Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 557
Filter
1.
Stem Cell Res Ther ; 15(1): 137, 2024 May 12.
Article in English | MEDLINE | ID: mdl-38735979

ABSTRACT

Scar tissue is the inevitable result of repairing human skin after it has been subjected to external destructive stimuli. It leads to localized damage to the appearance of the skin, accompanied by symptoms such as itching and pain, which reduces the quality of life of the patient and causes serious medical burdens. With the continuous development of economy and society, there is an increasing demand for beauty. People are looking forward to a safer and more effective method to eliminate pathological scarring. In recent years, adipose-derived stem cells (ADSCs) have received increasing attention from researchers. It can effectively improve pathological scarring by mediating inflammation, regulating fibroblast proliferation and activation, and vascular reconstruction. This review focuses on the pathophysiological mechanisms of hypertrophic scarring, summarizing the therapeutic effects of in vitro, in vivo, and clinical studies on the therapeutic effects of ADSCs in the field of hypertrophic scarring prevention and treatment, the latest application techniques, such as cell-free therapies utilizing ADSCs, and discussing the advantages and limitations of ADSCs. Through this review, we hope to further understand the characterization of ADSC and clarify the effectiveness of its application in hypertrophic scarring treatment, so as to provide clinical guidance.


Subject(s)
Adipose Tissue , Cicatrix, Hypertrophic , Humans , Cicatrix, Hypertrophic/therapy , Cicatrix, Hypertrophic/metabolism , Cicatrix, Hypertrophic/pathology , Adipose Tissue/cytology , Adipose Tissue/metabolism , Stem Cells/metabolism , Stem Cells/cytology , Secretome/metabolism , Animals , Stem Cell Transplantation/methods
2.
Arch Dermatol Res ; 316(6): 274, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38796528

ABSTRACT

Wound healing is a highly programmed process, in which any abnormalities result in scar formation. MicroRNAs are potent regulators affecting wound repair and scarification. However, the function of microRNAs in wound healing is not fully understood. Here, we analyzed the expression and function of microRNAs in patients with cutaneous wounds. Cutaneous wound biopsies from patients with either hypertrophic scarring or normal wound repair were collected during inflammation, proliferation, and remodeling phases. Fourteen candidate microRNAs were selected for expression analysis by qRT-PCR. The expression of genes involved in inflammation, angiogenesis, proliferation, and migration were measured using qRT-PCR. Cell cycle and scratch assays were used to explore the proliferation and migration rates. Flow cytometry analysis was employed to examine TGF-ß, αSMA and collagen-I expression. Target gene suggestion was performed using Enrichr tool. The results showed that miR-16-5p, miR-152-3p, miR-125b-5p, miR-34c-5p, and miR-182-5p were revealed to be differentially expressed between scarring and non-scarring wounds. Based on the expression patterns obtained, miR-182-5p was selected for functional studies. miR-182-5p induced RELA expression synergistically upon IL-6 induction in keratinocytes and promoted angiogenesis. miR-182-5p prevented keratinocyte migration, while overexpressed TGF-ß3 following induction of inflammation. Moreover, miR-182-5p enhanced fibroblast proliferation, migration, differentiation, and collagen-1 expression. FoxO1 and FoxO3 were found to potentially serve as putative gene targets of miR-182-5p. In conclusion, miR-182-5p is differentially expressed between scarring and non-scarring wounds and affect the behavior of cells involved in cutaneous wound healing. Deregulated expression of miR-182-5p adversely affects the proper transition of wound healing phases, resulting in scar formation.


Subject(s)
Cell Proliferation , Cicatrix, Hypertrophic , MicroRNAs , Skin , Wound Healing , MicroRNAs/genetics , MicroRNAs/metabolism , Humans , Wound Healing/genetics , Cell Proliferation/genetics , Skin/pathology , Skin/injuries , Skin/metabolism , Cicatrix, Hypertrophic/genetics , Cicatrix, Hypertrophic/pathology , Cicatrix, Hypertrophic/metabolism , Cell Movement/genetics , Inflammation/genetics , Inflammation/pathology , Keratinocytes/metabolism , Forkhead Box Protein O1/metabolism , Forkhead Box Protein O1/genetics , Male , Female , Adult , Transcription Factor RelA/metabolism , Transcription Factor RelA/genetics , Fibroblasts/metabolism , Gene Expression Regulation , Middle Aged , Neovascularization, Physiologic/genetics
3.
Cell Signal ; 120: 111202, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38729323

ABSTRACT

Hypertrophic scarring (HS) is a pathological condition characterized by excessive fibrosis and inflammation, resulting in excessive extracellular matrix formation in the skin. MIR155HG, a long non-coding RNA, is abnormally upregulated in fibrotic tissues; however, its underlying mechanism is poorly understood. Using single-cell sequencing data, we analyzed connective tissue growth factor (CTGF) expression in various cell types in HS and normal skin tissues and MIR155HG expression in clinical samples. To investigate the mechanism of fibrosis, an in vitro model using CTGF-treated hypertrophic scar fibroblasts (HSFBs) was established and qRT-PCR, western blotting and ELISA assays were performed to investigate the expression of interleukin (IL)-1ß, IL-6, and mesenchymal markers α-smooth muscle actin (α-SMA). CTGF stimulates MIR155HG level through phosphorylated STAT3 binding to the MIR155HG promoter. We analyzed the methylation of MIR155HG, assessed the levels of miR-155-5p/-3p in CTGF-treated HSFBs and identified differentially expressed genes among HS and NS samples using the Gene Expression Omnibus RNA sequencing data. The binding between miR-155-5p/-3p and AZGP1 was confirmed using a dual-luciferase assay and inflammatory cytokine production and α-SMA expression were investigated in rescue experiments. The findings revealed that CTGF elevated inflammatory cytokine production, α-SMA and MIR155HG expression in HSFBs. MIR155HG is upregulated in HS tissues due to low DNA methylation. Mechanistically, miR-155-5p/-3p was directly bound to MIR155HG 3'UTR. MIR155HG silencing inhibited cytokine production and α-SMA expression by repressing the generation of miR-155-5p/-3p in CTGF-treated HSFBs. Bioinformatics analysis and luciferase reporter assays revealed that miR-155-5p/-3p targets AZGP1. In addition, transfection with plasmids carrying AZGP1 cDNA significantly inhibited the signaling activity of miR-155-5p/-3 p-overexpressing HSFBs. Our findings highlight the importance of the MIR155HG/miR-155/AZGP1 axis in regulating cytokine production and α-SMA in HS.


Subject(s)
Actins , Cicatrix, Hypertrophic , Connective Tissue Growth Factor , Cytokines , Fibroblasts , MicroRNAs , Up-Regulation , MicroRNAs/metabolism , MicroRNAs/genetics , Humans , Connective Tissue Growth Factor/metabolism , Connective Tissue Growth Factor/genetics , Fibroblasts/metabolism , Cicatrix, Hypertrophic/metabolism , Cicatrix, Hypertrophic/pathology , Cicatrix, Hypertrophic/genetics , Actins/metabolism , Cytokines/metabolism , Up-Regulation/drug effects , Glycoproteins/metabolism , Glycoproteins/genetics , Male , Female , Signal Transduction
4.
Skin Res Technol ; 30(5): e13686, 2024 May.
Article in English | MEDLINE | ID: mdl-38682767

ABSTRACT

BACKGROUND: Our study aims to delineate the miRSNP-microRNA-gene-pathway interactions in the context of hypertrophic scars (HS) and keloids. MATERIALS AND METHODS: We performed a computational biology study involving differential expression analysis to identify genes and their mRNAs in HS and keloid tissues compared to normal skin, identifying key hub genes and enriching their functional roles, comprehensively analyzing microRNA-target genes and related signaling pathways through bioinformatics, identifying MiRSNPs, and constructing a pathway-based network to illustrate miRSNP-miRNA-gene-signaling pathway interactions. RESULTS: Our results revealed a total of 429 hub genes, with a strong enrichment in signaling pathways related to proteoglycans in cancer, focal adhesion, TGF-ß, PI3K/Akt, and EGFR tyrosine kinase inhibitor resistance. Particularly noteworthy was the substantial crosstalk between the focal adhesion and PI3K/Akt signaling pathways, making them more susceptible to regulation by microRNAs. We also identified specific miRNAs, including miRNA-1279, miRNA-429, and miRNA-302e, which harbored multiple SNP loci, with miRSNPs rs188493331 and rs78979933 exerting control over a significant number of miRNA target genes. Furthermore, we observed that miRSNP rs188493331 shared a location with microRNA302e, microRNA202a-3p, and microRNA20b-5p, and these three microRNAs collectively targeted the gene LAMA3, which is integral to the focal adhesion signaling pathway. CONCLUSIONS: The study successfully unveils the complex interactions between miRSNPs, miRNAs, genes, and signaling pathways, shedding light on the genetic factors contributing to HS and keloid formation.


Subject(s)
Cicatrix, Hypertrophic , Keloid , MicroRNAs , Humans , Cicatrix, Hypertrophic/genetics , Cicatrix, Hypertrophic/metabolism , Computational Biology , Keloid/genetics , Keloid/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Polymorphism, Single Nucleotide , Signal Transduction/genetics
5.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167202, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38670440

ABSTRACT

BACKGROUND & AIMS: Hypertrophic scar (HS) is a skin fibroproliferative disorder occurring after burns, surgeries or traumatic injuries, and it has caused a tremendous economic and medical burden. Its molecular mechanism is associated with the abnormal proliferation and transition of fibroblasts and excessive deposition of extracellular matrix. Cartilage intermediate layer protein 2 (CILP2), highly homologous to cartilage intermediate layer protein 1 (CILP1), is mainly secreted predominantly from chondrocytes in the middle/deeper layers of articular cartilage. Recent reports indicate that CILP2 is involved in the development of fibrotic diseases. We investigated the role of CILP2 in the progression of HS. METHODS AND RESULTS: It was found in this study that CILP2 expression was significantly higher in HS than in normal skin, especially in myofibroblasts. In a clinical cohort, we discovered that CILP2 was more abundant in the serum of patients with HS, especially in the early stage of HS. In vitro studies indicated that knockdown of CILP2 suppressed proliferation, migration, myofibroblast activation and collagen synthesis of hypertrophic scar fibroblasts (HSFs). Further, we revealed that CILP2 interacts with ATP citrate lyase (ACLY), in which CILP2 stabilizes the expression of ACLY by reducing the ubiquitination of ACLY, therefore prompting Snail acetylation and avoiding reduced expression of Snail. In vivo studies indicated that knockdown of CILP2 or ACLY inhibitor, SB-204990, significantly alleviated HS formation. CONCLUSION: CILP2 exerts a vital role in hypertrophic scar formation and might be a detectable biomarker reflecting the progression of hypertrophic scar and a therapeutic target for hypertrophic scar.


Subject(s)
Cicatrix, Hypertrophic , Snail Family Transcription Factors , Adult , Animals , Female , Humans , Male , Mice , Acetylation , Cell Movement , Cell Proliferation , Cicatrix, Hypertrophic/metabolism , Cicatrix, Hypertrophic/pathology , Cicatrix, Hypertrophic/genetics , Fibroblasts/metabolism , Fibroblasts/pathology , Myofibroblasts/metabolism , Myofibroblasts/pathology , Snail Family Transcription Factors/metabolism , Snail Family Transcription Factors/genetics , ATP Citrate (pro-S)-Lyase/metabolism
6.
Sci Rep ; 14(1): 8725, 2024 04 16.
Article in English | MEDLINE | ID: mdl-38622256

ABSTRACT

Keloids are characterized by abnormal wound healing with excessive accumulation of extracellular matrix. Myofibroblasts are the primary contributor to extracellular matrix secretion, playing an essential role in the wound healing process. However, the differences between myofibroblasts involved in keloid formation and normal wound healing remain unclear. To identify the specific characteristics of keloid myofibroblasts, we initially assessed the expression levels of well-established myofibroblast markers, α-smooth muscle actin (α-SMA) and transgelin (TAGLN), in scar and keloid tissues (n = 63 and 51, respectively). Although myofibroblasts were present in significant quantities in keloids and immature scars, they were absent in mature scars. Next, we conducted RNA sequencing using myofibroblast-rich areas from keloids and immature scars to investigate the difference in RNA expression profiles among myofibroblasts. Among significantly upregulated 112 genes, KN motif and ankyrin repeat domains 4 (KANK4) was identified as a specifically upregulated gene in keloids. Immunohistochemical analysis showed that KANK4 protein was expressed in myofibroblasts in keloid tissues; however, it was not expressed in any myofibroblasts in immature scar tissues. Overexpression of KANK4 enhanced cell mobility in keloid myofibroblasts. Our results suggest that the KANK4-mediated increase in myofibroblast mobility contributes to keloid pathogenesis.


Subject(s)
Cicatrix, Hypertrophic , Keloid , Humans , Keloid/metabolism , Myofibroblasts/metabolism , Cicatrix, Hypertrophic/metabolism , Fibroblasts/metabolism , Wound Healing/genetics
7.
J Proteomics ; 298: 105155, 2024 04 30.
Article in English | MEDLINE | ID: mdl-38460743

ABSTRACT

Lysine succinylation (Ksucc) is a recently identified posttranslational modification that is involved in many diseases. This study examined the role of Ksucc in the pathogenesis of hypertrophic scar (HS). The presence of Ksucc in human skin was measured by immunoblotting. Ksucc occurs in many skin proteins ranging from 25 to 250 kDa, and higher levels of Ksucc are found in HS skin than in normal skin. An immunoaffinity approach coupled with LC-MS/MS was used to characterize the first succinylome of human skin, and 159 Ksucc sites in 79 proteins were identified. Among these, there were 38 increased succinylated sites in 29 proteins but no decreased succinylated sites in HS compared with normal skin. A parallel reaction monitoring assay was performed to validate the results of the succinylome and showed that the levels of Ksucc in decorin and collagens, which are involved in the pathogenesis of HS, were increased in HS than in normal skin. In addition, increasing the level of Ksucc enhanced cell proliferation and upregulated the expression of fibrosis markers (α-SMA, COL1, and COL3) in human skin fibroblasts. Our results provide global insights into the functional role of Ksucc in hypertrophic scarring.


Subject(s)
Cicatrix, Hypertrophic , Humans , Cicatrix, Hypertrophic/metabolism , Cicatrix, Hypertrophic/pathology , Lysine/metabolism , Proteomics , Chromatography, Liquid , Tandem Mass Spectrometry , Protein Processing, Post-Translational
8.
Article in Chinese | MEDLINE | ID: mdl-38548396

ABSTRACT

Objective: To investigate the influences and mechanism of extracellular vesicles from dermal papilla cells (DPC-EVs) of mice on human hypertrophic scar fibroblasts (HSFs). Methods: The study was an experimental research. The primary dermal papilla cells (DPCs) of whiskers were extracted from 10 6-week-old male C57BL/6J mice and identified successfully. The DPC-EVs were extracted from the 3rd to 5th passage DPCs by ultracentrifugation, and the morphology was observed through transmission electron microscope and the particle diameter was detected by nanoparticle tracking analyzer (n=3) at 24 h after culture. The 3rd passage of HSFs were divided into DPC-EV group and phosphate buffer solution (PBS) group, which were cultured with DPC-EVs and PBS, respectively. The cell scratch test was performed and cell migration rate at 24 h after scratching was calculated (n=5). The cell proliferation levels at 0 (after 12 h of starvation treatment and before adding DPC-EVs or PBS), 24, 48, 72, and 96 h after culture were detected by using cell counting kit 8 (n=4). The protein expressions of α-smooth muscle actin (α-SMA) and collagen typeⅠ (ColⅠ) in cells at 24 h after culture were detected by immunofluorescence method and Western blotting, and the protein expression of Krüppel-like factor 4 (KLF4) in cells at 24 h after culture was detected by Western blotting. After the 3rd passage of HSFs were cultured with DPC-EVs for 24 h, the cells were divided into blank control group, KLF4 knockdown group, and KLF4 overexpression group according to the random number table. The cells in blank control group were only routinely cultured for 48 h. The cells in KLF4 knockdown group and KLF4 overexpression group were incubated with KLF4 knockdown virus for 24 h, then the cells in KLF4 knockdown group were routinely cultured for 24 h while the cells in KLF4 overexpression group were incubated with KLF4 overexpression virus for 24 h. The protein expressions of KLF4, α-SMA, and ColⅠ in cells were detected by Western blotting at 48 h after culture. Results: At 24 h after culture, the extracted DPC-EVs showed vesicular structure with an average particle diameter of 108.8 nm. At 24 h after scratching, the migration rate of HSFs in PBS group was (54±10)%, which was significantly higher than (29±8)% in DPC-EV group (t=4.37, P<0.05). At 48, 72, and 96 h after culture, the proliferation levels of HSFs in DPC-EV group were significantly lower than those in PBS group (with t values of 4.06, 5.76, and 6.41, respectively, P<0.05). At 24 h after culture, the protein expressions of α-SMA and ColⅠ of HSFs in DPC-EV group were significantly lower than those in PBS group, while the protein expression of KLF4 was significantly higher than that in PBS group. At 48 h after culture, compared with those in blank control group, the protein expression of KLF4 of HSFs in KLF4 knockdown group was down-regulated, while the protein expressions of α-SMA and ColⅠ were both up-regulated; compared with those in KLF4 knockdown group, the protein expression of KLF4 of HSFs in KLF4 overexpression group was up-regulated, while the protein expressions of ColⅠ and α-SMA were down-regulated. Conclusions: The DPC-EVs of mice can inhibit the proliferation and migration of human HSFs and significantly inhibit the expressions of fibrosis markers α-SMA and ColⅠ in human HSFs by activating KLF4.


Subject(s)
Cicatrix, Hypertrophic , Extracellular Vesicles , Humans , Mice , Male , Animals , Cicatrix, Hypertrophic/metabolism , Mice, Inbred C57BL , Fibroblasts , Cell Movement , Extracellular Vesicles/metabolism
9.
Int Wound J ; 21(3): e13946, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38477426

ABSTRACT

Keloids seem to overexpress cyclo-oxygenase-2 (COX-2), suggesting a role in its deregulated pathway in inducing an altered epithelial-mesenchymal interaction, which may be responsible for the overgrowth of dermal components resulting in scars or keloid lesions. This study aimed to evaluate the effect of Parecoxib, a COX-2 inhibitor, on cell growth in fibroblast primary cultures obtained from human keloid tissues. Tissue explants were obtained from patients who underwent intralesional excision of untreated keloids; central fractions were isolated from keloid tissues and used for establishing distinct primary cultures. Appropriate aliquots of Parecoxib, a COX-2 inhibitor were diluted to obtain the concentration used in the experimental protocols in vitro (1, 10 or 100 µM). Treatment with Parecoxib (at all concentrations) caused a significant decrease in cellular growth from 24 hours onwards, and with a maximum at 72 hours (P < .02). Moreover, at 72 hours Parecoxib significantly reduced cellular vitality. Parecoxib treatment also induced an increase in fragmented nuclei with a maximum effect at 100 µM and a significant decrease in Bcl-2 and an increase in activated caspase-3 protein levels at 72 hours compared with control untreated cultures. Our findings suggest a potential use of the COX-2 inhibitor, Parecoxib, as the therapy for keloids.


Subject(s)
Cicatrix, Hypertrophic , Keloid , Humans , Keloid/pathology , Cyclooxygenase 2 Inhibitors/metabolism , Cyclooxygenase 2 Inhibitors/pharmacology , Isoxazoles/metabolism , Isoxazoles/pharmacology , Fibroblasts , Cicatrix, Hypertrophic/metabolism
10.
Burns ; 50(5): 1247-1258, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38503573

ABSTRACT

OBJECTIVE: Research indicates that long noncoding RNAs (lncRNAs) contribute significantly to fibrotic diseases. Although lncRNAs may play a role in hypertrophic scars after burns, its mechanisms remain poorly understood. METHODS: Using chip technology, we compared the lncRNA expression profiles of burn patients and healthy controls (HCs). Microarray results were examined by quantitative reverse-transcription polymerase chain reaction (RT-PCR) to verify their reliability. The biological functions of differentially expressed mRNAs and the relationships between genes and signaling pathways were investigated by Gene Ontology (GO) and pathway analyses, respectively. RESULTS: In contrast with HCs, it was found that 2738 lncRNAs (1628 upregulated) and 2166 mRNAs (1395 upregulated) were differentially expressed in hypertrophic scars after burn. Results from RT-PCR were consistent with those from microarray. GO and pathway analyses revealed that the differentially expressed mRNAs are mainly associated with processes related to cytokine secretion in the immune system, notch signaling, and MAPK signaling. CONCLUSION: The lncRNA expression profiles of hypertrophic scars after burn changed significantly compared with HCs. It was believed that the transcripts could be used as potential targets for inhibiting abnormal scar formation in burn patients.


Subject(s)
Burns , Cicatrix, Hypertrophic , RNA, Long Noncoding , RNA, Messenger , Humans , Cicatrix, Hypertrophic/genetics , Cicatrix, Hypertrophic/metabolism , Cicatrix, Hypertrophic/etiology , Burns/metabolism , Burns/complications , Burns/genetics , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Male , Female , Adult , RNA, Messenger/metabolism , RNA, Messenger/genetics , Case-Control Studies , Middle Aged , Young Adult , Up-Regulation , Gene Expression Profiling , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction/genetics , Adolescent , Oligonucleotide Array Sequence Analysis , Gene Ontology
11.
Drug Deliv ; 31(1): 2305818, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38424728

ABSTRACT

Burn injuries can result in a significant inflammatory response, often leading to hypertrophic scarring (HTS). Local drug therapies e.g. corticoid injections are advised to treat HTS, although they are invasive, operator-dependent, extremely painful and do not permit extended drug release. Polymer-based microneedle (MN) arrays can offer a viable alternative to standard care, while allowing for direct, painless dermal drug delivery with tailorable drug release profile. In the current study, we synthesized photo-crosslinkable, acrylate-endcapped urethane-based poly(ε-caprolactone) (AUP-PCL) toward the fabrication of MNs. Physico-chemical characterization (1H-NMR, evaluation of swelling, gel fraction) of the developed polymer was performed and confirmed successful acrylation of PCL-diol. Subsequently, AUP-PCL, and commercially available PCL-based microneedle arrays were fabricated for comparative evaluation of the constructs. Hydrocortisone was chosen as model drug. To enhance the drug release efficiency of the MNs, Brij®35, a nonionic surfactant was exploited. The thermal properties of the MNs were evaluated via differential scanning calorimetry. Compression testing of the arrays confirmed that the MNs stay intact upon applying a load of 7 N, which correlates to the standard dermal insertion force of MNs. The drug release profile of the arrays was evaluated, suggesting that the developed PCL arrays can offer efficient drug delivery for up to two days, while the AUP-PCL arrays can provide a release up to three weeks. Finally, the insertion of MN arrays into skin samples was performed, followed by histological analysis demonstrating the AUP-PCL MNs outperforming the PCL arrays upon providing pyramidical-shaped perforations through the epidermal layer of the skin.


AUP-PCL MN arrays provide long-term transdermal drug delivery of hydrocortisoneAUP-PCL-based MN arrays provide superior drug release profiles compared to PCL MNsEffective skin penetration AUP-PCL-based MNs on skin was achieved.


Subject(s)
Cicatrix, Hypertrophic , Polyesters , Humans , Administration, Cutaneous , Pharmaceutical Preparations/metabolism , Cicatrix, Hypertrophic/drug therapy , Cicatrix, Hypertrophic/metabolism , Drug Liberation , Skin/metabolism , Drug Delivery Systems , Polymers/metabolism , Needles
12.
Burns ; 50(4): 936-946, 2024 May.
Article in English | MEDLINE | ID: mdl-38369439

ABSTRACT

BACKGROUND: To identify the anti-fibrosis effect of PRAS40 in scar, and its potential mechanism. METHODS: We constructed a rat model of hypertrophic scarthat was locally injected the PRAS40 overexpression adenoviruses, mTORC1 inhibitor MHY1485 and activator rapamycin, and further observed the pathological changes of skin tissue and the severity of fibrosis by HE, Masson and sirius red staining, and analyzed the deposition of a-SMA and collagen I by western blot and immunofluorescence test. Meanwhile, the co-localization of KLF4 with a-SMA and type I collagen was analyzed, as well as the regulatory effect of PRAS40 on KLF4. In addition, we also verified whether the inhibition of scar fibrosis by PRAS40 is related to mTORC1, and whether the upregulation of KLF4 is related to mTORC1. RESULTS: The results showed that the expression of PRAS40 was low and p-PRAS40 was high in scar skin tissue. After local injection of PRAS40 overexpression adenovirus, the expression of PRAS40 in skin tissue was increased. The overexpression of PRAS40 can inhibit scar skin fibrosis and reduce the content of a-SMA and collagen I. Further mechanism analysis confirms that the inhibitory effect of PRAS40 on skin fibrosis is related to mTORC1, and PRAS40 inhibits the activation of mTORC1. The expression of KLF4 is relatively low in scar tissue. PRAS40 administration upregulated the expression of KLF4, which is related to mTORC1 CONCLUSIONS: PRAS40 significantly improves fibrosis of scar skin tissue and increases the expression of KLF4 in scars. The anti-fibrotic effect of PRAS40 depends on mTORC1.


Subject(s)
Cicatrix, Hypertrophic , Fibrosis , Kruppel-Like Factor 4 , Kruppel-Like Transcription Factors , Mechanistic Target of Rapamycin Complex 1 , Animals , Kruppel-Like Transcription Factors/metabolism , Kruppel-Like Transcription Factors/genetics , Fibrosis/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Rats , Cicatrix, Hypertrophic/metabolism , Cicatrix, Hypertrophic/pathology , Cicatrix, Hypertrophic/prevention & control , Collagen Type I/metabolism , Skin/metabolism , Skin/pathology , Adaptor Proteins, Signal Transducing/metabolism , Rats, Sprague-Dawley , Disease Models, Animal , Actins/metabolism , Sirolimus/pharmacology , Sirolimus/therapeutic use , Male , Up-Regulation , Collagen/metabolism
13.
Sci Rep ; 14(1): 4896, 2024 02 28.
Article in English | MEDLINE | ID: mdl-38418830

ABSTRACT

This work prepared and investigated the impact of carboxymethyl chitosan nanoparticles (MC-NPs) on the proliferative capability of keloid fibroblasts (KFBs) while analyzing the mechanistic roles of miR-214 and adenosine A2A receptor (A2AR) in fibroblasts within hypertrophic scars. MC-NPs were synthesized through ion cross-linking, were characterized using transmission electron microscopy (TEM) and laser particle size scattering. The influence of MC-NPs on the proliferation capacity of KFBs was assessed using the MTT method. Changes in the expression levels of miR-214 and A2AR in KFBs, normal skin fibroblasts (NFBs), hypertrophic scar tissue, and normal skin tissue were analyzed. KFBs were categorized into anti-miR-214, anti-miR-NC, miR-214 mimics, miR-NC, si-A2AR, si-con, anti-miR-214+ si-con, and anti-miR-214+ si-A2AR groups. Bioinformatics target prediction was conducted to explore the interaction between miR-214 and A2AR. Real-time quantitative PCR and immunoblotting (WB) were employed to detect the expression levels of miR-214, A2AR, apoptotic protein Bax, and TGF-ß in different cells. Cell counting kit-8 (CCK8) and flow cytometry were employed to assess cell proliferation activity and apoptosis. The results indicated that MC-NPs exhibited spherical particles with an average diameter of 236.47 ± 4.98 nm. The cell OD value in the MC-NPs group was lower than that in KFBs (P < 0.05). The mRNA levels of miR-214 in KFBs and hypertrophic scar tissue were lower than those in NFBs and normal tissue (P < 0.001), while the mRNA and protein levels of A2AR were significantly elevated (P < 0.05). Compared to the control group and anti-miR-NC, the anti-miR-214 group showed significantly increased cell OD values and Bcl-2 protein expression (P < 0.001), decreased levels of apoptotic gene Bax protein, TGF-ß gene mRNA, and protein expression (P < 0.001). Continuous complementary binding sites were identified between miR-214 and A2AR. Compared to the control group, the si-A2AR group exhibited a significant decrease in A2AR gene mRNA and protein expression levels (P < 0.001), reduced cell viability (P < 0.001), increased apoptosis rate (P < 0.001), and a significant elevation in TGF-ß protein expression (P < 0.001). miR-214 targetedly regulated the expression of A2AR, inducing changes in TGF-ß content, promoting the proliferation of keloid fibroblasts, and inhibiting cell apoptosis.


Subject(s)
Chitosan , Cicatrix, Hypertrophic , Keloid , MicroRNAs , Humans , Keloid/pathology , Cicatrix, Hypertrophic/metabolism , Receptor, Adenosine A2A/genetics , Receptor, Adenosine A2A/metabolism , Antagomirs/metabolism , Chitosan/pharmacology , Chitosan/metabolism , Cell Proliferation , Transforming Growth Factor beta/metabolism , Apoptosis , MicroRNAs/metabolism , Fibroblasts/metabolism , RNA, Messenger/metabolism
14.
Int J Mol Sci ; 25(4)2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38396801

ABSTRACT

It is unclear whether normal human skin tissue or abnormal scarring are photoreceptive. Therefore, this study investigated photosensitivity in normal skin tissue and hypertrophic scars. The expression of opsins, which are photoreceptor proteins, in normal dermal fibroblasts (NDFs) and hypertrophic scar fibroblasts (HSFs) was examined. After exposure to blue light (BL), changes in the expression levels of αSMA and clock-related genes, specifically PER2 and BMAL1, were examined in both fibroblast types. Opsins were expressed in both fibroblast types, with OPN3 exhibiting the highest expression levels. After peripheral circadian rhythm disruption, BL induced rhythm formation in NDFs. In contrast, although HSFs showed changes in clock-related gene expression levels, no distinct rhythm formation was observed. The expression level of αSMA was significantly higher in HSFs and decreased to the same level as that in NDFs upon BL exposure. When OPN3 knocked-down HSFs were exposed to BL, the reduction in αSMA expression was inhibited. This study showed that BL exposure directly triggers peripheral circadian synchronization in NDFs but not in HSFs. OPN3-mediated BL exposure inhibited HSFs. Although the current results did not elucidate the relationship between peripheral circadian rhythms and hypertrophic scars, they show that BL can be applied for the prevention and treatment of hypertrophic scars and keloids.


Subject(s)
Cicatrix, Hypertrophic , Keloid , Humans , Cicatrix, Hypertrophic/metabolism , Skin/metabolism , Keloid/metabolism , Fibroblasts/metabolism , Opsins/metabolism , Rod Opsins/metabolism
15.
Arch Biochem Biophys ; 753: 109912, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38325773

ABSTRACT

Hypertrophic scar (HS) is a dermatological condition characterized by an excessive accumulation of proteins in the extracellular matrix (ECM) and an elevated cell count. The development of HS is thought to be linked to the disruption of dermal fibroblast proliferation and apoptosis. The processes of cell proliferation and apoptosis are notably influenced by PTEN. However, the precise mechanisms by which PTEN regulates hypertrophic scar fibroblasts (HSFs) and its overall role in scar formation are still not fully understood. The objective of this study was to investigate the influence of PTEN on hypertrophic scars(HS) and its function in the regulation of scar formation, with the aim of identifying a pivotal molecular target for scar treatment. Our results demonstrate that the overexpression of PTEN (AdPTEN) significantly suppressed the expression of type I collagen (Col I), type III collagen (Col III), and alpha smooth muscle actin (α-SMA) in HSFs. Furthermore, it was observed that the introduction of AdPTEN resulted in the suppression of Bcl-xL expression, which consequently led to an increase in the apoptosis of HSFs. Similarly, in the inhibition of collagens expression and subsequent increase in HSF apoptosis were also observed upon silencing Bcl-xL (sibcl-xL). Additionally, the in vitro model demonstrated that both AdPTEN and sibcl-xL were effective in reducing the contraction of FPCL. The findings of our study provide validation for the role of PTEN in inhibiting the development of hypertrophic scars (HS) by modulating the expression of extracellular matrix (ECM) proteins and promoting apoptosis in hypertrophic scar fibroblasts (HSFs) via Bcl-xL. These results indicate that PTEN and Bcl-xL may hold promise as potential molecular targets for therapeutic interventions aimed at managing hypertrophic scars.


Subject(s)
Cicatrix, Hypertrophic , Humans , Apoptosis , Cicatrix, Hypertrophic/metabolism , Collagen Type I/metabolism , Extracellular Matrix/metabolism , Fibroblasts/metabolism , PTEN Phosphohydrolase/metabolism
16.
Eur J Pharmacol ; 967: 176369, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38325796

ABSTRACT

Hypertrophic scars are a common complication of burn injuries, yet there are no medications to prevent their formation. During scar formation, resident fibroblasts are transformed to myofibroblasts which become resistant to apoptosis. Previously, we have shown that hydroxypyridone anti-fungals can inhibit transformation of fibroblasts, isolated from hypertrophic scars, to myofibroblasts. This study aimed to investigate if these drugs can also target myofibroblast persistence. Primary human dermal fibroblasts, derived from burn scar tissue, were exposed to transforming growth factor beta-1 (TGF-ß1) for 72 h to induce myofibroblast transformation. The cells were then incubated with three hydroxypyridone anti-fungals (ciclopirox, ciclopirox ethanolamine and piroctone olamine; 0.03-300 µM) for a further 72 h. The In-Cell ELISA method was utilised to quantify myofibroblast transformation by measuring alpha-smooth muscle actin (α-SMA) expression and DRAQ5 staining, to measure cell viability. TUNEL staining was utilised to assess if the drugs could induce apoptosis. When given to established myofibroblasts, the three hydroxypyridones did not reverse myofibroblast transformation, but instead elicited a concentration-dependent decrease in cell viability. TUNEL staining confirmed that the hydroxypyridone anti-fungals induced apoptosis in established myofibroblasts. This is the first study to show that hydroxypyridone anti-fungals are capable of inducing apoptosis in established myofibroblasts. Together with our previous results, we suggest that hydroxypyridone anti-fungals can prevent scar formation by preventing the formation of new myofibroblasts and by reducing the number of existing myofibroblasts.


Subject(s)
Cicatrix, Hypertrophic , Myofibroblasts , Humans , Myofibroblasts/pathology , Cicatrix, Hypertrophic/metabolism , Ciclopirox/metabolism , Ciclopirox/therapeutic use , Fibroblasts/metabolism , Apoptosis , Transforming Growth Factor beta1/metabolism , Actins/metabolism , Cells, Cultured , Cell Differentiation
17.
J Biomed Sci ; 31(1): 12, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38254097

ABSTRACT

BACKGROUND: Pathologic scars, including keloids and hypertrophic scars, represent a common form of exaggerated cutaneous scarring that is difficult to prevent or treat effectively. Additionally, the pathobiology of pathologic scars remains poorly understood. We aim at investigating the impact of TEM1 (also known as endosialin or CD248), which is a glycosylated type I transmembrane protein, on development of pathologic scars. METHODS: To investigate the expression of TEM1, we utilized immunofluorescence staining, Western blotting, and single-cell RNA-sequencing (scRNA-seq) techniques. We conducted in vitro cell culture experiments and an in vivo stretch-induced scar mouse model to study the involvement of TEM1 in TGF-ß-mediated responses in pathologic scars. RESULTS: The levels of the protein TEM1 are elevated in both hypertrophic scars and keloids in comparison to normal skin. A re-analysis of scRNA-seq datasets reveals that a major profibrotic subpopulation of keloid and hypertrophic scar fibroblasts greatly expresses TEM1, with expression increasing during fibroblast activation. TEM1 promotes activation, proliferation, and ECM production in human dermal fibroblasts by enhancing TGF-ß1 signaling through binding with and stabilizing TGF-ß receptors. Global deletion of Tem1 markedly reduces the amount of ECM synthesis and inflammation in a scar in a mouse model of stretch-induced pathologic scarring. The intralesional administration of ontuxizumab, a humanized IgG monoclonal antibody targeting TEM1, significantly decreased both the size and collagen density of keloids. CONCLUSIONS: Our data indicate that TEM1 plays a role in pathologic scarring, with its synergistic effect on the TGF-ß signaling contributing to dermal fibroblast activation. Targeting TEM1 may represent a novel therapeutic approach in reducing the morbidity of pathologic scars.


Subject(s)
Cicatrix, Hypertrophic , Keloid , Transforming Growth Factor beta , Animals , Humans , Mice , Antigens, CD , Antigens, Neoplasm , Cicatrix, Hypertrophic/metabolism , Fibroblasts , Keloid/metabolism , Skin
18.
Adv Sci (Weinh) ; 11(7): e2305468, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38064170

ABSTRACT

Hypertrophic scar (HS), which results from prolonged inflammation and excessive fibrosis in re-epithelialized wounds, is one of the most common clinical challenges. Consequently, sophisticated transdermal transfersome nanogels (TA/Fu-TS) are prepared to control HS formation by synergistically inhibiting inflammation and suppressing fibrosis. TA/Fu-TSs have unique structures comprising hydrophobic triamcinolone acetonide (TA) in lipid multilayers and hydrophilic 5-fluorouracil in aqueous cores, and perform satisfactorily with regard to transdermal co-delivery to macrophages and HS fibroblasts in emerging HS tissues. According to the in vitro/vivo results, TA/Fu-TSs not only promote macrophage phenotype-switching to inhibit inflammation by interleukin-related pathways, but also suppress fibrosis to remodel extracellular matrix by collagen-related pathways. Therefore, TA/Fu-TSs overcome prolonged inflammation and excessive fibrosis in emerging HS tissues, and provide an effective therapeutic strategy for controlling HS formation via their synergy of macrophage phenotype-switching and anti-fibrosis effect.


Subject(s)
Cicatrix, Hypertrophic , Humans , Cicatrix, Hypertrophic/drug therapy , Cicatrix, Hypertrophic/metabolism , Cicatrix, Hypertrophic/pathology , Nanogels/therapeutic use , Fibrosis , Phenotype , Triamcinolone Acetonide/therapeutic use , Fluorouracil/therapeutic use , Inflammation , Macrophages/metabolism
19.
Small ; 20(8): e2305374, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37724002

ABSTRACT

Hypertrophic scar (HS) is a common fibroproliferative disease caused by abnormal wound healing after deep skin injury. However, the existing approaches have unsatisfactory therapeutic effects, which promote the exploration of newer and more effective strategies. MiRNA-modified functional exosomes delivered by dissolvable microneedle arrays (DMNAs) are expected to provide new hope for HS treatment. In this study, a miRNA, miR-141-3p, which is downregulated in skin scar tissues and in hypertrophic scar fibroblasts (HSFs), is identified. MiR-141-3p mimics inhibit the proliferation, migration, and myofibroblast transdifferentiation of HSFs in vitro by targeting TGF-ß2 to suppress the TGF-ß2/Smad pathway. Subsequently, the engineered exosomes encapsulating miR-141-3p (miR-141-3pOE -Exos) are isolated from adipose-derived mesenchymal stem cells transfected with Lv-miR-141-3p. MiR-141-3pOE -Exos show the same inhibitive effects as miR-141-3p mimics on the pathological behaviors of HSFs in vitro. The DMNAs for sustained release of miR-141-3pOE -Exos are further fabricated in vivo. MiR-141OE -Exos@DMNAs effectively decrease the thickness of HS and improve fibroblast distribution and collagen fiber arrangement, and downregulate the expression of α-SMA, COL-1, FN, TGF-ß2, and p-Smad2/3 in the HS tissue. Overall, a promising, effective, and convenient exosome@DMNA-based miRNA delivery strategy for HS treatment is provided.


Subject(s)
Cicatrix, Hypertrophic , Exosomes , MicroRNAs , Humans , Cicatrix, Hypertrophic/therapy , Cicatrix, Hypertrophic/genetics , Cicatrix, Hypertrophic/metabolism , Transforming Growth Factor beta2/metabolism , Exosomes/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Fibroblasts/metabolism , Cell Proliferation/genetics
20.
Acta Biochim Biophys Sin (Shanghai) ; 56(3): 440-451, 2024 03 25.
Article in English | MEDLINE | ID: mdl-38006215

ABSTRACT

Hypertrophic scar (HS) is one of the most common sequelae of patients, especially after burns and trauma. The roles of regulatory long noncoding RNAs (lncRNAs) in mediating HS remain underexplored. Human hypertrophic scar-derived fibroblasts (HSFBs) have been shown to exert more potent promoting effects on extracellular matrix (ECM) accumulation than normal skin-derived fibroblasts (NSFBs) and are associated with enhanced HS formation. The purpose of this study is to search for lncRNAs enriched in HSFBs and investigate their roles and mechanisms. LncRNA MSTRG.59347.16 is one of the most highly expressed lncRNAs in HS detected by lncRNA-seq and qRT-PCR and named as hypertrophic scar fibroblast-associated lncRNA (HSFAS). HSFAS overexpression significantly induces fibroblast proliferation, migration, and myofibroblast trans-differentiation and inhibits apoptosis in HSFBs, while knockdown of HSFAS results in augmented apoptosis and attenuated proliferation, migration, and myofibroblast trans-differentiation of HSFBs. Mechanistically, HSFAS suppresses the expression of A disintegrin and metalloproteinase with thrombospondin motifs 8 (ADAMTS8). ADAMTS8 knockdown rescues downregulated HSFAS-mediated fibroblast proliferation, migration, myofibroblast trans-differentiation and apoptosis. Thus, our findings uncover a previously unknown lncRNA-dependent regulatory pathway for fibroblast function. Targeted intervention in the HSFAS-ADAMTS8 pathway is a potential therapy for HS.


Subject(s)
Cicatrix, Hypertrophic , RNA, Long Noncoding , Humans , Cicatrix, Hypertrophic/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Fibroblasts/metabolism , Apoptosis/genetics , Cell Proliferation/genetics , Cell Transdifferentiation/genetics , ADAMTS Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...