Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.310
Filter
1.
Arch Dermatol Res ; 316(6): 315, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38822918

ABSTRACT

Hypertrophic scarring is a fibro-proliferative disorder caused by abnormal cutaneous wound healing. Circulating metabolites and the gut microbiome may be involved in the formation of these scars, but high-quality evidence of causality is lacking. To assess whether circulating metabolites and the gut microbiome contain genetically predicted modifiable risk factors for hypertrophic scar formation. Two-sample Mendelian randomization (MR) was performed using MR-Egger, inverse-variance weighting (IVW), Mendelian Randomization Pleiotropy RESidual Sum and Outlier, maximum likelihood, and weighted median methods. Based on the genome-wide significance level, genetically predicted uridine (P = 0.015, odds ratio [OR] = 1903.514, 95% confidence interval [CI] 4.280-846,616.433) and isovalerylcarnitine (P = 0.039, OR = 7.765, 95% CI 1.106-54.512) were positively correlated with hypertrophic scar risk, while N-acetylalanine (P = 0.013, OR = 7.98E-10, 95% CI 5.19E-17-0.012) and glycochenodeoxycholate (P = 0.021, OR = 0.021 95% CI 0.003-0.628) were negatively correlated. Gastranaerophilales and two unknown gut microbe species (P = 0.031, OR = 0.378, 95% CI 0.156-0.914) were associated with an decreased risk of hypertrophic scarring. Circulating metabolites and gut microbiome components may have either positive or negative causal effects on hypertrophic scar formation. The study provides new insights into strategies for diagnosing and limiting hypertrophic scarring.


Subject(s)
Cicatrix, Hypertrophic , Gastrointestinal Microbiome , Mendelian Randomization Analysis , Humans , Gastrointestinal Microbiome/physiology , Cicatrix, Hypertrophic/microbiology , Cicatrix, Hypertrophic/blood , Cicatrix, Hypertrophic/etiology , Risk Factors , Genome-Wide Association Study , Polymorphism, Single Nucleotide
2.
Stem Cell Res Ther ; 15(1): 137, 2024 May 12.
Article in English | MEDLINE | ID: mdl-38735979

ABSTRACT

Scar tissue is the inevitable result of repairing human skin after it has been subjected to external destructive stimuli. It leads to localized damage to the appearance of the skin, accompanied by symptoms such as itching and pain, which reduces the quality of life of the patient and causes serious medical burdens. With the continuous development of economy and society, there is an increasing demand for beauty. People are looking forward to a safer and more effective method to eliminate pathological scarring. In recent years, adipose-derived stem cells (ADSCs) have received increasing attention from researchers. It can effectively improve pathological scarring by mediating inflammation, regulating fibroblast proliferation and activation, and vascular reconstruction. This review focuses on the pathophysiological mechanisms of hypertrophic scarring, summarizing the therapeutic effects of in vitro, in vivo, and clinical studies on the therapeutic effects of ADSCs in the field of hypertrophic scarring prevention and treatment, the latest application techniques, such as cell-free therapies utilizing ADSCs, and discussing the advantages and limitations of ADSCs. Through this review, we hope to further understand the characterization of ADSC and clarify the effectiveness of its application in hypertrophic scarring treatment, so as to provide clinical guidance.


Subject(s)
Adipose Tissue , Cicatrix, Hypertrophic , Humans , Cicatrix, Hypertrophic/therapy , Cicatrix, Hypertrophic/metabolism , Cicatrix, Hypertrophic/pathology , Adipose Tissue/cytology , Adipose Tissue/metabolism , Stem Cells/metabolism , Stem Cells/cytology , Secretome/metabolism , Animals , Stem Cell Transplantation/methods
3.
Clin Plast Surg ; 51(3): 349-354, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38789144

ABSTRACT

Hypertrophic scars arise from burn injuries because of persistent inflammation in the reticular dermis. Several risk factors promote this chronic inflammation. One is tension on the burn wound/scar due to surrounding skin tightness and bodily movements. High estrogen levels and hypertension are also important systemic risk factors. Thus, to prevent burn wounds from developing into hypertrophic scars, it is important to focus on quickly resolving the reticular dermal inflammation. If conservative treatments are not effective and the hypertrophic scar transitions to scar contracture, surgical methods such as Z-plasty, full-thickness skin grafting, and local flaps are often used.


Subject(s)
Burns , Cicatrix, Hypertrophic , Humans , Cicatrix, Hypertrophic/etiology , Cicatrix, Hypertrophic/therapy , Cicatrix, Hypertrophic/prevention & control , Burns/complications , Burns/therapy , Skin Transplantation/methods , Surgical Flaps , Plastic Surgery Procedures/methods , Risk Factors
4.
Int J Mol Sci ; 25(9)2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38731893

ABSTRACT

Keloids (KD) and hypertrophic scars (HTS), which are quite raised and pigmented and have increased vascularization and cellularity, are formed due to the impaired healing process of cutaneous injuries in some individuals having family history and genetic factors. These scars decrease the quality of life (QOL) of patients greatly, due to the pain, itching, contracture, cosmetic problems, and so on, depending on the location of the scars. Treatment/prevention that will satisfy patients' QOL is still under development. In this article, we review pharmacotherapy for treating KD and HTS, including the prevention of postsurgical recurrence (especially KD). Pharmacotherapy involves monotherapy using a single drug and combination pharmacotherapy using multiple drugs, where drugs are administered orally, topically and/or through intralesional injection. In addition, pharmacotherapy for KD/HTS is sometimes combined with surgical excision and/or with physical therapy such as cryotherapy, laser therapy, radiotherapy including brachytherapy, and silicone gel/sheeting. The results regarding the clinical effectiveness of each mono-pharmacotherapy for KD/HTS are not always consistent but rather scattered among researchers. Multimodal combination pharmacotherapy that targets multiple sites simultaneously is more effective than mono-pharmacotherapy. The literature was searched using PubMed, Google Scholar, and Online search engines.


Subject(s)
Cicatrix, Hypertrophic , Keloid , Humans , Keloid/drug therapy , Keloid/therapy , Cicatrix, Hypertrophic/drug therapy , Cicatrix, Hypertrophic/therapy , Combined Modality Therapy , Quality of Life
6.
Arch Dermatol Res ; 316(6): 274, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38796528

ABSTRACT

Wound healing is a highly programmed process, in which any abnormalities result in scar formation. MicroRNAs are potent regulators affecting wound repair and scarification. However, the function of microRNAs in wound healing is not fully understood. Here, we analyzed the expression and function of microRNAs in patients with cutaneous wounds. Cutaneous wound biopsies from patients with either hypertrophic scarring or normal wound repair were collected during inflammation, proliferation, and remodeling phases. Fourteen candidate microRNAs were selected for expression analysis by qRT-PCR. The expression of genes involved in inflammation, angiogenesis, proliferation, and migration were measured using qRT-PCR. Cell cycle and scratch assays were used to explore the proliferation and migration rates. Flow cytometry analysis was employed to examine TGF-ß, αSMA and collagen-I expression. Target gene suggestion was performed using Enrichr tool. The results showed that miR-16-5p, miR-152-3p, miR-125b-5p, miR-34c-5p, and miR-182-5p were revealed to be differentially expressed between scarring and non-scarring wounds. Based on the expression patterns obtained, miR-182-5p was selected for functional studies. miR-182-5p induced RELA expression synergistically upon IL-6 induction in keratinocytes and promoted angiogenesis. miR-182-5p prevented keratinocyte migration, while overexpressed TGF-ß3 following induction of inflammation. Moreover, miR-182-5p enhanced fibroblast proliferation, migration, differentiation, and collagen-1 expression. FoxO1 and FoxO3 were found to potentially serve as putative gene targets of miR-182-5p. In conclusion, miR-182-5p is differentially expressed between scarring and non-scarring wounds and affect the behavior of cells involved in cutaneous wound healing. Deregulated expression of miR-182-5p adversely affects the proper transition of wound healing phases, resulting in scar formation.


Subject(s)
Cell Proliferation , Cicatrix, Hypertrophic , MicroRNAs , Skin , Wound Healing , MicroRNAs/genetics , MicroRNAs/metabolism , Humans , Wound Healing/genetics , Cell Proliferation/genetics , Skin/pathology , Skin/injuries , Skin/metabolism , Cicatrix, Hypertrophic/genetics , Cicatrix, Hypertrophic/pathology , Cicatrix, Hypertrophic/metabolism , Cell Movement/genetics , Inflammation/genetics , Inflammation/pathology , Keratinocytes/metabolism , Forkhead Box Protein O1/metabolism , Forkhead Box Protein O1/genetics , Male , Female , Adult , Transcription Factor RelA/metabolism , Transcription Factor RelA/genetics , Fibroblasts/metabolism , Gene Expression Regulation , Middle Aged , Neovascularization, Physiologic/genetics
7.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 49(2): 197-206, 2024 Feb 28.
Article in English, Chinese | MEDLINE | ID: mdl-38755716

ABSTRACT

Scars are classified into 5 types: Superficial scars, hypertrophic scars, atrophic scars, depressed scars, and keloid. These types are primarily characterized by abnormal production of fibroblasts and collagen, as well as the disorderly arrangement of connective tissue. Laser treatment for scars involves the coordinated activation of various signaling pathways and cytokines. However, the exact pathological mechanism for scar formation remains unclear, leading to a lack of radical treatment. Recently, laser treatment has gained popularity as a new minimally invasive approach for scar treatment. The emergence of new theories such as fractional, picosecond laser, and laser-assisted drug delivery has led to continuous advance in laser treatment. Up to now, it has been developed numerous novel treatments, including combined with drug, physical, and other treatments, which have shown superior therapeutic effects. In order to optimize laser treatment in the future, it is crucial to combine new materials with postoperative care. This will help clinicians develop more comprehensive treatment strategies. Therefore, it is important to explore treatment options that have broader applicability.


Subject(s)
Cicatrix , Keloid , Laser Therapy , Humans , Cicatrix/therapy , Laser Therapy/methods , Keloid/radiotherapy , Keloid/therapy , Cicatrix, Hypertrophic/radiotherapy , Cicatrix, Hypertrophic/therapy
8.
J Cosmet Dermatol ; 23 Suppl 1: 7-12, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38587305

ABSTRACT

BACKGROUND: Keloids are benign proliferative scars that form as a result of dysregulated growth and collagen deposition in response to cutaneous injury. Laser therapies have emerged as promising options for the treatment of keloids, with performance varying by laser type and lesion characteristics. PURPOSE: To assess the combined continuous wave and repetitive fractionated CO2 laser treatment of keloids. METHODS: A retrospective chart review of 22 cases of keloid scars treated with combined CO2 laser modes. A single session of continuous wave followed by five sessions of fractional delivery. Efficacy was assessed using the Patient and Observer Scar Assessment Scale (POSAS) and the Vancouver Scar Scale. The Numeric Rating Scale was used to assess patient satisfaction and pain. RESULTS: Most patients were female (77.3%) with skin type IV (72.7%), age was 24.3 ± 9.3 years, most keloids were located on the earlobe (56.5%) or arm or hand (17.4%), size ranged from 5 to 10 cm, and time since injury ranged from 3 months to 35 years. No serious adverse events were reported. At 6 months, significant improvements from baseline occurred in all characteristics, scar color (4.8 ± 2.8 to 1.9 ± 1.1), rigidity (5.0 ± 2.8 vs. 5.4 ± 2.8), thickness (5.4 ± 2.8 vs. 2.0 ± 1.1), and irregularity (5.9 ± 2.4 vs. 1.9 ± 0.9). The Vancouver scores followed a similar trend. Patient-rated overall improvement from 37 ± 17.6 at baseline to 16.1 ± 8.5 at 6 months, and improvement in associated pain and pruritus. CONCLUSION: Combination of two ablative laser delivery modes within a single laser platform provided for effective and safe keloid management and left patients highly satisfied.


Subject(s)
Cicatrix, Hypertrophic , Keloid , Lasers, Gas , Humans , Female , Adolescent , Young Adult , Adult , Male , Keloid/radiotherapy , Keloid/surgery , Keloid/etiology , Carbon Dioxide , Treatment Outcome , Retrospective Studies , Pain/etiology , Lasers, Gas/adverse effects , Cicatrix, Hypertrophic/etiology
9.
Sci Rep ; 14(1): 8725, 2024 04 16.
Article in English | MEDLINE | ID: mdl-38622256

ABSTRACT

Keloids are characterized by abnormal wound healing with excessive accumulation of extracellular matrix. Myofibroblasts are the primary contributor to extracellular matrix secretion, playing an essential role in the wound healing process. However, the differences between myofibroblasts involved in keloid formation and normal wound healing remain unclear. To identify the specific characteristics of keloid myofibroblasts, we initially assessed the expression levels of well-established myofibroblast markers, α-smooth muscle actin (α-SMA) and transgelin (TAGLN), in scar and keloid tissues (n = 63 and 51, respectively). Although myofibroblasts were present in significant quantities in keloids and immature scars, they were absent in mature scars. Next, we conducted RNA sequencing using myofibroblast-rich areas from keloids and immature scars to investigate the difference in RNA expression profiles among myofibroblasts. Among significantly upregulated 112 genes, KN motif and ankyrin repeat domains 4 (KANK4) was identified as a specifically upregulated gene in keloids. Immunohistochemical analysis showed that KANK4 protein was expressed in myofibroblasts in keloid tissues; however, it was not expressed in any myofibroblasts in immature scar tissues. Overexpression of KANK4 enhanced cell mobility in keloid myofibroblasts. Our results suggest that the KANK4-mediated increase in myofibroblast mobility contributes to keloid pathogenesis.


Subject(s)
Cicatrix, Hypertrophic , Keloid , Humans , Keloid/metabolism , Myofibroblasts/metabolism , Cicatrix, Hypertrophic/metabolism , Fibroblasts/metabolism , Wound Healing/genetics
10.
Plast Aesthet Nurs (Phila) ; 44(2): 116-123, 2024.
Article in English | MEDLINE | ID: mdl-38639968

ABSTRACT

Hypertrophic scars can have significant and far-reaching effects on patients that range from itching to creating difficulty with mobility, all of which can negatively impact the individual's quality of life. A recent study showed that many patients with recent scars report pain, burning, pruritus, erythema, in combination with psychological difficulties that impact bodily movement, choice of clothing, and participation in leisure activities. Botulinum toxin Type A (BoNTA) and intense pulsed light (IPL) have shown promise in treating such scars. We propose a novel treatment protocol involving a 4-week intervention with hyperdiluted BoNTA injections and supplemental treatment with IPL for erythema, and a 6-month scar scale assessment and photographic documentation that occurs before and 6 months after treatment. We report four cases where using hyperdiluted BoNTA, either alone or in conjunction with IPL, substantially reduced scar size, improved overall scar appearance, and diminished erythema in areas on the face and the breasts. Although this report suggests that a schedule of alternating treatments with BoNTA and IPL may be beneficial in reducing scar size and enhancing appearance, further research is necessary to better understand the most effective dosages, the relationship between BoNTA and IPL, and the optimal management of scarring.


Subject(s)
Botulinum Toxins, Type A , Cicatrix, Hypertrophic , Humans , Cicatrix, Hypertrophic/drug therapy , Quality of Life , Botulinum Toxins, Type A/therapeutic use , Pain , Erythema , Pruritus
11.
BMC Surg ; 24(1): 119, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38654240

ABSTRACT

PURPOSE: To investigate the application and effectiveness of tension-reducing suture in the repair of hypertrophic scars. METHODS: A retrospective analysis of clinical data was conducted on 82 patients with hypertrophic scars treated at the Department of Burns and Plastic Surgery of Nanjing Drum Tower Hospital from September 2021 to December 2022. Patients were operated with combination of heart-shaped tension-reducing suturing technique and looped, broad, and deep buried (LBD) suturing technique or conventional suture method. Outcomes of surgical treatment were assessed before and 6 months after surgery using the Patient and Observer Scar Assessment Scale (POSAS) and the Vancouver Scar Scale (VSS). RESULTS: Improvements were achieved on scar quality compared to that preoperatively, with a reduction in scar width (1.7 ± 0.6 cm vs. 0.7 ± 0.2 cm, P < 0.001). Assessment using the POSAS and VSS scales showed significant improvements in each single parameter and total score compared to preoperative values (P < 0.05). The Combination method group achieved better score in total score of VSS scale, in color, stiffness, thickness and overall opinion of PSAS scale, and in vascularity, thickness, pliability and overall opinion of OSAS scale. CONCLUSION: The amalgamation of the heart-shaped tension-reducing suturing technique and the LBD suturing technique has shown promising outcomes, garnering notably high levels of patient satisfaction in the context of hypertrophic scar repair. Patients have exhibited favorable postoperative recoveries, underscoring the clinical merit and the prospective broader applicability of this approach in the realm of hypertrophic scar management.


Subject(s)
Cicatrix, Hypertrophic , Suture Techniques , Humans , Cicatrix, Hypertrophic/etiology , Cicatrix, Hypertrophic/prevention & control , Retrospective Studies , Male , Female , Adult , Middle Aged , Treatment Outcome , Young Adult , Sutures , Adolescent
12.
Skin Res Technol ; 30(5): e13686, 2024 May.
Article in English | MEDLINE | ID: mdl-38682767

ABSTRACT

BACKGROUND: Our study aims to delineate the miRSNP-microRNA-gene-pathway interactions in the context of hypertrophic scars (HS) and keloids. MATERIALS AND METHODS: We performed a computational biology study involving differential expression analysis to identify genes and their mRNAs in HS and keloid tissues compared to normal skin, identifying key hub genes and enriching their functional roles, comprehensively analyzing microRNA-target genes and related signaling pathways through bioinformatics, identifying MiRSNPs, and constructing a pathway-based network to illustrate miRSNP-miRNA-gene-signaling pathway interactions. RESULTS: Our results revealed a total of 429 hub genes, with a strong enrichment in signaling pathways related to proteoglycans in cancer, focal adhesion, TGF-ß, PI3K/Akt, and EGFR tyrosine kinase inhibitor resistance. Particularly noteworthy was the substantial crosstalk between the focal adhesion and PI3K/Akt signaling pathways, making them more susceptible to regulation by microRNAs. We also identified specific miRNAs, including miRNA-1279, miRNA-429, and miRNA-302e, which harbored multiple SNP loci, with miRSNPs rs188493331 and rs78979933 exerting control over a significant number of miRNA target genes. Furthermore, we observed that miRSNP rs188493331 shared a location with microRNA302e, microRNA202a-3p, and microRNA20b-5p, and these three microRNAs collectively targeted the gene LAMA3, which is integral to the focal adhesion signaling pathway. CONCLUSIONS: The study successfully unveils the complex interactions between miRSNPs, miRNAs, genes, and signaling pathways, shedding light on the genetic factors contributing to HS and keloid formation.


Subject(s)
Cicatrix, Hypertrophic , Keloid , MicroRNAs , Humans , Cicatrix, Hypertrophic/genetics , Cicatrix, Hypertrophic/metabolism , Computational Biology , Keloid/genetics , Keloid/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Polymorphism, Single Nucleotide , Signal Transduction/genetics
13.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167202, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38670440

ABSTRACT

BACKGROUND & AIMS: Hypertrophic scar (HS) is a skin fibroproliferative disorder occurring after burns, surgeries or traumatic injuries, and it has caused a tremendous economic and medical burden. Its molecular mechanism is associated with the abnormal proliferation and transition of fibroblasts and excessive deposition of extracellular matrix. Cartilage intermediate layer protein 2 (CILP2), highly homologous to cartilage intermediate layer protein 1 (CILP1), is mainly secreted predominantly from chondrocytes in the middle/deeper layers of articular cartilage. Recent reports indicate that CILP2 is involved in the development of fibrotic diseases. We investigated the role of CILP2 in the progression of HS. METHODS AND RESULTS: It was found in this study that CILP2 expression was significantly higher in HS than in normal skin, especially in myofibroblasts. In a clinical cohort, we discovered that CILP2 was more abundant in the serum of patients with HS, especially in the early stage of HS. In vitro studies indicated that knockdown of CILP2 suppressed proliferation, migration, myofibroblast activation and collagen synthesis of hypertrophic scar fibroblasts (HSFs). Further, we revealed that CILP2 interacts with ATP citrate lyase (ACLY), in which CILP2 stabilizes the expression of ACLY by reducing the ubiquitination of ACLY, therefore prompting Snail acetylation and avoiding reduced expression of Snail. In vivo studies indicated that knockdown of CILP2 or ACLY inhibitor, SB-204990, significantly alleviated HS formation. CONCLUSION: CILP2 exerts a vital role in hypertrophic scar formation and might be a detectable biomarker reflecting the progression of hypertrophic scar and a therapeutic target for hypertrophic scar.


Subject(s)
Cicatrix, Hypertrophic , Snail Family Transcription Factors , Adult , Animals , Female , Humans , Male , Mice , Acetylation , Cell Movement , Cell Proliferation , Cicatrix, Hypertrophic/metabolism , Cicatrix, Hypertrophic/pathology , Cicatrix, Hypertrophic/genetics , Fibroblasts/metabolism , Fibroblasts/pathology , Myofibroblasts/metabolism , Myofibroblasts/pathology , Snail Family Transcription Factors/metabolism , Snail Family Transcription Factors/genetics , ATP Citrate (pro-S)-Lyase/metabolism
14.
Int Wound J ; 21(4): e14865, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38584345

ABSTRACT

Keloid are a fibroproliferative disorder caused by abnormal healing of skin, specifically reticular dermis, when subjected to pathological or inflammatory scars demonstrating redness, elevation above the skin surface, extension beyond the original wound margins and resulting in an unappealing cosmetic appearance. The severity of keloids and risk of developing keloids scars are subjected to elevation by other contributing factors such as systemic diseases, general health conditions, genetic disorders, lifestyle and natural environment. In particular, recently, daily physical work interpreted into mechanical force as well as the interplay between mechanical factors such as stress, strain and stiffness have been reported to strongly modulate the cellular behaviour of keloid formation, affect their location and shape in keloids. Herein, we review the extensive literature on the effects of these factors on keloids and the contributing predisposing mechanisms. Early understanding of these participating factors and their effects in developing keloids may raise the patient awareness in preventing keloids incidence and controlling its severity. Moreover, further studies into their association with keloids as well as considering strategies to control such factors may help clinicians to prevent keloids and widen the therapeutic options.


Subject(s)
Cicatrix, Hypertrophic , Keloid , Humans , Keloid/etiology , Cicatrix, Hypertrophic/therapy , Skin/pathology , Dermis/pathology , Life Style
15.
FASEB J ; 38(6): e23561, 2024 Mar 31.
Article in English | MEDLINE | ID: mdl-38530321

ABSTRACT

Hypertrophic scarring is a major source of morbidity. Sex hormones are not classically considered modulators of scarring. However, based on increased frequency of hypertrophic scarring in patients on testosterone, we hypothesized that androgenic steroids induce abnormal scarring and developed a preclinical porcine model to explore these effects. Mini-swine underwent castration, received no testosterone (noT) or biweekly testosterone therapy (+T), and underwent excisional wounding. To create a delayed wound healing model, a subset of wounds were re-excised at 2 weeks. Scars from postoperative day 42 (POD42) and delayed wounds (POD28) were harvested 6 weeks after initial wounding for analysis via histology, bulk RNA-seq, and mechanical testing. Histologic analysis of scars from +T animals showed increased mean fibrosis area (16 mm2noT, 28 mm2+T; p = .007) and thickness (0.246 mm2noT, 0.406 mm2+T; p < .001) compared to noT. XX+T and XY+T scars had greater tensile burst strength (p = .024 and p = .013, respectively) compared to noT swine. Color deconvolution analysis revealed greater deposition of type I and type III collagen as well as increased collagen type I:III ratio in +T scars. Dermatopathologist histology scoring showed that +T exposure was associated with worse overall scarring (p < .05). Gene ontology analysis found that testosterone exposure was associated with upregulation of cellular metabolism and immune response gene sets, while testosterone upregulated pathways related to keratinization and laminin formation on pathway analysis. In conclusion, we developed a preclinical porcine model to study the effects of the sex hormone testosterone on scarring. Testosterone induces increased scar tissue deposition and appears to increase physical strength of scars via supraphysiologic deposition of collagen and other ECM factors. The increased burst strength seen in both XX and XY animals suggests that hormone administration has a strong influence on scar mechanical properties independent of chromosomal sex. Anti-androgen topical therapies may be a promising future area of research.


Subject(s)
Cicatrix, Hypertrophic , Humans , Swine , Animals , Extracellular Matrix , Testosterone/pharmacology , Collagen Type I , Laminin
16.
J Proteomics ; 298: 105155, 2024 04 30.
Article in English | MEDLINE | ID: mdl-38460743

ABSTRACT

Lysine succinylation (Ksucc) is a recently identified posttranslational modification that is involved in many diseases. This study examined the role of Ksucc in the pathogenesis of hypertrophic scar (HS). The presence of Ksucc in human skin was measured by immunoblotting. Ksucc occurs in many skin proteins ranging from 25 to 250 kDa, and higher levels of Ksucc are found in HS skin than in normal skin. An immunoaffinity approach coupled with LC-MS/MS was used to characterize the first succinylome of human skin, and 159 Ksucc sites in 79 proteins were identified. Among these, there were 38 increased succinylated sites in 29 proteins but no decreased succinylated sites in HS compared with normal skin. A parallel reaction monitoring assay was performed to validate the results of the succinylome and showed that the levels of Ksucc in decorin and collagens, which are involved in the pathogenesis of HS, were increased in HS than in normal skin. In addition, increasing the level of Ksucc enhanced cell proliferation and upregulated the expression of fibrosis markers (α-SMA, COL1, and COL3) in human skin fibroblasts. Our results provide global insights into the functional role of Ksucc in hypertrophic scarring.


Subject(s)
Cicatrix, Hypertrophic , Humans , Cicatrix, Hypertrophic/metabolism , Cicatrix, Hypertrophic/pathology , Lysine/metabolism , Proteomics , Chromatography, Liquid , Tandem Mass Spectrometry , Protein Processing, Post-Translational
17.
Article in Chinese | MEDLINE | ID: mdl-38548396

ABSTRACT

Objective: To investigate the influences and mechanism of extracellular vesicles from dermal papilla cells (DPC-EVs) of mice on human hypertrophic scar fibroblasts (HSFs). Methods: The study was an experimental research. The primary dermal papilla cells (DPCs) of whiskers were extracted from 10 6-week-old male C57BL/6J mice and identified successfully. The DPC-EVs were extracted from the 3rd to 5th passage DPCs by ultracentrifugation, and the morphology was observed through transmission electron microscope and the particle diameter was detected by nanoparticle tracking analyzer (n=3) at 24 h after culture. The 3rd passage of HSFs were divided into DPC-EV group and phosphate buffer solution (PBS) group, which were cultured with DPC-EVs and PBS, respectively. The cell scratch test was performed and cell migration rate at 24 h after scratching was calculated (n=5). The cell proliferation levels at 0 (after 12 h of starvation treatment and before adding DPC-EVs or PBS), 24, 48, 72, and 96 h after culture were detected by using cell counting kit 8 (n=4). The protein expressions of α-smooth muscle actin (α-SMA) and collagen typeⅠ (ColⅠ) in cells at 24 h after culture were detected by immunofluorescence method and Western blotting, and the protein expression of Krüppel-like factor 4 (KLF4) in cells at 24 h after culture was detected by Western blotting. After the 3rd passage of HSFs were cultured with DPC-EVs for 24 h, the cells were divided into blank control group, KLF4 knockdown group, and KLF4 overexpression group according to the random number table. The cells in blank control group were only routinely cultured for 48 h. The cells in KLF4 knockdown group and KLF4 overexpression group were incubated with KLF4 knockdown virus for 24 h, then the cells in KLF4 knockdown group were routinely cultured for 24 h while the cells in KLF4 overexpression group were incubated with KLF4 overexpression virus for 24 h. The protein expressions of KLF4, α-SMA, and ColⅠ in cells were detected by Western blotting at 48 h after culture. Results: At 24 h after culture, the extracted DPC-EVs showed vesicular structure with an average particle diameter of 108.8 nm. At 24 h after scratching, the migration rate of HSFs in PBS group was (54±10)%, which was significantly higher than (29±8)% in DPC-EV group (t=4.37, P<0.05). At 48, 72, and 96 h after culture, the proliferation levels of HSFs in DPC-EV group were significantly lower than those in PBS group (with t values of 4.06, 5.76, and 6.41, respectively, P<0.05). At 24 h after culture, the protein expressions of α-SMA and ColⅠ of HSFs in DPC-EV group were significantly lower than those in PBS group, while the protein expression of KLF4 was significantly higher than that in PBS group. At 48 h after culture, compared with those in blank control group, the protein expression of KLF4 of HSFs in KLF4 knockdown group was down-regulated, while the protein expressions of α-SMA and ColⅠ were both up-regulated; compared with those in KLF4 knockdown group, the protein expression of KLF4 of HSFs in KLF4 overexpression group was up-regulated, while the protein expressions of ColⅠ and α-SMA were down-regulated. Conclusions: The DPC-EVs of mice can inhibit the proliferation and migration of human HSFs and significantly inhibit the expressions of fibrosis markers α-SMA and ColⅠ in human HSFs by activating KLF4.


Subject(s)
Cicatrix, Hypertrophic , Extracellular Vesicles , Humans , Mice , Male , Animals , Cicatrix, Hypertrophic/metabolism , Mice, Inbred C57BL , Fibroblasts , Cell Movement , Extracellular Vesicles/metabolism
18.
Biochim Biophys Acta Mol Basis Dis ; 1870(4): 167125, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38508477

ABSTRACT

Scarring, a prevalent issue in clinical settings, is characterized by the excessive generation of extracellular matrix within the skin tissue. Among the numerous regulatory factors implicated in fibrosis across various organs, the apelin/APJ axis has emerged as a potential regulator of fibrosis. Given the shared attribute of heightened extracellular matrix production between organ fibrosis and scarring, we hypothesize that the apelin/APJ axis also plays a regulatory role in scar development. In this study, we examined the expression of apelin and APJ in scar tissue, normal skin, and fibroblasts derived from these tissues. We investigated the impact of the hypoxic microenvironment in scars on apelin/APJ expression to identify the transcription factors influencing apelin/APJ expression. Through overexpressing or knocking down apelin/APJ expression, we observed their effects on fibroblast secretion of extracellular matrix proteins. We further validated these effects in animal experiments while exploring the underlying mechanisms. Our findings demonstrated that the apelin/APJ axis is expressed in fibroblasts from keloid, hypertrophic scar, and normal skin. The regulation of apelin/APJ expression by the hypoxic environment in scars plays a significant role in hypertrophic scar and keloid development. This regulation promotes extracellular matrix secretion through upregulation of TGF-ß1 expression via the PI3K/Akt/CREB1 pathway.


Subject(s)
Cicatrix, Hypertrophic , Keloid , Animals , Apelin/genetics , Apelin/metabolism , Apelin Receptors/genetics , Apelin Receptors/metabolism , Fibrosis , Keloid/metabolism , Phosphatidylinositol 3-Kinases , Humans
19.
Drug Deliv ; 31(1): 2305818, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38424728

ABSTRACT

Burn injuries can result in a significant inflammatory response, often leading to hypertrophic scarring (HTS). Local drug therapies e.g. corticoid injections are advised to treat HTS, although they are invasive, operator-dependent, extremely painful and do not permit extended drug release. Polymer-based microneedle (MN) arrays can offer a viable alternative to standard care, while allowing for direct, painless dermal drug delivery with tailorable drug release profile. In the current study, we synthesized photo-crosslinkable, acrylate-endcapped urethane-based poly(ε-caprolactone) (AUP-PCL) toward the fabrication of MNs. Physico-chemical characterization (1H-NMR, evaluation of swelling, gel fraction) of the developed polymer was performed and confirmed successful acrylation of PCL-diol. Subsequently, AUP-PCL, and commercially available PCL-based microneedle arrays were fabricated for comparative evaluation of the constructs. Hydrocortisone was chosen as model drug. To enhance the drug release efficiency of the MNs, Brij®35, a nonionic surfactant was exploited. The thermal properties of the MNs were evaluated via differential scanning calorimetry. Compression testing of the arrays confirmed that the MNs stay intact upon applying a load of 7 N, which correlates to the standard dermal insertion force of MNs. The drug release profile of the arrays was evaluated, suggesting that the developed PCL arrays can offer efficient drug delivery for up to two days, while the AUP-PCL arrays can provide a release up to three weeks. Finally, the insertion of MN arrays into skin samples was performed, followed by histological analysis demonstrating the AUP-PCL MNs outperforming the PCL arrays upon providing pyramidical-shaped perforations through the epidermal layer of the skin.


AUP-PCL MN arrays provide long-term transdermal drug delivery of hydrocortisoneAUP-PCL-based MN arrays provide superior drug release profiles compared to PCL MNsEffective skin penetration AUP-PCL-based MNs on skin was achieved.


Subject(s)
Cicatrix, Hypertrophic , Polyesters , Humans , Administration, Cutaneous , Pharmaceutical Preparations/metabolism , Cicatrix, Hypertrophic/drug therapy , Cicatrix, Hypertrophic/metabolism , Drug Liberation , Skin/metabolism , Drug Delivery Systems , Polymers/metabolism , Needles
20.
Am J Case Rep ; 25: e942706, 2024 Mar 10.
Article in English | MEDLINE | ID: mdl-38512480

ABSTRACT

BACKGROUND Hypertrophic scars occur when there is an excessive wound-healing response in the skin. Fractional, or fractionated, carbon dioxide (CO2) laser therapy uses narrow shafts of light to smooth the skin surface and stimulate dermal collagen, which tightens the skin. This case report describes a 57-year-old woman with a traumatic hypertrophic scar of the face treated with fractional carbon dioxide laser therapy. The purpose of this case report was to highlight the role of fractional CO2 laser therapy in treatment of a facial traumatic hypertrophic scar in a patient after a motor vehicle crash. CASE REPORT A 57-year-old female patient presented with a hypertrophic, rigid, post-traumatic scar on the left side of her face following a motor vehicle crash. For the hypertrophic scar removal, the patient underwent 1 treatment session with fractional CO2 laser using the µ-Scan DOT scanning system. After 1 laser treatment session, the photographic documentation, which permits monitoring the treatment's effectiveness in esthetic improvement, showed a significant improvement in scar texture and color. In addition, a significant reduction in scar height was observed following laser therapy. Fractional laser treatment with the device was very well tolerated by the patient, who reported no pain or discomfort, complications, or adverse effects either during treatment or in the follow-up period (3 months). CONCLUSIONS This report demonstrates the cosmetic application of fractional carbon dioxide laser therapy in a case of hypertrophic scar with the use of an effective therapeutic protocol that did not require the use of suturing.


Subject(s)
Cicatrix, Hypertrophic , Laser Therapy , Female , Humans , Middle Aged , Cicatrix, Hypertrophic/radiotherapy , Cicatrix, Hypertrophic/surgery , Cicatrix, Hypertrophic/etiology , Cicatrix/complications , Carbon Dioxide , Treatment Outcome , Hypertrophy/etiology , Laser Therapy/adverse effects
SELECTION OF CITATIONS
SEARCH DETAIL
...