicators for HIV infection. Understanding the dynamics of these markers in different tissues and body fluids holds promise for accurate HIV diagnosis, disease staging, and monitoring treatment responses. Moreover, the prognostic significance of mast cell markers in HIV/AIDS lies in their potential to predict disease progression, immune dysregulation, and clinical outcomes. The integration of mast cell markers into clinical applications offers promising avenues for refining diagnostic assays, patient monitoring protocols, and therapeutic strategies in HIV/AIDS. Future research directions involve the development of novel diagnostic tools and targeted therapies based on mast cell-specific markers, potentially revolutionizing clinical practice and enhancing patient care in the management of HIV/AIDS. Continued investigations into mast cell markers' diagnostic and prognostic implications hold immense potential to advance our understanding and improve outcomes in HIV/AIDS management.


Subject(s)
Biomarkers , HIV Infections , Mast Cells , Humans , Mast Cells/metabolism , Biomarkers/metabolism , Biomarkers/analysis , Prognosis , HIV Infections/diagnosis , Tryptases/blood , Tryptases/metabolism , Disease Progression , Carboxypeptidases A/metabolism , Chymases/metabolism , Proto-Oncogene Proteins c-kit/metabolism , Acquired Immunodeficiency Syndrome/diagnosis
3.
Cells ; 13(8)2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38667325

ABSTRACT

Recent studies suggested the potential role of mast cells (MCs) in the pathology of coronavirus disease 2019 (COVID-19). However, the precise description of the MCs' activation and the engagement of their proteases is still missing. The objective of this study was to further reveal the importance of MCs and their proteases (chymase, tryptase, and carboxypeptidase A3 (CPA3)) in the development of lung damage in patients with COVID-19. This study included 55 patients who died from COVID-19 and 30 controls who died from external causes. A histological analysis of the lung parenchyma was carried out to assess the protease profiles and degranulation activity of MCs. In addition, we have analyzed the general blood test, coagulogram, and C-reactive protein. The content of tryptase-positive MCs (Try-MCs) in the lungs of patients with COVID-19 was higher than in controls, but their degranulation activity was lower. The indicators of chymase-positive MCs (Chy-MCs) were significantly lower than in the controls, while the content of CPA3-positive MCs (CPA3-MCs) and their degranulation activity were higher in patients with COVID-19. In addition, we have demonstrated the existence of correlations (positive/negative) between the content of Try-MCs, Chy-MCs, and CPA3-MCs at different states of their degranulation and presence (co-adjacent/single) and the levels of various immune cells (neutrophils, eosinophils, basophils, and monocytes) and other important markers (blood hemoglobin, activated partial thromboplastin time (aPTT), international normalized ratio (INR), and fibrinogen). Thus, the identified patterns suggest the numerous and diverse mechanisms of the participation of MCs and their proteases in the pathogenesis of COVID-19, and their impact on the inflammatory process and coagulation status. At the same time, the issue requires further study in larger cohorts of patients, which will open up the possibility of using drugs acting on this link of pathogenesis to treat lung damage in patients with COVID-19.


Subject(s)
COVID-19 , Lung , Mast Cells , SARS-CoV-2 , Tryptases , Humans , COVID-19/immunology , COVID-19/pathology , Mast Cells/pathology , Mast Cells/immunology , Male , Female , Middle Aged , Aged , Tryptases/metabolism , Lung/pathology , Lung/virology , Lung/immunology , Cell Degranulation , Chymases/metabolism , Carboxypeptidases A/metabolism , Adult , Aged, 80 and over , Case-Control Studies
4.
J Am Chem Soc ; 146(18): 12656-12663, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38683724

ABSTRACT

Tumor-associated mast cells (TAMCs) have been recently revealed to play a multifaceted role in the tumor microenvironment. Noninvasive optical imaging of TAMCs is thus highly desired to gain insights into their functions in cancer immunotherapy. However, due to the lack of a single enzyme that is specific to mast cells, a common probe design approach based on single-enzyme activation is not applicable. Herein, we reported a bienzyme-locked molecular probe (THCMC) based on a photoinduced electron transfer-intramolecular charge-transfer hybrid strategy for in vivo imaging of TAMCs. The bienzyme-locked activation mechanism ensures that THCMC exclusively turns on near-infrared (NIR) fluorescence only in the presence of both tryptase and chymase specifically coexpressed by mast cells. Thus, THCMC effectively distinguishes mast cells from other leukocytes, including T cells, neutrophils, and macrophages, a capability lacking in single-locked probes. Such a high specificity of THCMC allows noninvasive tracking of the fluctuation of TAMCs in the tumor of living mice during cancer immunotherapy. The results reveal that the decreased intratumoral signal of THCMC after combination immunotherapy correlates well with the reduced population of TAMCs, accurately predicting the inhibition of tumor growth. Thus, this study not only presents the first NIR fluorescent probe specific for TAMCs but also proposes a generic bienzyme-locked probe design approach for in vivo cell imaging.


Subject(s)
Fluorescent Dyes , Mast Cells , Optical Imaging , Fluorescent Dyes/chemistry , Fluorescent Dyes/chemical synthesis , Animals , Mice , Tryptases/metabolism , Humans , Chymases/metabolism , Neoplasms/diagnostic imaging , Cell Line, Tumor
5.
Food Funct ; 15(8): 4375-4388, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38546528

ABSTRACT

Food allergy (FA), triggered by specific dietary allergens, has emerged as a substantial global concern for food safety and public health. While studies have elucidated changes in immune cells and cytokines associated with allergen exposure, a comprehensive analysis of the host's metabolic features and the interaction between metabolites and the gut microbiota has not been conducted. In this study, egg allergen ovalbumin (OVA) was administered by the oral route to sensitized BALB/c mice to faithfully replicate key aspects of human FA, including severe allergic diarrhea, mast cell infiltration, and elevated levels of serum IgE, mMCPT-1, and Th2 cell hallmark cytokines (such as IL-4, IL-5, and IL-13). Furthermore, the untargeted and targeted metabolomic analyses indicated that FA in mice precipitated a substantial decrease in the tryptophan metabolites indole-3-acrylic acid (IA) and indole-3-lactic acid (ILA). The integration of shotgun metagenome and metabolome data further unveiled that the dysregulation of indole metabolism is related to a decline in the abundance of beneficial bacteria such as Lactobacillus and Bifidobacterium. Additionally, disruption of the tryptophan indole derivative pathway compromises the maintenance of intestinal mucosal function through the AHR signaling pathway, manifested by decreased expression of Reg3g and IL22. Taken together, this study demonstrated that the anaphylaxis triggered by oral ingestion of food allergens can lead to disruptions in tryptophan metabolism, consequently impairing intestinal immune homeostasis.


Subject(s)
Allergens , Gastrointestinal Microbiome , Mice, Inbred BALB C , Ovalbumin , Tryptophan , Animals , Tryptophan/metabolism , Ovalbumin/immunology , Mice , Allergens/immunology , Administration, Oral , Gastrointestinal Microbiome/drug effects , Female , Food Hypersensitivity/immunology , Cytokines/metabolism , Immunoglobulin E/immunology , Egg Hypersensitivity/immunology , Indoles/pharmacology , Chymases/metabolism , Th2 Cells/immunology
6.
Biochimie ; 218: 34-45, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37774825

ABSTRACT

High-density lipoprotein (HDL) cholesterol is a well-known biomarker, which has been associated with reduction in the risk of cardiovascular diseases (CVD). However, some HDL anti-atherosclerotic functions may be impaired without altered HDL-cholesterol (HDL-C) level via its dysfunctional proteins or other physiological reactions in vivo. We previously showed that activated mast cell-derived chymase could modestly cleave apolipoprotein A-I (apoA-I) in HDL3, and further easily cleave lipid-free apoA-I. In contrast, myeloperoxidase (MPO) secreted by macrophages, the main cell type in atherosclerotic plaques, could oxidize HDL proteins, which might modify their tertiary structures, increasing their susceptibility to other enzymes. Here we focused on the co-modification and impact of chymase and MPO, usually secreted during inflammation from cells with possible co-existence in atheromas, on HDL. Only after sequential treatment with MPO and then chymase, two novel truncated apoA-I fragments were generated from HDL. One fragment was 16.5 kDa, and the cleavage site by chymase after MPO modification was the C-terminal of Tyr100 in apoA-I, cross-validated by three different mass spectrometry methods. This novel apoA-I fragment can be trapped in HDL particles to avoid kidney glomerular filtration and has a specific site for antibody generation for ELISA tests. As such, its quantification can be useful in predicting patients with CVD having normal HDL-C levels.


Subject(s)
Cardiovascular Diseases , Plaque, Atherosclerotic , Humans , Chymases/metabolism , Lipoproteins, HDL/metabolism , Apolipoprotein A-I , Cholesterol/metabolism , Cardiovascular Diseases/metabolism , Peroxidase/metabolism
7.
Atherosclerosis ; 390: 117308, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37821269

ABSTRACT

BACKGROUND AND AIMS: Atherosclerosis and other cardiovascular diseases (CVD) are well established to be both instigated and worsened by inflammation. Indeed, CANTOS formally proved that targeting the inflammatory cytokine IL-1ß only could reduce both cardiovascular events and death. However, due to the central role of IL-1ß in host defence, blockade increased fatal infections, suggesting targeting key immune mediators over the long natural history of CVD is unsuitable. Thus, discovering alternative mechanisms that generate vascular inflammation may identify more actionable targets. METHODS: We used primary human VSMCs and a combination of biochemical, pharmacological and molecular biological techniques to generate the data. Human carotid atherosclerotic plaques were also assessed histologically. RESULTS: We showed that VSMCs expressed and efficiently processed pro-IL-1ß to the active form after receiving a single stimulus via IL-1R1 or TLR4. Importantly, pro-IL-1ß processing did not utilise inflammasomes or caspases. Unusually, we found that cathepsin C-activated chymase was responsible for cleaving IL-1ß in VSMCs, and provided evidence for chymase expression in cultured VSMCs and in the fibrous cap of human plaques. Chymase also efficiently cleaved and activated recombinant pro-IL-1ß. CONCLUSIONS: Thus, VSMCs are efficient activators of IL-1ß that do not use canonical inflammasomes or caspases. Hence, this alternative pathway could be targeted for long-term treatment of CVDs, as it is not central to everyday host defence.


Subject(s)
Cardiovascular Diseases , Muscle, Smooth, Vascular , Humans , Interleukin-1beta/metabolism , Chymases/metabolism , Muscle, Smooth, Vascular/metabolism , Inflammasomes/metabolism , Cells, Cultured , Inflammation/metabolism , Caspases/metabolism , Cardiovascular Diseases/metabolism , Myocytes, Smooth Muscle/metabolism
8.
Expert Opin Ther Targets ; 27(8): 645-656, 2023.
Article in English | MEDLINE | ID: mdl-37565266

ABSTRACT

INTRODUCTION: Non-angiotensin converting enzyme mechanisms of angiotensin II production remain underappreciated in part due to the success of current therapies to ameliorate the impact of primary hypertension and atherosclerotic diseases of the heart and the blood vessels. This review scrutinize the current literature to highlight chymase role as a critical participant in the pathogenesis of cardiovascular disease and heart failure. AREAS COVERED: We review the contemporaneous understanding of circulating and tissue biotransformation mechanisms of the angiotensins focusing on the role of chymase as an alternate tissue generating pathway for angiotensin II pathological mechanisms of action. EXPERT OPINION: While robust literature documents the singularity of chymase as an angiotensin II-forming enzyme, particularly when angiotensin converting enzyme is inhibited, this knowledge has not been fully recognized to clinical medicine. This review discusses the limitations of clinical trials' that explored the benefits of chymase inhibition in accounting for the failure to duplicate in humans what has been demonstrated in experimental animals.


Subject(s)
Cardiovascular Diseases , Heart Failure , Animals , Humans , Chymases/metabolism , Chymases/therapeutic use , Cardiovascular Diseases/drug therapy , Angiotensin II/metabolism , Angiotensin II/therapeutic use
9.
Int J Mol Sci ; 24(11)2023 May 30.
Article in English | MEDLINE | ID: mdl-37298438

ABSTRACT

SARS-CoV-2 infects cells via its spike (S) protein binding to its surface receptor angiotensin-converting enzyme 2 (ACE2) and results in the production of multiple proinflammatory cytokines, especially in the lungs, leading to what is known as COVID-19. However, the cell source and the mechanism of secretion of such cytokines have not been adequately characterized. In this study, we used human cultured mast cells that are plentiful in the lungs and showed that recombinant SARS-CoV-2 full-length S protein (1-10 ng/mL), but not its receptor-binding domain (RBD), stimulates the secretion of the proinflammatory cytokine interleukin-1ß (IL-1ß) as well as the proteolytic enzymes chymase and tryptase. The secretion of IL-1ß, chymase, and tryptase is augmented by the co-administration of interleukin-33 (IL-33) (30 ng/mL). This effect is mediated via toll-like receptor 4 (TLR4) for IL-1ß and via ACE2 for chymase and tryptase. These results provide evidence that the SARS-CoV-2 S protein contributes to inflammation by stimulating mast cells through different receptors and could lead to new targeted treatment approaches.


Subject(s)
COVID-19 , Spike Glycoprotein, Coronavirus , Humans , Angiotensin-Converting Enzyme 2/metabolism , Chymases/metabolism , Cytokines/metabolism , Interleukin-1beta/metabolism , Interleukin-33/metabolism , Mast Cells/metabolism , Protein Binding , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Tryptases/metabolism
10.
Proteomics ; 23(15): e2300040, 2023 08.
Article in English | MEDLINE | ID: mdl-37226369

ABSTRACT

Synovial fluid (SF) may contain cleavage products of proteolytic activities. Our aim was to characterize the degradome through analysis of proteolytic activity and differential abundance of these components in a peptidomic analysis of SF in knee osteoarthritis (OA) patients versus controls (n = 23). SF samples from end-stage knee osteoarthritis patients undergoing total knee replacement surgery and controls, that is, deceased donors without known knee disease were previously run using liquid chromatography mass spectrometry (LC-MS). This data was used to perform new database searches generating results for non-tryptic and semi-tryptic peptides for studies of degradomics in OA. We used linear mixed models to estimate differences in peptide-level expression between the two groups. Known proteolytic events (from the MEROPS peptidase database) were mapped to the dataset, allowing the identification of potential proteases and which substrates they cleave. We also developed a peptide-centric R tool, proteasy, which facilitates analyses that involve retrieval and mapping of proteolytic events. We identified 429 differentially abundant peptides. We found that the increased abundance of cleaved APOA1 peptides is likely a consequence of enzymatic degradation by metalloproteinases and chymase. We identified metalloproteinase, chymase, and cathepsins as the main proteolytic actors. The analysis indicated increased activity of these proteases irrespective of their abundance.


Subject(s)
Osteoarthritis, Knee , Humans , Osteoarthritis, Knee/metabolism , Synovial Fluid/chemistry , Synovial Fluid/metabolism , Chymases/analysis , Chymases/metabolism , Peptide Hydrolases/analysis , Peptides/analysis
11.
Front Immunol ; 14: 1151754, 2023.
Article in English | MEDLINE | ID: mdl-37063885

ABSTRACT

Mast cells are tissue-resident cells playing major roles in homeostasis and disease conditions. Lung mast cells are particularly important in airway inflammatory diseases such as asthma. Human mast cells are classically divided into the subsets MCT and MCTC, where MCT express the mast cell protease tryptase and MCTC in addition express chymase, carboxypeptidase A3 (CPA3) and cathepsin G. Apart from the disctintion of the MCT and MCTC subsets, little is known about the heterogeniety of human lung mast cells and a deep analysis of their heterogeniety has previously not been performed. We therefore performed single cell RNA sequencing on sorted human lung mast cells using SmartSeq2. The mast cells showed high expression of classical mast cell markers. The expression of several individual genes varied considerably among the cells, however, no subpopulations were detected by unbiased clustering. Variable genes included the protease-encoding transcripts CMA1 (chymase) and CTSG (cathepsin G). Human lung mast cells are predominantly of the MCT subset and consistent with this, the expression of CMA1 was only detectable in a small proportion of the cells, and correlated moderately to CTSG. However, in contrast to established data for the protein, CPA3 mRNA was high in all cells and the correlation of CPA3 to CMA1 was weak.


Subject(s)
Mast Cells , Peptide Hydrolases , Humans , Chymases/genetics , Chymases/metabolism , Mast Cells/metabolism , Cathepsin G , Peptide Hydrolases/metabolism , Tryptases/genetics , Tryptases/metabolism , Lung/metabolism , Sequence Analysis, RNA
12.
Jpn J Ophthalmol ; 67(4): 431-439, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37079165

ABSTRACT

PURPOSE: Galectin-3 is a damage-associated molecular pattern (DAMPs), released from damaged or dying cells. In this study, we investigated the concentration and source of galectin-3 in the tears of patients with vernal keratoconjunctivitis (VKC) and evaluated whether the concentration of galectin-3 in tears represents a biomarker of corneal epithelial damage. STUDY DESIGN: Clinical and experimental. METHODS: We measured the concentration of galectin-3 in tear samples from 26 patients with VKC and 6 healthy controls by enzyme-linked immunosorbent assay (ELISA). The expression of galectin-3 in cultured human corneal epithelial cells (HCEs) stimulated with or without tryptase or chymase was investigated by polymerase chain reaction (PCR), ELISA, and Western blotting. We also estimated the concentration of galectin-3 in the supernatants of cultured HCEs induced to necrosis. Finally, we investigated whether recombinant galectin-3 induced the expression of various genes related to cell migration or the cell cycle in HCEs by using microarray analysis. RESULTS: High concentrations of galectin-3 were detected in the tears of patients with VKC. The concentration showed significant correlation with the severity of corneal epithelial damage. Stimulation of cultured HCEs with various concentrations of tryptase or chymase had no effect on the expression of galectin-3. However, high concentrations of galectin-3 were detected in the supernatants of necrotic HCEs. Recombinant human galectin-3 induced various cell migration- and cell cycle-related genes. CONCLUSION: The concentrations of galectin-3 in the tears of patients with VKC may represent a biomarker of the severity of corneal epithelial damage.


Subject(s)
Conjunctivitis, Allergic , Humans , Chymases/metabolism , Conjunctivitis, Allergic/diagnosis , Conjunctivitis, Allergic/genetics , Conjunctivitis, Allergic/metabolism , Enzyme-Linked Immunosorbent Assay , Galectin 3/genetics , Galectin 3/metabolism , Tears/metabolism , Tryptases/metabolism
13.
J Am Heart Assoc ; 12(4): e028056, 2023 02 21.
Article in English | MEDLINE | ID: mdl-36752268

ABSTRACT

Background Deep vein thrombosis (DVT) is the primary cause of pulmonary embolism and the third most life-threatening cardiovascular disease in North America. Post-DVT anticoagulants, such as warfarin, heparin, and direct oral anticoagulants, reduce the incidence of subsequent venous thrombi. However, all currently used anticoagulants affect bleeding time at various degrees, and there is therefore a need for improved therapeutic regimens in DVT. It has recently been shown that mast cells play a crucial role in a DVT murine model. The underlying mechanism involved in the prothrombotic properties of mast cells, however, has yet to be identified. Methods and Results C57BL/6 mice and mouse mast cell protease-4 (mMCP-4) genetically depleted mice (mMCP-4 knockout) were used in 2 mouse models of DVT, partial ligation (stenosis) and ferric chloride-endothelial injury model of the inferior vena cava. Thrombus formation and impact of genetically repressed or pharmacologically (specific inhibitor TY-51469) inhibited mMCP-4 were evaluated by morphometric measurements of thrombi immunochemistry (mouse and human DVT), color Doppler ultrasound, bleeding times, and enzymatic activity assays ex vivo. Recombinant chymases, mMCP-4 (mouse) and CMA-1 (human), were used to characterize the interaction with murine and human plasmin, respectively, by mass spectrometry and enzymatic activity assays. Inhibiting mast cell-generated mMCP-4, genetically or pharmacologically, resolves and prevents venous thrombus formation in both DVT models. Inferior vena cava blood flow obstruction was observed in the stenosis model after 6 hours of ligation, in control- but not in TY-51469-treated mice. In addition, chymase inhibition had no impact on bleeding times of healthy or DVT mice. Furthermore, endogenous chymase limits plasmin activity in thrombi ex vivo. Recombinant mouse or human chymase degrades/inactivates purified plasmin in vitro. Finally, mast cell-containing immunoreactive chymase was identified in human DVT. Conclusions This study identified a major role for mMCP-4, a granule-localized protease of chymase type, in DVT formation. These findings support a novel pharmacological strategy to resolve or prevent DVT without affecting the coagulation cascade through the inhibition of chymase activity.


Subject(s)
Fibrinolysin , Venous Thrombosis , Mice , Humans , Animals , Chymases/metabolism , Bleeding Time , Disease Models, Animal , Constriction, Pathologic , Mice, Inbred C57BL , Venous Thrombosis/prevention & control , Anticoagulants
14.
Immunopharmacol Immunotoxicol ; 45(4): 409-418, 2023 Dec.
Article in English | MEDLINE | ID: mdl-36537314

ABSTRACT

CONTEXT: Inflammatory bowel disease (IBD) is a chronic gut disease with intestinal-epithelium disruption. Mast cell (MC) has been discussed in IBD studies, but its subset MCTC (chymase/tryptase) and MC-chymase have not been well-explored extensively. Human-milk-oligosaccharide-Disialyllacto-N-Tetraose (DSLNT) was reported as an effective strategy to protect infants against IBD with unclear mechanism. OBJECTIVE: This study was to examine the distribution of chymase-positive mast cells in the intestinal-epithelium-tissue of IBD infants, to explore the MC-chymase function on intestinal-epithelium, and to investigate the influences of DSLNT against MC-chymase-induced disruptions. MATERIALS AND METHODS: The intestinal-biopsies (surgical-waste) of the infants with IBD or with intestinal-atresia (non-IBD) were paraffin-embedded for immunohistochemistry. In-situ intestinal-tissue model and in-vitro human-intestinal-epithelial-cell (Caco-2) model were established with or without the treatments of MC-chymase (50mU/mL), DSLNT (600 µM) and DSLNT + MC-chymase respectively. The tissue morphology analysis, cell proliferation assay, cell-gap-closure assessment, fluorescence-immunocytochemistry, western blot, trans-epithelial-electrical-resistance, cell-cycle and statistical analysis were applied. RESULTS: There was an increased number of MCTC subset around the inflamed intestinal area in-vivo; MC-chymase caused intestinal-epithelial-barrier damage in-situ, decreased trans-epithelial-electrical-resistance of caco-2 cell monolayer in-vitro; while DSLNT protected epithelium against MC-chymase induced disruptions. MC-chymase reduced cell-viability, proliferation and migration, altered cell-cycle, down-regulated ZO-1, FAK, and P38 expressions, while DSLNT protected cells by impairing MC-chymase-induced interruptions. DSLNT can rescue ZO-1, FAK and P38 expressions and restore epithelial-cell integrity and cell cycle. CONCLUSIONS: Chymase-positive MCs are involved in IBD progress. MC-chymase disrupts intracellular ZO-1/FAK/P38 signal pathway and cell-cell/cell-matrix contacts, while DSLNT protects intestinal-epithelium against MC-chymase to maintain the intestinal epithelium integrity.


Subject(s)
Inflammatory Bowel Diseases , Mast Cells , Infant , Humans , Chymases/metabolism , Mast Cells/metabolism , Caco-2 Cells , Milk, Human/metabolism , Epithelial Cells/metabolism , Oligosaccharides/pharmacology , Oligosaccharides/metabolism , Intestinal Mucosa , Inflammatory Bowel Diseases/pathology , Permeability
15.
F1000Res ; 12: 1288, 2023.
Article in English | MEDLINE | ID: mdl-38826574

ABSTRACT

Oral submucous fibrosis (OSMF), a potentially malignant disorder, is developed by progressive fibrous tissue deposition in connective tissue along with atrophy of oral mucosa. Histological sections also show the mast cell infiltration in submucosa which may indicate their possible role in this entity. Abundant availability of biochemicals in mast cells like histamine and serine proteases like chymase may be released and play specific pathways in the disease pathophysiology. Possibly, if the histamine release has some part to play, diamine oxidase may also be found to have a relationship as it metabolizes histamine. The present study is proposed to identify the presence of chymase, histamine, and diamine oxidase in both, serum as well as tissue by enzyme-linked immunosorbent assay (ELISA) and immunohistochemistry (IHC) respectively. This study may provide probable insight into the mast cell-related chemicals and their association with OSMF.


Subject(s)
Enzyme-Linked Immunosorbent Assay , Histamine , Immunohistochemistry , Mast Cells , Oral Submucous Fibrosis , Mast Cells/metabolism , Mast Cells/pathology , Humans , Oral Submucous Fibrosis/pathology , Oral Submucous Fibrosis/metabolism , Immunohistochemistry/methods , Histamine/metabolism , Male , Chymases/metabolism , Amine Oxidase (Copper-Containing)/metabolism , Adult , Female , Middle Aged , Mouth Mucosa/pathology , Mouth Mucosa/metabolism
16.
Front Immunol ; 13: 968981, 2022.
Article in English | MEDLINE | ID: mdl-36225927

ABSTRACT

Background: The systemic inflammatory response post-SARS-CoV-2 infection increases pro-inflammatory cytokine production, multi-organ damage, and mortality rates. Mast cells (MC) modulate thrombo-inflammatory disease progression (e.g., deep vein thrombosis) and the inflammatory response post-infection. Objective: To enhance our understanding of the contribution of MC and their proteases in SARS-CoV-2 infection and the pathogenesis of the disease, which might help to identify novel therapeutic targets. Methods: MC proteases chymase (CMA1), carboxypeptidase A3 (CPA3), and tryptase beta 2 (TPSB2), as well as cytokine levels, were measured in the serum of 60 patients with SARS-CoV-2 infection (30 moderate and 30 severe; severity of the disease assessed by chest CT) and 17 healthy controls by ELISA. MC number and degranulation were quantified by immunofluorescent staining for tryptase in lung autopsies of patients deceased from either SARS-CoV-2 infection or unrelated reasons (control). Immortalized human FcεR1+c-Kit+ LUVA MC were infected with SARS-CoV-2, or treated with its viral proteins, to assess direct MC activation by flow cytometry. Results: The levels of all three proteases were increased in the serum of patients with COVID-19, and strongly correlated with clinical severity. The density of degranulated MC in COVID-19 lung autopsies was increased compared to control lungs. The total number of released granules and the number of granules per each MC were elevated and positively correlated with von Willebrand factor levels in the lung. SARS-CoV-2 or its viral proteins spike and nucleocapsid did not induce activation or degranulation of LUVA MC in vitro. Conclusion: In this study, we demonstrate that SARS-CoV-2 is strongly associated with activation of MC, which likely occurs indirectly, driven by the inflammatory response. The results suggest that plasma MC protease levels could predict the disease course, and that severe COVID-19 patients might benefit from including MC-stabilizing drugs in the treatment scheme.


Subject(s)
COVID-19 , Carboxypeptidases , Chymases/metabolism , Cytokines , Humans , Mast Cells/metabolism , SARS-CoV-2 , Tryptases/metabolism , Viral Proteins , von Willebrand Factor
17.
Front Immunol ; 13: 979995, 2022.
Article in English | MEDLINE | ID: mdl-36304455

ABSTRACT

Diabetic nephropathy (DN) is the leading cause of end-stage renal disease and has become a serious medical issue globally. Although it is known to be associated with glomerular injury, tubular injury has been found to participate in DN in recent years. However, mechanisms of diabetic renal tubular injury remain unclear. Here, we investigated the differentially expressed genes in the renal tubules of patients with DN by analyzing three RNA-seq datasets downloaded from the Gene Expression Omnibus database. Gene set enrichment analysis and weighted gene co-expression network analysis showed that DN is highly correlated with the immune system. The immune-related gene SERPINA3 was screened out with lasso regression and Kaplan-Meier survival analyses. Considering that SERPINA3 is an inhibitor of mast cell chymase, we examined the expression level of SERPINA3 and chymase in human renal tubular biopsies and found that SERPINA3 was upregulated in DN tubules, which is consistent with the results of the differential expression analysis. Besides, the infiltration and degranulation rates of mast cells are augmented in DN. By summarizing the biological function of SERPINA3, chymase, and mast cells in DN based on our results and those of previous studies, we speculated that SERPINA3 is a protective immune-related molecule that prevents renal tubular injury by inhibiting the proliferation and activation of mast cells and downregulating the activity of chymase.


Subject(s)
Diabetes Mellitus , Diabetic Nephropathies , Serpins , Humans , Diabetic Nephropathies/pathology , Chymases/metabolism , Kidney/pathology , Kidney Tubules/pathology , Biomarkers/metabolism , Diabetes Mellitus/pathology , Serpins/genetics , Serpins/metabolism
18.
Biochem Biophys Res Commun ; 628: 25-31, 2022 11 05.
Article in English | MEDLINE | ID: mdl-36063599

ABSTRACT

α-1-antichymotrypsin (ACT) is a serine proteinase inhibitor that controls the activity of proteases like chymotrypsin, cathepsin G and mast cell chymase. Familial variants of ACT results in liver and lung diseases, but it is also reported to be associated with several other disease conditions. ACT is mainly synthesized in the liver using four coding exons, namely E1, E2, E3 and E4 encoding a 423 amino acid protein that also includes a 23 amino acid signal peptide. It is found to be associated with amyloid plaques and is elevated during inflammatory response and modulates cytokine based signal transduction pathways, independent of its anti-protease activity. Therefore, the multispecificity of ACT and its non-inhibitory roles in diseased conditions warrants an assessment of possible existence of the other isoforms. Consequently, scanning of introns, 5' and 3' region of the ACT gene using computational tools like FGENESH and FEX did indicate the presence of coding regions. Using a combined approach of bioinformatics and molecular biology, we have found one novel exon located in the intronic region between exons E1 and E2, that splices with exon E2 and replaces N-terminal exon E1, generating an ACT isoform with a novel 151 base pair N-terminus. This isoform was found to lack the signal sequence and is smaller in size but its reactive centre loop remains intact. A truncated transcript was also confirmed with an extension of the E3 by a 12 nucleotide intronic region including a stop codon. Modelling studies show that due to removal of E4 this isoform lacks the RCL. Novel isoform ACT-N lacks E1 but has a conserved RCL. However, due to loss of strands of ß-sheet A, it may also be inactive, but with ability to bind the target proteases. The novel truncated ACT-T isoform lacks the RCL and may have a non-inhibitory role. These hypothesis will need further work for functional validation.


Subject(s)
Serine Proteinase Inhibitors , Alternative Splicing , Amino Acid Sequence , Amino Acids/metabolism , Cathepsin G/metabolism , Chymases/metabolism , Chymotrypsin/metabolism , Codon, Terminator , Cytokines/metabolism , Humans , Nucleotides/metabolism , Protein Isoforms/metabolism , Protein Sorting Signals , Serine Proteinase Inhibitors/genetics , Serpins
19.
Biomolecules ; 12(9)2022 09 16.
Article in English | MEDLINE | ID: mdl-36139146

ABSTRACT

Acute lung injury (ALI) is a common and devastating clinical disorder with a high mortality rate and no specific therapy. The pathophysiology of ALI is characterized by increased alveolar/capillary permeability, lung inflammation, oxidative stress and structural damage to lung tissues, which can progress to acute respiratory distress syndrome (ARDS). Adelmidrol (ADM), an analogue of palmitoylethanolamide (PEA), is known for its anti-inflammatory and antioxidant functions, which are mainly due to down-modulating mast cells (MCs) and promoting endogenous antioxidant defense. The aim of this study is to evaluate the protective effects of ADM in a mice model of ALI, induced by intratracheal administration of lipopolysaccharide (LPS) at the dose of 5 mg/kg. ADM 2% was administered by aerosol 1 and 6 h after LPS instillation. In this study, we clearly demonstrated that ADM reduced lung damage and airway infiltration induced by LPS instillation. At the same time, ADM counteracted the increase in MC number and the expression of specific markers of MC activation, i.e., chymase and tryptase. Moreover, ADM reduced oxidative stress by upregulating antioxidant enzymes as well as modulating the Nf-kB pathway and the resulting pro-inflammatory cytokine release. These results suggest that ADM could be a potential candidate in the management of ALI.


Subject(s)
Acute Lung Injury , Dicarboxylic Acids , Palmitic Acids , Pneumonia , Acute Lung Injury/chemically induced , Acute Lung Injury/drug therapy , Acute Lung Injury/metabolism , Animals , Anti-Inflammatory Agents , Antioxidants/metabolism , Chymases/metabolism , Cytokines/metabolism , Dicarboxylic Acids/pharmacology , Disease Models, Animal , Inflammation/drug therapy , Inflammation/metabolism , Lipopolysaccharides , Lung/metabolism , Mice , NF-kappa B/metabolism , Palmitic Acids/pharmacology , Pneumonia/chemically induced , Pneumonia/drug therapy , Pneumonia/metabolism , Respiratory Aerosols and Droplets , Tryptases/metabolism , Tryptases/pharmacology , Tryptases/therapeutic use
20.
Cells ; 11(18)2022 09 18.
Article in English | MEDLINE | ID: mdl-36139491

ABSTRACT

Tissue damage, epithelial alterations, and intraepithelial presence of mast cells (MCs) are characteristics of asthma pathogenesis. Increased alveolar infiltration of MC populations has also been identified as a feature of asthma and other chronic respiratory diseases. The asthma associated receptor, urokinase plasminogen activator receptor (uPAR), has been shown to regulate bronchial epithelial repair responses. However, the impact of MC tryptase and chymase on functional properties and expression of uPAR in alveolar epithelial cells have not been fully investigated. Alveolar epithelial cell migration and wound healing were investigated using holographic live cell imaging of A549 cells in a wound scratch model post stimulation with tryptase or chymase. The expression of uPAR was investigated on the protein and gene level from cellular supernatants and in bronchoalveolar lavage fluid fractions from allergic asthmatics. We found that tryptase improved wound healing capacity, cellular migration and membrane bound uPAR expression. Chymase reduced gap closure capacity, cellular migration and membrane bound uPAR expression but increased soluble uPAR release. Our data suggest a dual regulatory response from the MC proteases in events related to uPAR expression and wound healing which could be important features in asthmatic disease.


Subject(s)
Asthma , Receptors, Urokinase Plasminogen Activator , Alveolar Epithelial Cells/metabolism , Asthma/pathology , Chymases/metabolism , Humans , Mast Cells/metabolism , Peptide Hydrolases , Plasminogen , Receptors, Urokinase Plasminogen Activator/metabolism , Tryptases , Wound Healing
SELECTION OF CITATIONS
SEARCH DETAIL
...