Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 330
Filter
1.
Food Res Int ; 188: 114517, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823849

ABSTRACT

Slowing the rate of carbohydrate digestion leads to low postprandial glucose and insulin responses, which are associated with reduced risk of type 2 diabetes. There is increasing evidence that food structure plays a crucial role in influencing the bioaccessibility and digestion kinetics of macronutrients. The aims of this study were to compare the effects of two hummus meals, with different degrees of cell wall integrity, on postprandial metabolic responses in relation to the microstructural and rheological characteristics of the meals. A randomised crossover trial in 15 healthy participants was designed to compare the acute effect of 27 g of starch, provided as hummus made from either intact chickpea cells (ICC) or ruptured chickpea cells (RCC), on postprandial metabolic responses. In vitro starch digestibility, microstructural and rheological experiments were also conducted to evaluate differences between the two chickpea hummus meals. Blood insulin and GIP concentrations were significantly lower (P < 0.02, P < 0.03) after the consumption of the ICC meal than the meal containing RCC. In vitro starch digestion for 90 min was slower in ICC than in RCC. Microscopic examination of hummus samples digested in vitro for 90 min revealed more intact chickpea cells in ICC compared to the RCC sample. Rheological experiments showed that fracture for ICC hummus samples occurred at smaller strains compared to RCC samples. However, the storage modulus for ICC was higher than RCC, which may be explained by the presence of intact cells in ICC. Food structure can affect the rate and extent of starch bioaccessibility and digestion and may explain the difference in the time course of metabolic responses between meals. The rheological properties were measured on the two types of meals before ingestion, showing significant differences that may point to different breakdown mechanisms during subsequent digestion. This trial was registered at clinicaltrial.gov as NCT03424187.


Subject(s)
Blood Glucose , Cicer , Cross-Over Studies , Digestion , Insulin , Postprandial Period , Rheology , Humans , Cicer/chemistry , Postprandial Period/physiology , Insulin/blood , Insulin/metabolism , Blood Glucose/metabolism , Adult , Male , Female , Young Adult , Starch/metabolism , Gastric Inhibitory Polypeptide/metabolism , Gastric Inhibitory Polypeptide/blood , Healthy Volunteers , Kinetics
2.
Plant Foods Hum Nutr ; 79(2): 539-544, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38696133

ABSTRACT

Chickpeas have large variations in their types and nutrient composition, owing to diverse environmental conditions, breeding techniques, and cultivars. Thirty-one improved varieties of chickpeas bred for various agronomic traits like high yield, resistance to diseases, and tolerance to abiotic stress were analyzed for their nutrient composition, along with two local varieties. They were found to be rich in proteins (16.09-26.22 g/100 g) and dietary fiber (10.33-26.33 g/100 g) with moderate amounts of available carbohydrates (34.20-54.72 g/100 g) and to have a significant quantity of minerals like calcium (127.50-183.86 mg/100 g), iron (4.55-8.33 mg/100 g), and phosphorous (285.92-528.31 mg/100 g). They were found to be similar (fat, carbohydrates, dietary fiber) or statistically higher (protein, ash) than the local varieties for all the nutrient parameters that were analyzed. A significant difference was also found between the desi and kabuli varieties, where the desi variety was found to have significantly lower fat and available carbohydrates but high dietary fiber content. This study signifies that the varietal differences in nutritional composition are significant in chickpeas. Varieties like Sasho, ICCV 96030, and Teketay showed desirable nutritional qualities associated with moisture, protein, dietary fiber, and minerals like zinc, phosphorous, iron, copper, and calcium. This data will be beneficial for manufacturers in the product development and value addition industries for the selection of varieties ideal for their needs since the nutrient component also confers several functional and physiochemical properties to the chickpea seed besides providing a nutritionally diverse diet.


Subject(s)
Cicer , Dietary Fiber , Minerals , Nutritive Value , Cicer/chemistry , Dietary Fiber/analysis , Minerals/analysis , Dietary Carbohydrates/analysis , Dietary Proteins/analysis , Dietary Fats/analysis
3.
Ultrason Sonochem ; 106: 106904, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38749102

ABSTRACT

Ultrasound processing is an emerging green technology that has the potential for wider application in the food processing industry. While the effects of ultrasonication on isolated macromolecules such as protein and starch have been reported, the effects of physical barriers on sonication on these macro-molecules, for example inside whole seed, tissue or cotyledon cells, have mostly been overlooked. Intact chickpea cells were subjected to sonication with different ultrasound processing times, and the effects of sonication on the starch and protein structure and digestibility were studied. The digestibility of these macronutrients significantly increased with the extension of processing time, which, however was not due to the molecular degradation of starch or protein but related to damage to cell wall macro-structure with increasing sonication time, leading to enhanced enzyme accessibility. Through this study, it is demonstrated that ultrasound processing has least effect on whole food structure, for example, whole seeds but can modulate the nutrient bioavailability without changing the properties of the macronutrients in seed fractions e.g. intact cells, offering new scientific knowledge on effect of ultrasound in whole foods at various length scales.


Subject(s)
Cicer , Nutrients , Sonication , Cicer/chemistry , Starch/chemistry , Starch/metabolism , Plant Proteins/chemistry , Plant Proteins/metabolism , Digestion , Seeds/chemistry
4.
Food Res Int ; 186: 114344, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38729696

ABSTRACT

The research aimed to evaluate the effect of ultrasonication and succinylation on the functional, iron binding, physiochemical, and cellular mineral uptake efficacy of chickpea protein concentrate. Succinylation resulted in significant improvements in the water-holding capacity (WHC) (25.47 %), oil-holding capacity (OHC) (31.38 %), and solubility (5.80 %) of the chickpea protein-iron complex. Mineral bioavailability significantly increased by 4.41 %, and there was a significant increase in cellular mineral uptake (64.64 %), retention (36.68 %), and transport (27.96 %). The ferritin content of the succinylated chickpea protein-iron complex showed a substantial increase of 66.31%. Furthermore, the dual modification approach combining ultrasonication and succinylation reduced the particle size of the protein-iron complex with a substantial reduction of 83.25 %. It also resulted in a significant enhancement of 51.5 % in the SH (sulfhydryl) content and 48.92 % in the surface hydrophobicity. Mineral bioavailability and cellular mineral uptake, retention, and transport were further enhanced through dual modification. In terms of application, the addition of single and dual-modified chickpea protein-iron complex to a fruit-based smoothie demonstrated positive acceptance in sensory attributes. Overall, the combined approach of succinylation and ultrasonication to the chickpea protein-iron complex shows a promising strategy for enhancing the physiochemical and techno-functional characteristics, cellular mineral uptake, and the development of vegan food products.


Subject(s)
Biological Availability , Cicer , Iron , Cicer/chemistry , Iron/chemistry , Iron/metabolism , Humans , Food, Fortified , Plant Proteins/chemistry , Digestion , Minerals/chemistry , Caco-2 Cells , Succinic Acid/chemistry , Particle Size , Food Handling/methods , Solubility , Ferritins/chemistry , Ferritins/metabolism
5.
Food Chem ; 448: 139117, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38608398

ABSTRACT

This study aimed to determine the impact of supplementation with probiotically fermented chickpea (Cicer arietinum L) seeds on the quality parameters and functional characteristics of wheat bread. The addition of chickpea seeds caused significant changes in the chemical composition of the control wheat bread. The legume-supplemented products exhibited higher values of a* and b* color parameters and higher hardness after 24 h of storage than the control. The application of fermented or unfermented chickpeas contributed to an increase in total polyphenol and flavonoid contents, iron chelating capacity, and antioxidant properties of the final product. The variant containing unfermented seeds had the highest riboflavin content (29.53 ± 1.11 µg/100 g d.w.), Trolox equivalent antioxidant capacity (227.02 ± 7.29 µmol·L-1 TX/100 g d.w.), and free radical scavenging activity (71.37 ± 1.30 % DPPH inhibition). The results of this preliminary research have practical importance in the production of innovative bakery products with potential properties of functional food.


Subject(s)
Antioxidants , Bread , Cicer , Fermentation , Probiotics , Cicer/chemistry , Bread/analysis , Antioxidants/chemistry , Antioxidants/analysis , Probiotics/analysis , Probiotics/chemistry , Seeds/chemistry , Flavonoids/analysis , Flavonoids/chemistry , Polyphenols/chemistry , Polyphenols/analysis , Functional Food/analysis , Triticum/chemistry , Triticum/metabolism
6.
Plant Foods Hum Nutr ; 79(2): 489-496, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38642194

ABSTRACT

This study explores the impact of co-ingesting cereals and legumes on starch and protein during simulated infant in vitro digestion. Various legumes (chickpeas, lentils, peas) were added to cereals (durum wheat, brown rice, white maize), and their effects on starch and protein hydrolysis were analyzed. Substituting 50% of cereal with legumes increased proteins, minerals, and dietary fiber. Infant food with legumes exhibited smoother pasting properties. Legumes in cereal purées led to varying starch hydrolysis trends, with the lowest values in durum wheat with chickpea and all cereal blends with peas. Resistant starch levels exceeding 50% were found in infant food samples. Digested protein hydrolysis increased with legumes in durum wheat, except for peas. Brown rice mixtures decreased significantly compared to the control with chickpeas (61%) and peas (42%), while lentil blends increased by 46%. Legumes generally did not significantly affect starch bioavailability, even with α-amylase inhibitors. Lentil-cereal purées could enhance infant food nutritional value.


Subject(s)
Dietary Proteins , Digestion , Edible Grain , Fabaceae , Infant Food , Starch , Starch/metabolism , Edible Grain/chemistry , Infant Food/analysis , Humans , Fabaceae/chemistry , Infant , Dietary Proteins/analysis , Nutritive Value , Infant Nutritional Physiological Phenomena , Dietary Fiber/analysis , Hydrolysis , Lens Plant/chemistry , Triticum/chemistry , Cicer/chemistry , Oryza/chemistry , Pisum sativum/chemistry
7.
Int J Biol Macromol ; 268(Pt 1): 131576, 2024 May.
Article in English | MEDLINE | ID: mdl-38636764

ABSTRACT

This work aimed to characterize and compare the physicochemical properties of four pulse starches: bean, chickpea, lentil, and pea. Chemical proximate analysis, elemental composition, morphological grain characterization, crystalline structure, thermal analysis, FTIR analysis, and pasting properties were conducted. The proximate analysis shows that these starches have low fat, mineral, and protein content but high amylose values ranging from 29 to 36 % determined by colorimetry. Despite the high amylose content, the starches did not exhibit the typical behavior of an amylose-rich starch, with high peak viscosity and low breakdown and setback. It was found that this behavior was likely due to the large granule size of the ellipsoidal, spherical, and kidney-shaped granules and the high content of some minerals such as Na, Mg, K, Fe, Mn, P, and Si. The study also found that all pulse starches simultaneously contain monoclinic and hexagonal crystals, making them C-type starches. The findings were verified through the Rietveld analyses of X-ray diffraction patterns and differential scanning calorimetry, in which bimodal endothermic peaks evidenced both types of crystals being gelatinized.


Subject(s)
Amylose , Rheology , Starch , Starch/chemistry , Amylose/chemistry , Amylose/analysis , Chemical Phenomena , Viscosity , X-Ray Diffraction , Lens Plant/chemistry , Crops, Agricultural/chemistry , Cicer/chemistry , Calorimetry, Differential Scanning
8.
Food Chem ; 449: 139187, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38604029

ABSTRACT

Pickering emulsions stabilized by protein particles are of great interest for use in real food systems. This study was to investigate the properties of microgel particles prepared from different plant proteins, i.e., soybean protein isolate (SPI), pea protein isolate (PPI), mung bean protein isolate (MPI), chia seed protein isolate (CSPI), and chickpea protein isolate (CPI). MPI protein particles had most desirable Pickering emulsion forming ability. The particles of SPI and PPI had similar particle size (316.23 nm and 294.80 nm) and surface hydrophobicity (2238.40 and 2001.13) and emulsion forming ability, while the CSPI and CPI particle stabilized emulsions had the least desirable properties. The MPI and PPI particle stabilized Pickering emulsions produced better quality ice cream than the one produced by SPI particle-stabilized emulsions. These findings provide insight into the properties of Pickering emulsions stabilized by different plant protein particles and help expand their application in emulsions and ice cream.


Subject(s)
Emulsions , Particle Size , Plant Proteins , Emulsions/chemistry , Plant Proteins/chemistry , Microgels/chemistry , Hydrophobic and Hydrophilic Interactions , Ice Cream/analysis , Cicer/chemistry , Vigna/chemistry
9.
Molecules ; 29(5)2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38474555

ABSTRACT

BACKGROUND: Prostate cancer (PC) and benign prostatic hyperplasia (BPH) are common health problems in the aging male population. Due to the unexplored and unconfirmed impact of food containing isoflavones, like sprouts, on the development of the management of BPH and prostate cancer, we decided to extend the knowledge in this area. RESULTS: We have demonstrated for the first time that chickpea sprouts may play an important role in the chemoprevention of prostate disorders. However, attention should be paid to the isoflavone content in the sprouts, as in our study, chickpea sprouts with a moderate concentration of the compounds, harvested in natural light conditions (CA10L) and blue LED light (CA7B), showed the best scores in terms of their potential towards prostate disorders. METHODS: Chickpea seeds were grown in LED chambers. The methanol extracts from sprouts were quantitatively defined using the HPLC system. Experiments such as the determination of PSA, 5-α-reductase, and dihydrotestosterone were performed on PNT2 and LNCaP cells. For anti-inflammatory assays (determination of NO, IL-6, and TNF-alpha release), murine RAW264.7 macrophages were used. CONCLUSIONS: The role of legume products as a diet element should be deeply evaluated for the development of future dietary recommendations for prostate cancer and BPH prevention.


Subject(s)
Cicer , Isoflavones , Prostatic Hyperplasia , Prostatic Neoplasms , Male , Humans , Animals , Mice , Cicer/chemistry , Prostate , Isoflavones/chemistry , Diet
10.
Food Chem ; 445: 138671, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38367556

ABSTRACT

Chickpea protein, a valuable plant-based source, offers versatile applications, yet the impact of modifications like succinylation and ultrasonication on its properties remains unclear. This study explored dual succinylation and ultrasonication modification to enhance its functionality and application. Modified chickpea protein with a degree of succinylation of 96.75 %, showed enhanced water holding capacity 39.83 %, oil holding capacity 54.02 %, solubility 7.20 %, and emulsifying capacity 23.17 %, compared to native protein. Despite reduced amino acid content (64.50 %), particularly lysine, succinylation increased sulfhydryl by 1.74 %, reducing hydrophobicity (Ho) by 41.87 % and causing structural changes. Ultrasonication further reduced particle size by 82.57 % and increased zeta potential and amino acid content (57.47 %). The dual-modified protein exhibited a non-significant increase in antimicrobial activity against Staphylococcus aureus (25.93 ± 1.36 mm) compared to the native protein (25.28 ± 1.05 mm). In conclusion, succinylation combined with ultrasonication offers a promising strategy to enhance chickpea protein's physicochemical properties for diverse applications.


Subject(s)
Amino Acids , Cicer , Amino Acids/metabolism , Cicer/chemistry , Proteins/metabolism , Solubility , Water/metabolism
11.
J Sci Food Agric ; 104(9): 5305-5314, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38380983

ABSTRACT

BACKGROUND: An attempt has been made to explore the nutritional profile of pink oyster mushrooms that have been grown in various agricultural residues, including sugarcane bagasse, rice straw, coconut coir and sawdust, along with other nutrient supplements such as defatted mustard and chickpea powder, for appropriate growth and fruiting body formation in a short span of time. The spawn production was experimented with five different grain varieties. The study became interesting when the observations differed slightly from the traditional practices, with the addition of defatted mustard supplements resulting in a positive correlation with respect to reducing the fruiting time, as well as improving yield and the nutritional profile of Pleurotus djamor. RESULTS: An elevated yield of 651.93 g kg-1 was recorded in the medium where the RS and DM were used in the ratio of 1:0.01 (rice straw +1% w/w defatted mustard) bag, whereas, in terms of protein content, a maximum yield of 32.57 ± 0.79 mg g-1 was observed when SB:DM was in the same ratio (sugarcane bagasse +1% w/w defatted mustard) bag. CONCLUSION: To confer the best outcomes from the screened substrates, a series of experiments were performed by varying the concentration of RS and SB, with 1% w/w DM. It is worth noting that the highest protein content of 32.76 ± 0.38 mg g-1 was obtained along with the total yield of 702.56 ± 2.9 g kg-1 of mushroom when the ratio of RS:SB was 0.7:0.3. © 2024 Society of Chemical Industry.


Subject(s)
Nutritive Value , Pleurotus , Pleurotus/metabolism , Pleurotus/chemistry , Pleurotus/growth & development , Oryza/chemistry , Oryza/metabolism , Oryza/growth & development , Saccharum/chemistry , Saccharum/metabolism , Saccharum/growth & development , Mustard Plant/chemistry , Mustard Plant/growth & development , Mustard Plant/metabolism , Cicer/chemistry , Cicer/growth & development , Cicer/metabolism , Cellulose
12.
Biochem Biophys Res Commun ; 671: 26-37, 2023 09 03.
Article in English | MEDLINE | ID: mdl-37290281

ABSTRACT

Osteoporosis is a systemic bone disease that is caused by multiple factors that lead to an imbalance in bone metabolism. Isoflavones can prevent and treat osteoporosis by regulating bone metabolism through a variety of pathways. The germination of chickpeas can significantly increase their isoflavone contents. However, the use of isoflavones isolated from chickpea sprouts (ICS) to prevent and treat osteoporosis by regulating bone metabolism has not been widely studied. In vivo experimental studies in ovariectomized rats showed that ICS significantly improved femoral bone mineral density (BMD) and trabecular structure, with effects similar to raloxifene. Furthermore, the chemical composition of ICS as well as the targets and signalling pathways its regulates in the prevention and treatment of osteoporosis were predicted by network pharmacological studies. ICS with drug-like properties were identified by Lipinski's 5 principles, and intersecting targets of isoflavones with osteoporosis were identified. The overlapping targets were analysed by PPI, GO and KEGG analyses, and the possible key targets, signalling pathways and biological processes by which ICS treats osteoporosis were predicted; the prediction results were verified by molecular docking technology. The results showed that ICS could play an important role in the treatment of osteoporosis through "multicomponent, multitarget and multipathway" mechanisms, and the MAKP, NF-kB and ER-related signalling pathways may be important pathways by which ICS regulates osteoporosis; these findings provide a new theoretical basis for further experimental studies.


Subject(s)
Cicer , Isoflavones , Osteoporosis , Rats , Animals , Isoflavones/pharmacology , Isoflavones/therapeutic use , Cicer/chemistry , Cicer/metabolism , Network Pharmacology , Molecular Docking Simulation , Osteoporosis/drug therapy , Osteoporosis/prevention & control
13.
J Texture Stud ; 54(5): 706-719, 2023 10.
Article in English | MEDLINE | ID: mdl-37246468

ABSTRACT

Physico-chemical, textural, functional, and nutritional properties of the twin screw extruded whole sorghum-chickpea (8:2) snacks was investigated using in vitro procedures. The extruded snacks were analyzed for the effect of variations in extruded conditions on their properties: barrel BT (BT) (130-170°C) and feed moisture (FM) (14%-18%), keeping screw speed constant (400 rpm). The results revealed that specific mechanical energy (SME) decreased (74.4-60.0) in response to rise in both BT and FM, whereas expansion ratio (ER) had shown an alternative relation as it decreased with elevated FM (2.17 at 14%, 130°C to 2.14 at 16%, 130°C) and increased with BT (1.75 at 18%, 130°C to 2.48 at 18%, 170°C). The values of WAI and WSI improved with the surge in BT, which was associated with enhanced disruption of starch granules at higher BT. Raise in FM incremented the total phenolic content (TPC) and hence the antioxidant activity (AA) (FRAP and DPPH) along with the hardness of snacks. As per in vitro starch digestibility is concerned, slowly digestible starch (SDS) content as well as glycemic index (51-53) of the extrudates depressed with increasing BT and FM. Also, lower BT and FM improved the functional properties such as expansion ratio, in-vitro protein digestibility, and overall acceptability of the snacks. A positive correlation was seen among SME and hardness of the snacks, WSI and ER, TPC and AA, SDS and Exp-GI, color and OA, texture and OA.


Subject(s)
Antioxidants , Cicer , Glycemic Index , Nutrients , Snacks , Sorghum , Antioxidants/analysis , Cicer/chemistry , Edible Grain/chemistry , Food Handling/methods , Nutrients/analysis , Nutrients/chemistry , Phenols/analysis , Sorghum/chemistry , Starch
14.
Molecules ; 28(8)2023 Apr 12.
Article in English | MEDLINE | ID: mdl-37110634

ABSTRACT

Skin aging represents a health and aesthetic problem that could result in infections and skin diseases. Bioactive peptides can potentially be used in skin aging regulation. Chickpea (Cicer arietinum L.) selenoproteins were obtained from germination with 2 mg Na2SeO3/100 g of seeds for 2 days. Alcalase, pepsin, and trypsin were used as hydrolyzers, and a membrane < 10 kDa was used to fractionate the hydrolysate. Se content, antioxidant capacity, elastase and collagen inhibition, functional stability, and preventative capacity were analyzed. Significant increases in Se content were found in germinated chickpea flour and protein related to the control. An increase of 38% in protein was observed in the selenized flour related to the control. A band (600-550 cm-1) observed in the selenized hydrolysates suggested the insertion of Se into the protein. Hydrolysates from pepsin and trypsin had the highest antioxidant potential. Se enhanced the stability of total protein and protein hydrolysates through time and increased their antioxidant capacity. Hydrolysates > 10 kDa had higher elastase and collagenase inhibition than the total protein and hydrolysates < 10 kDa. Protein hydrolysates < 10 kDa 6 h before UVA radiation had the highest inhibition of collagen degradation. Selenized protein hydrolysates showed promising antioxidant effects that could be related to skin anti-aging effects.


Subject(s)
Antioxidants , Cicer , Antioxidants/pharmacology , Antioxidants/metabolism , Cicer/chemistry , Protein Hydrolysates/chemistry , Pepsin A/metabolism , Trypsin/metabolism , Pancreatic Elastase/metabolism
15.
J Sci Food Agric ; 103(11): 5213-5220, 2023 Aug 30.
Article in English | MEDLINE | ID: mdl-36988580

ABSTRACT

Pulses have been part of human nutrition for centuries. They are also used in folk medicine as products with multidirectional medicinal effects. They are annual plants representing the Fabaceae family. Their edible part is the fruit, i.e. the so-called pods. Whole pods or their parts can be eaten, depending on the species and fruit ripeness. Beans, peas, peanuts, chickpeas, lentils, broad beans and soybeans are edible legume species. Legume seeds are characterized by high nutritional value. Compared to seeds from other plants, they have high protein content ranging, on average, from 20% to 35%, depending on the type, growing conditions and maturity of the fruit. This review focuses on various health-promoting properties of legumes and presents their nutritional value and compounds exerting health-promoting effects. Many pulses have a low glycemic index, which is important for prevention and treatment of diabetes. In addition to their low glycemic index and high fiber content, pulses have α-amylase and α-glucosidase inhibitors, which reduce the absorption of glucose from the gastrointestinal tract. These compounds have antidiabetic and anti-inflammatory effects. Pulses have been shown to contain bioactive peptides with angiotensin-converting enzyme inhibitory properties; hence, they are useful in the treatment of cardiovascular diseases. Pulses used in the nutrition of obese individuals provide compounds with pancreatic lipase inhibitory properties, thus promoting weight reduction and control. © 2023 Society of Chemical Industry.


Subject(s)
Cicer , Fabaceae , Humans , Fabaceae/chemistry , Glycine max , Pisum sativum/chemistry , Seeds/chemistry , Cicer/chemistry , Vegetables
16.
Proteins ; 91(7): 859-871, 2023 07.
Article in English | MEDLINE | ID: mdl-36729014

ABSTRACT

Alzheimer's disease (AD) is the most common cause of dementia in the elderly, with some known classical factors. Cicer arietinum (Leguminosae) is a source of protein for humans and contains albumin, globulin, glutelin, and prolamin. The protein content of two cultivars of C. arietinum, Hashem and Mansour, was isolated to evaluate their inhibition activity against acetylcholinesterase (AChE), butyrylcholine esterase (BChE), and ß-amyloid peptide (ßA) aggregation. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and molecular docking were also applied to evaluate the content and determine the potential of each chickpea protein to interact with AChE, respectively. Obtained data showed that proteins from both cultivars could inhibit AChE with IC50 of 17.73 (0.03) and 22.20 (0.06) µg/mL, respectively, with no activity on BChE. The 50 µg/mL protein concentration of each cultivar suppressed ßA accumulation (Mansour: 25.66% and Hashem: 21.69%) and showed biometal chelating activity. SDS-PAGE analysis revealed relatively different protein patterns, though the Mansour cultivar contained some protein bands with molecular weights of 18, 24, and 70 kDa were estimated to belong to vicilin and legumin, which were absent in the Hashem protein mass. Molecular docking showed that legumin and especially vicilin have good potential to interact with AChE. The chickpea proteins showed inhibitory activity against AChE, which might be due to the vicilin and legumin fractions. The characterization of the inhibitory effect of each protein band could be promising in finding new therapeutic peptide candidates to treat Alzheimer's in the future, although more experimental work is needed in this issue.


Subject(s)
Alzheimer Disease , Cicer , Humans , Aged , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Cicer/chemistry , Cicer/metabolism , Acetylcholinesterase/metabolism , Molecular Docking Simulation , Amyloid beta-Peptides , Cholinesterase Inhibitors/pharmacology
17.
Food Chem ; 407: 135136, 2023 May 01.
Article in English | MEDLINE | ID: mdl-36502729

ABSTRACT

Chickpea protein (CP) is an exceptional nutrient-dense pulse protein prevailing in the development of plant-based foods. However, its relatively low solubility, compared to other legume proteins, hinders the practical uses of CP in food matrix. To resolve this problem, pea protein (PP), another popular pulse protein, was co-assembled with CP to form a binary complex during the alkaline pH-shifting process. Results indicated that the complexed CP exhibited significantly increased solubility to that of the pristine protein (more than 50%), whose aqueous stability was also enhanced against different environmental stresses (pH, salt, heat/frozen treatment, and centrifugation). Structural and morphology analysis confirmed the interplay between unfolded CP and PP during pH shifting, which enabled their resistance to acid-induced structural over-folding. Our experiments that induce the co-assembling of two pulse proteins provide a novel routine and scientific basis for tailoring CP functionalities, as well as the formulation of pulse protein-based products.


Subject(s)
Cicer , Fabaceae , Cicer/chemistry , Dietary Proteins/metabolism
18.
Food Chem ; 398: 133936, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36027659

ABSTRACT

This study investigated the impact of seed coats from peas (PC) and chickpeas (CC) (at 15 % and 30 % levels) on rice-based co-extruded snacks. Using PC and CC reduced the content of soluble (29 %) and cell-wall bound phenolic acids (21 %), but it enhanced the amount and the profile of flavonoids of rice-based snacks (up to 16 times with PC), resulting in significantly higher antioxidant activity (134 %). Snacks with 15 % CC showed a higher section area (about 335 versus 191 mm2) and a lower average pore radius (20.1 versus 23.9 mm) than PC-snacks; however, such features did not affect either texture or porosity. At 30 % level, PC resulted in a more porous structure (porosity: 73.1 versus 66.7 %) with smaller pores (17.2 versus 27.3 mm) and high firmness (55.9 versus 40.1 N). Consumers' acceptability evaluation revealed that samples containing pulse seed coat were comparable and preferred to the control (i.e., 100 % polished rice).


Subject(s)
Cicer , Oryza , Cicer/chemistry , Oryza/chemistry , Pisum sativum/chemistry , Phenols/metabolism , Seeds , Snacks
19.
J Food Sci ; 87(12): 5191-5207, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36316799

ABSTRACT

The applicability of ozone has been increased to include pulse grains because of their increased production and significance as plant-based protein source. In many developed countries, there is a growing demand for products made from chickpeas grains. Whole chickpea grains were treated with ozone gas (500-1000 ppm) for 20-30 min. The structural, thermal, pasting properties, and phytochemicals of the ozone-treated, as well as control samples, were evaluated. Minor structural changes in the functional groups in the protein and starch molecules were observed in the treated sample. Ozonation caused significant changes in the pasting properties such as peak viscosity, trough viscosity, breakdown viscosity, final viscosity, setback viscosity, and peak temperature values. Microstructure revealed a reduction in the particle sizes of chickpea powders with the severity of ozone treatment. The total flavonoids (41.35-48.94 mg QE), alkaloids (1120.24-1453.57µg/g), and xanthoprotein (0.995-1.387 µg/g) increased significantly (p < 0.05) with ozone treatment. Commercially, chickpea grains can be ozone treated for achieving desired functional characteristics in a target product. PRACTICAL APPLICATION: Before consuming grain that has been treated with gaseous ozone, it is vitally important for all consumers to have a solid understanding of the facts presented here regarding variations in the chickpea nutritional profile. The impact of ozone treatment on functional groups, thermal behavior, pasting properties, and morphological features in chickpeas reveals vital information regarding changes occurred on macromolecules such as starch, proteins, and bioactive compounds. Since ozonation aids in extraction of health-beneficial bioactive compounds and brings about change in the starch and protein morphology, making them more digestible, it can be highly useful in preparation of health foods.


Subject(s)
Cicer , Ozone , Cicer/chemistry , Starch/chemistry , Viscosity , Phytochemicals
20.
Food Chem ; 395: 133586, 2022 Nov 30.
Article in English | MEDLINE | ID: mdl-35779505

ABSTRACT

Alimentary pasta made of chickpeas has been recently introduced in the market. The novelty and presentation of this food can have a confounding effect on chickpea allergic patients and can pose a risk to them. The allergenic content of novel alimentary chickpea pasta in comparison with regular chickpea seeds has not been analyzed so far. Protein extracts were obtained, and the allergenic content was analyzed with sera from chickpea allergic patients and antibodies against major allergens by western blot, ELISA, dot blot, and cellular assays. Alimentary chickpea pasta showed an important content in IgE-binding proteins and chickpea allergens: 7S globulin, 2S albumin, LTP, and PR-10, similar to hydrated and boiled chickpea seeds. During boiling, more allergens from alimentary chickpea pasta were transferred to the boiling water than chickpea seeds. Novel alimentary chickpea pasta retains an important allergenic content which is affected by boiling by transferring allergens to the cooking water.


Subject(s)
Cicer , Food Hypersensitivity , Allergens , Cicer/chemistry , Humans , Immunoglobulin E , Plant Proteins/metabolism , Seeds/metabolism , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...