Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 381
Filter
1.
BMC Vet Res ; 20(1): 215, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773537

ABSTRACT

CONTEXT: Recently, prioritize has been given to using natural phytogenic or nano compounds as growth promoters and immunostimulants in fish diets as an alternative to antibiotics. AIMS: The main propose of this trial was to determine the impact of supplementing diets with spirulina or curcumin nanoparticles on the performance and health indicators of Nile tilapia fingerlings. METHODS: In a 56-day feeding trial, 180 tilapia fingerlings were assigned into three main groups, as follows: 1st, control group, 2nd, Spirulina platensis (SP; 5 g kg-1 diet) and 3rd, curcumin nanoparticles (CUR-NPs; 30 mg kg-1 diet). KEY RESULTS: Incorporating tilapia diets with SP or CUR-NPs significantly improved performance, body chemical analysis, blood biochemical and hematological indices, digestive enzyme activities, and antioxidant and immunostimulant features compared to the control. CONCLUSION: Fortified tilapia diets with CUR-NPs or SP efficiently boost the productivity and health of Nile tilapia fingerlings. IMPLICATIONS: The research introduces new practical solutions for applying safe feed additives as alternatives to antibiotics in tilapia farming.


Subject(s)
Animal Feed , Antioxidants , Cichlids , Curcumin , Diet , Dietary Supplements , Nanoparticles , Spirulina , Animals , Curcumin/pharmacology , Curcumin/administration & dosage , Spirulina/chemistry , Cichlids/immunology , Cichlids/blood , Animal Feed/analysis , Nanoparticles/administration & dosage , Nanoparticles/chemistry , Diet/veterinary , Antioxidants/pharmacology , Body Composition/drug effects
2.
BMC Vet Res ; 20(1): 231, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38802892

ABSTRACT

BACKGROUND: Moringa oleifera, a well-known medicinal plant, has been used in aquafeed as a dietary supplement. Based on previous studies, insufficient research is available on the dietary supplementation of Nile tilapia with M. oleifera leaf and seed mixtures, specifically the fermented form. Therefore, this study aimed to investigate the efficacy of fermented (FMO) versus non-fermented M. oleifera (MO) leaf and seed mixtures on immunological parameters, antioxidant activity, growth performance, and resistance to A. hydrophila infection after a 30-day feeding trial on Nile tilapia. METHODS: A total of 180 fingerlings were randomly divided into four groups in addition to the control group (36 fish each, in triplicate). Fish in the tested groups were fed on basal diet supplemented with MO5%, MO10%, FMO5%, and FMO10%, while those in control were fed on basal diet only. After the feeding trial, fish were challenged with A. hydrophila. The immunomodulatory activity of M. oleifera was evaluated in terms of phagocytic and lysozyme activities, immune-related cytokines and IgM gene expression. Antioxidants, and growth-promoting activities were also assessed. RESULTS: The results revealed that fish supplemented FMO markedly in FMO10% group followed by FMO5%, exhibited significant (P < 0.05) improvement in the tested immunological, hepatic antioxidants, and growth performance parameters. Furthermore, the highest survival rate post-challenge with mild clinical symptoms, and the lowest A. hydrophila bacterial count were reported in these groups. Meanwhile, MO10%-supplementation exhibited the opposite trend. CONCLUSIONS: The study' conclusion suggests that fermented M. oleifera leaf and seed mixture is a promising growth-promoting and immunostimulatory feed-additive candidate for Nile tilapia and could reduce the losses caused by A. hydrophila infection.


Subject(s)
Aeromonas hydrophila , Animal Feed , Antioxidants , Cichlids , Diet , Dietary Supplements , Fish Diseases , Gram-Negative Bacterial Infections , Moringa oleifera , Animals , Moringa oleifera/chemistry , Cichlids/growth & development , Cichlids/immunology , Gram-Negative Bacterial Infections/veterinary , Gram-Negative Bacterial Infections/prevention & control , Antioxidants/metabolism , Animal Feed/analysis , Fish Diseases/prevention & control , Fish Diseases/immunology , Fish Diseases/microbiology , Diet/veterinary , Plant Leaves/chemistry , Fermentation , Seeds/chemistry
3.
Fish Shellfish Immunol ; 149: 109594, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38697376

ABSTRACT

Non-specific cytotoxic cells (NCCs) are vital immune cells involved in teleost's non-specific immunity. As a receptor molecule on the NCCs' surface, the non-specific cytotoxic cell receptor protein 1 (NCCRP-1) is known to play a crucial role in mediating their activity. Nevertheless, there have been limited studies on the signal molecule that transmits signals via NCCRP-1. In this study, a yeast two-hybrid (Y2H) library of tilapia liver and head kidney was constructed and subsequently screened with the bait vector NCCRP-1 of Oreochromis niloticus (On-NCCRP-1) to obtain a C-type lectin (On-CTL) with an interacting protein sequence. Consequently, the full-length sequence of On-CTL was cloned and analyzed. The expression analysis revealed that On-CTL is highly expressed in the liver and is widely distributed in other tissues. Furthermore, On-CTL expression was significantly up-regulated in the brain, intestine, and head kidney following a challenge with Streptococcus agalactiae. A point-to-point Y2H method was also used to confirm the binding between On-NCCRP-1 and On-CTL. The recombinant On-CTL (rOn-CTL) protein was purified. In vitro experiments demonstrated that rOn-CTL can up-regulate the expression of killer effector molecules in NCCs via its interaction with On-NCCRP-1. Moreover, activation of NCCs by rOn-CTL resulted in a remarkable enhancement in their ability to eliminate fathead minnow cells, indicating that rOn-CTL effectively modulates the killing activity of NCCs through the NCC receptor molecule On-NCCRP-1. These findings significantly contribute to our comprehension of the regulatory mechanisms governing NCC activity, paving the way for future research in this field.


Subject(s)
Cichlids , Fish Diseases , Fish Proteins , Lectins, C-Type , Streptococcus agalactiae , Animals , Cichlids/immunology , Cichlids/genetics , Lectins, C-Type/genetics , Lectins, C-Type/immunology , Lectins, C-Type/chemistry , Fish Proteins/genetics , Fish Proteins/immunology , Fish Diseases/immunology , Streptococcus agalactiae/physiology , Streptococcal Infections/immunology , Streptococcal Infections/veterinary , Gene Expression Regulation/immunology , Amino Acid Sequence , Immunity, Innate/genetics , Sequence Alignment/veterinary , Phylogeny , Gene Expression Profiling/veterinary
4.
Fish Shellfish Immunol ; 149: 109534, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38575040

ABSTRACT

Zinc is one of the essential microelements for the metabolism of animals. Zinc nanoparticles may have higher bioavailability due to their low specific surface area, facilitating absorption by fish. The present study aimed to evaluate the effects of supplementation with different zinc-based products on the growth and health of Nile tilapia Oreochromis niloticus. Zinc, in different sizes (nanoparticles or bulk) and forms (inorganic or organic), were used as a supplement in the tilapia diet at a dose of 15 mg kg feed-1 for 60 days. At the end of the feeding trial, production performance, hemato-immunological parameters, activity of antioxidant system enzymes, exposure to Streptococcus agalactiae and zinc concentration in the muscle were examined. After the bacterial challenge, the mean corpuscular hemoglobin concentration (MCHC) significantly increased in the fish treated with organic zinc, inorganic nano zinc, and organic nano zinc, while in the control group (inorganic zinc), MCHC remained unchanged. Regarding defense cells, dietary inorganic nano zinc increased the number of basophils (1.50 ± 1.10) compared to organic zinc (0.80 ± 0.90). Lymphocyte count increased after the challenge only in the organic zinc treatments (bulk and nanoparticles). Neutrophils decreased in the control (inorganic zinc) (2.20 ± 1.70) and inorganic nano zinc (2.60 ± 2.70) treatments after the challenge. When compared before and after the bacterial challenge, the plasma antimicrobial titer significantly increased after the bacterial challenge in all treatments. No significant differences were observed for total proteins, enzymes (SOD and CAT), cumulative survival and zinc deposition on fillet. In conclusion, organic zinc in nanoparticles or bulk size increased Nile tilapia innate defense during bacterial infection. However, the other parameters evaluated were not affected by zinc particle size or form (organic or inorganic), indicating that further evaluations should be conducted with organic zinc in nanoparticles or bulk size in the tilapia diet.


Subject(s)
Animal Feed , Cichlids , Diet , Dietary Supplements , Fish Diseases , Streptococcal Infections , Streptococcus agalactiae , Zinc , Animals , Cichlids/immunology , Cichlids/growth & development , Dietary Supplements/analysis , Zinc/administration & dosage , Animal Feed/analysis , Diet/veterinary , Streptococcal Infections/veterinary , Streptococcal Infections/immunology , Streptococcus agalactiae/physiology , Fish Diseases/immunology , Random Allocation , Immunity, Innate/drug effects
5.
Fish Shellfish Immunol ; 149: 109572, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38636739

ABSTRACT

Streptococcosis outbreaks caused by Streptococcus agalactiae infection in tilapia aquaculture have been consistently reported and associated with high mortality and morbidity leading to significant economic losses. Existing vaccine candidates against Streptococcus spp. are designed for intraperitoneal injections that are not practical and labor-intensive which have prompted farmers to protect aquatic animals with antibiotics, thus encouraging the emergence of multidrug resistant bacteria. In this study, a live recombinant L. lactis vaccine expressing a 1403 bp surface immunogenic protein (SIP) and a 1100 bp truncated SIP (tSIP) gene was developed and evaluated against S. agalactiae infection in tilapia. Both SIP and tSIP sequences were cloned and transformed into L. lactis. The recombinant L.lactis vaccine was orally administered to juvenile tilapia for a month. Detection of SIP-specific serum IgM in vaccinated groups compared to control groups indicated that recombinant proteins expressed from L. lactis could elicit immunogenic reactions in tilapia. Fish immunized with the tSIP vaccine also showed the highest level of protection compared to other test groups, and the mortality rate was significantly reduced compared to both control groups. The relative percentage of survival (RPS) against S. agalactiae for both SIP and tSIP-vaccinated groups was 50 % and 89 %, respectively, at 14 days post-challenge. Significant up-regulation of IgM, IL-1ß, IL-10, TNF-α and IFN-γ were observed at day 34 between the vaccinated and control groups. These results indicated that the recombinant lactococcal tSIP vaccine can elicit both cell-mediated and humoral responses and is recommended as a potential oral vaccine against S. agalactiae infection. Future work will include further in vivo challenge assessments of this vaccine candidate fused with adjuvants to boost immunogenicity levels in tilapia.


Subject(s)
Cichlids , Fish Diseases , Streptococcal Infections , Streptococcus agalactiae , Animals , Streptococcus agalactiae/immunology , Streptococcal Infections/veterinary , Streptococcal Infections/prevention & control , Streptococcal Infections/immunology , Fish Diseases/prevention & control , Fish Diseases/immunology , Cichlids/immunology , Administration, Oral , Vaccines, Synthetic/immunology , Vaccines, Synthetic/administration & dosage , Streptococcal Vaccines/immunology , Streptococcal Vaccines/administration & dosage , Bacterial Vaccines/immunology , Bacterial Vaccines/administration & dosage , Lactococcus lactis/genetics , Lactococcus lactis/immunology , Bacterial Proteins/immunology , Bacterial Proteins/genetics
6.
Fish Shellfish Immunol ; 149: 109567, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38641215

ABSTRACT

Streptococcosis, an emerging infectious disease caused by Streptococcus agalactiae, has had adverse effects on farmed tilapia. Several vaccines have been developed to prevent this disease and induce a specific immune response against S. agalactiae infection. In this study the use of MONTANIDE™ GR01, a new adjuvant for oral vaccination, was optimized for use in tilapia under laboratory and field studies. In the laboratory trial the immune response and protective efficacy of two doses of MONTANIDE™ GR01, 20 % (w/w) and 2 % (w/w), included into the feed-based adjuvanted vaccines were assessed comparatively. Following immunization, the innate immune parameters studied in serum, including lysozyme, myeloperoxidase, catalase and glutathione peroxidase activity, were all increased significantly. Furthermore, specific IgM antibodies against S. agalactiae were induced significantly in serum post-vaccination, with higher levels observed in both groups that received the feed-based adjuvanted vaccine. Under both injection and immersion challenge conditions, the relative percent survival for the feed-based adjuvanted vaccine groups ranged from 78 % to 84 %. Following use of the low dose concentration of MONTANIDE™ GR01 for oral vaccination of tilapia in cage culture systems, several innate immune parameters were effectively enhanced in the immunized fish. Similarly, the levels of specific IgM antibodies in the serum of feed-based vaccinated fish were significantly enhanced, reaching their highest levels 2-5 months post-vaccination. Cytokines associated with innate and adaptive immunity were also examined, and the expression levels of several genes showed significant up-regulation. This indicates that both cellular and humoral immune responses were induced by the feed-based adjuvanted vaccine. The economic impact of a feed-based adjuvanted vaccine was examined following vaccination, considering the growth performance and feed utilization of the fish. It was found that the Economic Performance Index and Economic Conversion Ratio were unaffected by vaccination, further demonstrating that there are no negative impacts associated with administering a feed-based vaccine to fish. In conclusion, the data from this study indicate that MONTANIDE™ GR01 is a highly valuable adjuvant for oral vaccination, as demonstrated by its ability to induce a strong immune response and effectively prevent streptococcal disease in Nile tilapia.


Subject(s)
Adjuvants, Immunologic , Cichlids , Fish Diseases , Immunity, Innate , Streptococcal Infections , Streptococcus agalactiae , Animals , Streptococcus agalactiae/immunology , Streptococcal Infections/veterinary , Streptococcal Infections/prevention & control , Streptococcal Infections/immunology , Fish Diseases/prevention & control , Fish Diseases/immunology , Cichlids/immunology , Adjuvants, Immunologic/administration & dosage , Adjuvants, Immunologic/pharmacology , Administration, Oral , Animal Feed/analysis , Streptococcal Vaccines/immunology , Streptococcal Vaccines/administration & dosage , Vaccination/veterinary
7.
Mar Drugs ; 22(4)2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38667767

ABSTRACT

Chitosan (CH) shows great potential as an immunostimulatory feed additive in aquaculture. This study evaluates the effects of varying dietary CH levels on the growth, immunity, intestinal morphology, and antioxidant status of Nile tilapia (Oreochromis niloticus) reared in a biofloc system. Tilapia fingerlings (mean weight 13.54 ± 0.05 g) were fed diets supplemented with 0 (CH0), 5 (CH5), 10 (CH10), 20 (CH20), and 40 (CH40) mL·kg-1 of CH for 8 weeks. Parameters were assessed after 4 and 8 weeks. Their final weight was not affected by CH supplementation, but CH at 10 mL·kg-1 significantly improved weight gain (WG) and specific growth rate (SGR) compared to the control (p < 0.05) at 8 weeks. Skin mucus lysozyme and peroxidase activities were lower in the chitosan-treated groups at weeks 4 and 8. Intestinal villi length and width were enhanced by 10 and 20 mL·kg-1 CH compared to the control. However, 40 mL·kg-1 CH caused detrimental impacts on the villi and muscular layer. CH supplementation, especially 5-10 mL·kg-1, increased liver and intestinal expressions of interleukin 1 (IL-1), interleukin 8 (IL-8), LPS-binding protein (LBP), glutathione reductase (GSR), glutathione peroxidase (GPX), and glutathione S-transferase (GST-α) compared to the control group. Overall, dietary CH at 10 mL·kg-1 can effectively promote growth, intestinal morphology, innate immunity, and antioxidant capacity in Nile tilapia fingerlings reared in biofloc systems.


Subject(s)
Animal Feed , Aquaculture , Chitosan , Cichlids , Intestines , Animals , Chitosan/pharmacology , Cichlids/growth & development , Cichlids/immunology , Cichlids/metabolism , Intestines/drug effects , Aquaculture/methods , Dietary Supplements , Antioxidants/pharmacology , Antioxidants/metabolism , Gene Expression/drug effects
8.
Fish Shellfish Immunol ; 149: 109588, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38677630

ABSTRACT

In aquaculture, fluctuating water temperatures can act as a potent stressor, influencing the virulence and transmission dynamics of pathogenic bacteria, potentially triggering outbreaks and impacting fish health. The purpose of this work was to examine the impact of Shewanella spp. infection on hematological, biochemical, and antioxidant-immune parameters of Nile tilapia (Oreochromis niloticus) under different water temperatures. For this purpose, 180 fish were divided into 6 groups in triplicate (30 fish per group; 10 fish per replicate). Group 1 (G1), G2, and G3 were reared at varying water temperatures (22 °C, 28 °C, and 31 °C, respectively) without infection. While G4, G5, and G6 were IP-injected with 0.2 mL of Shewanella spp. (0.14 × 105) and reared at 22 °C, 28 °C, and 31 °C, respectively. Shewanella spp. infection induced significant lowering (p < 0.05) in hematological parameters (red and white blood cells, hemoglobin, and packed cell volume%) and immune-antioxidant responses (phagocytic activity%, phagocytic index, lysozyme, nitric oxide), total antioxidant capacity, catalase, and reduced glutathione, especially at 22 °C. Moreover, a significant increase (p < 0.05) in the hepato-renal function indicators (alanine aminotransferase, aspartate aminotransferase, urea, and creatinine), stress biomarkers (glucose and cortisol), malondialdehyde, and pro-inflammatory cytokines (interleukin-1ß and tumor necrosis factor-α) were the consequences of the Shewanella spp. infection, especially at 22 °C. The Shewanella spp. infection exhibited marked histopathological changes in the hepatic and renal tissues. Worthily, Shewanella spp. can cause detrimental alterations in Nile tilapia's hematological, biochemical, and antioxidant-immune parameters at various water temperatures, but the major detrimental changes were observed at a water temperature of 22 °C. Consequently, we can conclude that the infection dynamics of Shewanella spp. are exaggerated at 22 °C. These outcomes could help in understanding the nature of such an infection in Nile tilapia.


Subject(s)
Antioxidants , Cichlids , Fish Diseases , Gram-Negative Bacterial Infections , Shewanella , Temperature , Animals , Shewanella/physiology , Cichlids/immunology , Gram-Negative Bacterial Infections/veterinary , Gram-Negative Bacterial Infections/immunology , Fish Diseases/immunology , Fish Diseases/microbiology , Antioxidants/metabolism , Immunity, Innate
9.
Res Vet Sci ; 172: 105239, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38583195

ABSTRACT

Improperly cooked fish, carrying active metacercariae (MCs), can pose a significant risk for transmitting fish-borne zoonotic trematodes (FBZTs) to human consumers. This study aimed to enhance our understanding of FBZTs by conducting a comprehensive cross-sectional analysis involving various fish species, such as Nile tilapia (Oreochromis niloticus), African catfish (Clarias gariepinus), and red-belly tilapia (Tilapia zillii). These fish specimens were collected from distinct Egyptian governorates, specifically Giza, Kafr al-Shaykh, and Fayoum. The recovered flukes from experimentally infected domestic pigeons were identified as Prohemistomum vivax, Haplorchis pumilio, and Pygidiopsis genata based on morphological features. Furthermore, the identity of the retrieved adult flukes was confirmed using three species-specific primers for PCR amplification and sequencing analysis of the ITS rDNA region and have been deposited in GenBank with the following accession numbers: P. vivax (OR291421.1 and OR291422.1), P. genata (OP099561.1), and H. pumilio (OM439581.1-OP090510.1). Quantitative real-time PCR targeting the immunological genes Tumor Necrosis Factor-alpha (TNF-alpha) and Interleukin-1 (IL-1Β) was employed to compare the cellular immune response between infected with EMCs and uninfected O. niloticus. The results indicated a significant increase in TNF- and IL-1Β levels in FBZTs-infected vs un-infected fishes. Importantly, the presence of adult flukes and EMCs led to substantial histological alterations in both experimentally infected pigeons and naturally infected fish tissues. These changes included the necrosis of fish muscle bundles and a pronounced inflammatory reaction with muscular necrosis in the digestive tracts of experimentally infected pigeons.


Subject(s)
Fish Diseases , Trematode Infections , Animals , Cross-Sectional Studies , Fish Diseases/parasitology , Fish Diseases/immunology , Trematode Infections/veterinary , Trematode Infections/parasitology , Trematode Infections/immunology , Zoonoses/parasitology , Metacercariae , Cichlids/parasitology , Cichlids/immunology , Egypt , Fresh Water , Catfishes/parasitology , Tilapia/parasitology , Trematoda
10.
J Anim Physiol Anim Nutr (Berl) ; 108(3): 691-699, 2024 May.
Article in English | MEDLINE | ID: mdl-38226768

ABSTRACT

The supplementation of aquafeed with probiotics is recommended for feasible aquaculture activities. Therefore, the aim of current study was to investigate the potential effects of probiotics on growth performance, feed utilization, biochemical attributes, redox status and immunity response as well as the transcription of heat-shock protein 70 (HSP70) and insulin-like growth factor-1 (IGF-1) genes of Nile tilapia (Oreochromis niloticus; n = 120). Fish with an initial weight of 8.17 ± 0.02 g/fish were randomly divided into four treatment groups and were fed diets containing 0, 0.5, 1 and 1.5 mg immunobacteryne (IMB)/kg diet respectively. Dietary IMB at 1.5 g/kg diet significantly improved the growth performance, feed consumption and growth hormone secretion of the experimental fish (p < 0.05). The 1 or 1.5 g IMB/kg diet boosted phagocytic activities and innate immune response. Serum total protein, total cholesterol, triglycerides and glucose were significantly increased in the groups that were fed 1 and 1.5 mg IMB/kg diet compared to the control (p < 0.05). Meanwhile, the levels of uric acid, creatinine, liver enzymes (aspartate transaminase and alanine transaminase) and cortisol hormone were significantly reduced in the aforementioned treated groups compared to the control (p < 0.05). All fish fed IMB-supplemented diet showed a significant increase in the expression of IGF-1 gene, while the transcription of HSP70 was significantly decreased (p < 0.05). In conclusion, the dietary inclusion of IMB (1 g/kg diet) enhanced growth promoters, feed efficacy, blood biochemical, redox balance and nonspecific immune responses in Nile tilapia fingerlings.


Subject(s)
Animal Feed , Cichlids , Diet , Gene Expression Regulation , Oxidation-Reduction , Probiotics , Animals , Animal Feed/analysis , Animal Nutritional Physiological Phenomena , Cichlids/growth & development , Cichlids/immunology , Diet/veterinary , Gene Expression Regulation/drug effects , Heat-Shock Proteins/genetics , Heat-Shock Proteins/metabolism , Immunity, Innate/drug effects , Probiotics/pharmacology , Probiotics/administration & dosage
11.
J Biol Chem ; 299(2): 102843, 2023 02.
Article in English | MEDLINE | ID: mdl-36581209

ABSTRACT

Transforming growth factor-ß1 (TGF-ß1) can suppress the activation, proliferation, and function of many T-cell subsets, protecting organisms from inflammatory and autoimmune disease caused by an overexuberant immune response. However, whether and how TGF-ß1 regulates T-cell immunity in early vertebrates remain unknown. Here, using a Nile tilapia (Oreochromis niloticus) model, we investigated suppression of the T-cell response by TGF-ß1 in teleost species. Tilapia encodes an evolutionarily conserved TGF-ß1, the expression of which in lymphocytes is significantly induced during the immune response following Edwardsiella piscicida infection. Once activated, tilapia T cells increase TGF-ß1 production, which in turn suppresses proinflammatory cytokine expression and inhibits T-cell activation. Notably, we found administration of TGF-ß1 cripples the proliferation of tilapia T cells, reduces the potential capacity of Th1/2 differentiation, and impairs the cytotoxic function, rendering the fish more vulnerable to bacterial infection. Mechanistically, TGF-ß1 initiates the TGF-ßR/Smad signaling pathway and triggers the phosphorylation and nuclear translocation of Smad2/3. Smad3 subsequently interacts with several transcriptional partners to repress transcription of cytokines IL-2 and IFN-γ but promote transcription of immune checkpoint regulator CTLA4 and transcription factor Foxp3. Furthermore, TGF-ß1/Smad signaling further utilizes Foxp3 to achieve the cascade regulation of these T-cell genes. Taken together, our findings reveal a detailed mechanism by which TGF-ß1 suppresses the T cell-based immunity in Nile tilapia and support the notion that TGF-ß1 had already been employed to inhibit the T-cell response early in vertebrate evolution, thus providing novel insights into the evolution of the adaptive immune system.


Subject(s)
Cichlids , Forkhead Transcription Factors , Smad3 Protein , T-Lymphocytes , Transforming Growth Factor beta1 , Animals , Cichlids/immunology , Gene Expression Regulation , Gene Regulatory Networks , Signal Transduction , Smad3 Protein/genetics , Smad3 Protein/metabolism , Transforming Growth Factor beta1/genetics , Transforming Growth Factor beta1/metabolism , T-Lymphocytes/immunology , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , Fish Proteins/genetics , Fish Proteins/metabolism
12.
Fish Shellfish Immunol ; 131: 929-938, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36343851

ABSTRACT

α-Melanocyte-stimulating hormone (α-MSH) is a well-studied neuropeptide controlling skin and hair color. Besides, numerous immunomodulation roles of α-MSH were recorded in humans and mice. However, the regulatory effects of α-MSH in teleost immunity haven't been well elucidated. In this study, several precursor molecules of α-MSH (POMCs) and its receptors (MCRs) in Nile tilapia (Oreochromis niloticus) were characterized, and their expression characteristics and specific functions on antibacterial immunity were determined. Overall, POMCs and MCRs were principally detected in the brain, skin, and liver, and were remarkably promoted post Streptococcus agalactiae infection. However, tiny POMCs and MCRs were observed in tilapia immune organs (head kidney and spleen) or lymphocytes, and no evident immunomodulation effect was detected in vitro. Moreover, the in vivo challenge experiments revealed that α-MSH protects tilapia from bacterial infection by regulating responses in the brain and intestine. This study lays theoretical data for a deeper comprehension of the immunomodulation mechanisms of teleost α-MSH and the evolutional process of the vertebrate melanocortin system.


Subject(s)
Fish Diseases , Immunomodulation , Streptococcal Infections , Tilapia , alpha-MSH , Animals , alpha-MSH/metabolism , Amino Acid Sequence , Anti-Bacterial Agents , Cichlids/immunology , Cichlids/microbiology , Fish Diseases/immunology , Fish Diseases/microbiology , Fish Proteins/chemistry , Gene Expression Regulation , Immunomodulation/physiology , Streptococcal Infections/veterinary , Streptococcus agalactiae/physiology , Tilapia/immunology , Tilapia/microbiology
13.
Fish Shellfish Immunol ; 121: 124-134, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34998984

ABSTRACT

The protective effect of ß-glucan against toxicological effects caused by copper oxide nanoparticles (Cu NPs) and copper ions (Cu ions) were studied in monocytes/macrophages (MO/MФ) of Nile tilapia (Oreochromis niloticus). Our results demonstrated that CuO NPs and Cu ions exposure aroused strong oxidative lesion in MO/MФ by detection of cellular reactive oxygen species (ROS) and reduced glutathione (GSH), as well as identification of several antioxidant-related cytokines. Meanwhile, the serious pro-inflammatory responses were accompanied during the processes of oxidative lesion by TNFα, IL-1ß, and IL-6 genes validation. Copper induced MO/MФ underwent apoptosis through mitochondrial signaling pathway by mitochondrial membrane potential (ΔΨm) detection and Bax, Bcl-2, Cyt-c, Apaf-1, Caspase 9, Caspase 3 genes validation. Furthermore, the phagocytic abilities were inhibition in MO/MФ by evaluation of microspheres (0.5 and 1.0 µm beads) and bioparticles (S. agalactiae and A. hydrophila) uptake and LPS-induced NO production. However, ß-glucan might participate in immunomodulation through C-type lectin receptor (CLR) and complement receptor 3 (CR3) to suppress pro-inflammatory responses, thereby revered all the copper induced aforementioned adverse effects in MO/MΦ. Taken together, our results provide insights on the mechanisms through ß-glucan administration to mitigate toxicological effects of CuO NPs and Cu ions exposure to the MO/MΦ, which will benefit aspects related to fish farming and aquaculture production.


Subject(s)
Cichlids , Copper , Macrophages/drug effects , Monocytes/drug effects , beta-Glucans , Animals , Cichlids/immunology , Copper/toxicity , beta-Glucans/therapeutic use
14.
Mol Immunol ; 143: 7-16, 2022 03.
Article in English | MEDLINE | ID: mdl-34990938

ABSTRACT

DDX43 is one of the members of the DExD/H-box protein family, and emerging data suggest that it may play an important role in antiviral immunity across mammals. However, little is known about DDX43 in the fish immune response. In this study, we isolated the cDNA sequence of ddx43 in Nile tilapia (Oreochromis niloticus). The ddx43 gene was 2338 bp in length, contained an open reading frame (ORF) of 2064 bp and encoded a polypeptide of 687 amino acids. The predicted protein of OnDDX43 has three conserved domains, including the RNA binding domain KH, DEAD-like helicase superfamily DEXDc and C-terminal HELICc domain. In healthy Nile tilapia, the Onddx43 transcript was broadly expressed in all examined tissues, with the highest expression levels in the muscle and brain and the lowest in the liver. After challenge with Streptococcus agalactiae, lipopolysaccharides (LPS) and polyinosinic polycytidylic acid (Poly I:C), the expression level of Onddx43 mRNA was upregulated or downregulated in all of the tissues tested. Overexpression of OnDDX43 in 293 T cells showed that it has a positive regulatory effect on IFN-ß. The subcellular localization showed that OnDDX43 was expressed in the cytoplasm. We performed further pull-down assays and found that OnDDX43 interacted with both interferon-ß promoter stimulator1 (IPS-1) and TIR domain-containing adaptor inducing interferon-ß (TRIF).


Subject(s)
Adaptor Proteins, Signal Transducing/immunology , Adaptor Proteins, Vesicular Transport/immunology , Cichlids/immunology , DEAD-box RNA Helicases/immunology , Fish Diseases/immunology , Fish Proteins/immunology , Interferon-beta/immunology , Signal Transduction/immunology , Animals , Cichlids/microbiology
15.
Fish Shellfish Immunol ; 120: 67-74, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34774734

ABSTRACT

The study was executed to find out the potential effects spent coffee ground (SCG) on Nile tilapia's skin mucosal and serum immunities, disease prevention, and growth rate reared in a biofloc system. Nile tilapia fingerlings (average weight 15.25 ± 0.07 g) were disseminated into 15 aquaria (150 L tank-1) at a density of 20 fish per aquarium and treated five diets: SCG1 (control), SCG2 (10 g kg-1), SCG3 (20 g kg-1), SCG4 (40 g kg-1), and SCG5 (80 g kg-1) for eight weeks. A Completely Randomized Design (CRD) with three replications was applied. Growth rate, skin mucus, and serum immunities were quantified every 4 weeks; whereas the challenge study was conducted at the termination of the feeding trial. The outputs indicated that dietary incorporation of SCG give rise to the enhancement of SGR and FCR in comparison with the control, with best levels noted in fish fed SCG2 diet. Similarly, significant enhancements in skin mucosal and serum immunities were revealed in fish treated SCG2 over the control and other SCG diets. Likewise, higher survival rates against Streptococcus agalactiae were displayed in fish fed SCG, with the maximum level displayed in the fish treated SCG2. In conclusion, dietary supplementation of SCG2 (10 g kg-1) can be potential used as immunostimulants in tilapia aquaculture.


Subject(s)
Cichlids , Coffee , Diet , Fish Diseases , Streptococcal Infections , Animal Feed/analysis , Animals , Aquaculture , Cichlids/immunology , Diet/veterinary , Dietary Supplements , Disease Resistance , Fish Diseases/immunology , Fish Diseases/microbiology , Streptococcal Infections/immunology , Streptococcal Infections/veterinary
16.
Fish Shellfish Immunol ; 121: 276-284, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34968712

ABSTRACT

Polysaccharides are polymeric carbohydrates found in living organisms, which have several physiological functions. In the present study, Nile tilapia (Oreochromis niloticus) were fed diets containing three levels (0%, 0.2%, and 0.6%) of Pistacia vera hull polysaccharide (PHP) for 45 days and then injected with PBS or bacterial lipopolysaccharide (LPS). Before the LPS challenge, Nile tilapia fed 0.2% and 0.6% PHP showed significantly increased mean final weight and weight gain compared to those received 0% PHP. The specific growth rate and feed conversion ratio were significantly improved in the treatment fed 0.6% PHP compared to the remaining groups. After LPS challenge, the activities of liver antioxidant enzymes, including superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase exhibited the highest values in the 0.6% PHP group. Malondialdehyde (MDA) levels were significantly augmented in the model (fed 0% PHP diet and injected with LPS) and 0.2% PHP groups compared to the control. However, MDA showed decreased levels in the 0.6% PHP group. LPS induced higher mRNA and/or protein levels of Toll-like receptor 2 (TLR2), nuclear factor kappa B (NF-κB), myeloid differentiation primary response protein 88 (Myd88), tumor necrosis factor α (TNF-α), interleukin 1ß (IL-1ß), and interferon γ (IFN-γ) in Nile tilapia liver. However, PHP administration significantly upregulated the expression of interleukin 10 (IL-10), nuclear erythroid 2-related factor 2 (Nrf2), SOD, and CAT, but markedly suppressed TLR2, NF-κB, Myd88, and pro-inflammatory cytokine expression and/or production in the liver. The findings of the current study indicated that PHP has positive effects on growth performance, immune gene-related expression, and antioxidative activities. We can conclude that PHP can attenuate LPS-induced oxidative stress and inflammatory responses in vivo, possibly via induction of Nrf2 and blockade of TLR2/Myd88/NF-κB pathways in Nile tilapia.


Subject(s)
Cichlids , Inflammation/prevention & control , Oxidative Stress , Pistacia , Polysaccharides , Animal Feed/analysis , Animals , Antioxidants/metabolism , Cichlids/immunology , Diet/veterinary , Dietary Supplements , Lipopolysaccharides/toxicity , Myeloid Differentiation Factor 88/genetics , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , NF-kappa B/genetics , Pistacia/chemistry , Polysaccharides/pharmacology , Signal Transduction , Superoxide Dismutase , Toll-Like Receptor 2/genetics
17.
Fish Shellfish Immunol ; 120: 337-344, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34883256

ABSTRACT

Nile tilapia can tolerate a wide range of farming conditions; however, fluctuations in the environmental conditions may impair their health status. The incorporation of medicinal herbs in aquafeed is suggested to overcome stressful conditions. In this study, dietary Guduchi (Tinospora cordifolia) was evaluated on the growth performance, antioxidative capacity, immune response, and resistance of Nile tilapia against hypoxia stress. Fish fed five diets incorporated with Guduchi at 0, 2, 4, 6, and 8 g/kg for 56 days then exposed with hypoxia stress for 72 h. The growth performance, feed intake, and feed efficiency ratio were significantly (P < 0.05) increased by including Guduchi in tilapia diets regardless of the inclusion level. Similarly, the lipase and protease activities were markedly (P < 0.05) increased in tilapia fed dietary Guduchi. The activities of lysozyme and bactericidal activities in serum and mucus, nitro-blue tetrazolium (NBT), and alternative complement activity (ACH50) were markedly (P < 0.05) enhanced in tilapia treated with Guduchi supplements regardless of the dose. Additionally, the activities of liver and intestinal superoxide dismutase, catalase, and glutathione peroxidase were markedly enhanced (P < 0.05) by including Guduchi in tilapia diets compared with the control. Before and after hypoxia stress, tilapia-fed dietary Guduchi had lower glucose and cortisol levels than fish-fed Guduchi-free diets (P < 0.05). In all groups, glucose and cortisol levels were markedly higher after hypoxia compared before hypoxia stress (P < 0.05). In conclusion, dietary Guduchi can be included at 5.17-5.49 g/kg to enhance the growth performance, digestive enzyme activity, immune and antioxidative responses, and the resistance of Nile tilapia against hypoxia stress.


Subject(s)
Cichlids , Diet , Fish Diseases , Hypoxia , Tinospora , Animal Feed/analysis , Animals , Antioxidants , Cichlids/growth & development , Cichlids/immunology , Diet/veterinary , Dietary Supplements , Glucose , Hydrocortisone , Immunity , Plants, Medicinal/chemistry , Tinospora/chemistry
18.
Fish Shellfish Immunol ; 121: 152-162, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34965443

ABSTRACT

Streptococcus iniae is a re-emerging bacterial pathogen in freshwater and marine aquaculture worldwide. There are no commercial vaccines available for S. iniae in the United States, and autogenous vaccines are restricted to inactivated whole-cell preparations with limited protection against heterogenous strains. Live-attenuated vaccines (LAV) represent an advantageous alternative to these bacterins, as they induce robust cellular and humoral immunity, and may provide longer lasting protection through less stressful routes of administration. We investigated whether accumulation of mutations in S. iniae by serial passage in the presence of rifampin can generate immunogenic LAV conferring protection against challenge with heterologous wild-type (WT) S. iniae strains in Nile tilapia (Oreochromis niloticus). Three lineages of rifampin-resistant S. iniae strains were generated from three genetically distinct parent strains (n = 9) by multiple passages in increments of Rifamycin SV sodium salt. Growth in liquid media, extent of capsulation, antimicrobial susceptibility, survival in Nile tilapia whole blood, and cytotoxicity in an O. mossambicus endothelial cell line were compared between the passaged and WT strains. Nile tilapia challenges were used to assess strain virulence, generation of anti-S. iniae IgM, and the protection conferred by LAV candidates against virulent S. iniae. Rifampin-resistant strains demonstrated changes in growth rate and cytotoxicity in endothelial cells, as well as significant reductions in whole blood survival (p < 0.05). Selected strains also showed attenuated virulence in the Nile tilapia challenge model, and anti-S. iniae IgM generated against these strains demonstrated cross-reactivity against heterologous bacteria. Immunization by intracoelomic injection induced protection against a virulent WT strain of S. iniae, with relative percent survival up to 95.05%.


Subject(s)
Bacterial Vaccines/immunology , Cichlids , Fish Diseases , Streptococcal Infections , Animals , Cell Line , Cichlids/immunology , Endothelial Cells/microbiology , Fish Diseases/prevention & control , Immunoglobulin M , Rifampin , Streptococcal Infections/prevention & control , Streptococcal Infections/veterinary , Streptococcus iniae , Vaccines, Attenuated/immunology
19.
Fish Shellfish Immunol ; 121: 99-107, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34965444

ABSTRACT

Irisin is a novel immunomodulatory adipomyokine released upon cleavage of the fibronectin type III domain-containing protein 5 (FNDC5). We aimed to examine interleukin-6 (IL-6) role in mediating irisin secretion in immunologically challenged animal and primary head kidney leukocytes cultured from tilapia. Intraperitoneal injection of lipopolysaccharide (LPS) increased plasma IL-6 levels and decreased irisin secretion, suggesting a causal relationship between the induction of IL-6 and irisin. To address this relationship, we further produced recombinant tilapia IL-6 and the anti-tilapia IL-6 polyclonal antiserum. Intraperitoneal injection of recombinant tilapia IL-6 inhibited plasma irisin levels. Consistent with this observation, LPS-induced inhibition of plasma irisin was significantly attenuated by neutralizing circulating IL-6 using an IL-6 antiserum. Besides, IL-6 treatment could inhibit irisin secretion and FNDC5 gene expression in primary cultures of tilapia head kidney leukocytes. In parallel experiments, both LPS and IL-6 blockade of irisin secretion could be reverted by IL-6 receptor antagonism. At the level of the leukocyte, IL-6 treatment also triggered rapid phosphorylation of Janus kinase 2 (JAK2) and signal transducer and activator of transcription 3 (STAT3), whereas IL-6-reduced irisin secretion could be negated by inhibiting the JAK2 and STAT3 signaling pathways. These results, as a whole, provide the first evidence that IL-6 is the mediator of LPS-inhibited irisin secretion via activation of the JAK2/STAT3 signaling pathway.


Subject(s)
Cichlids , Fibronectins/metabolism , Interleukin-6 , Animals , Cichlids/immunology , Interleukin-6/immunology , Janus Kinase 2 , Lipopolysaccharides/pharmacology , STAT3 Transcription Factor , Signal Transduction
20.
Fish Shellfish Immunol ; 120: 402-410, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34843944

ABSTRACT

An experiment was conducted to investigate the effects of Aegle marmelos fruit (AMF) extract on the growth performance, biochemical parameters, immune response, antioxidative capacity, and digestive enzyme activity of Nile tilapia (Oreochromis niloticus). Fish were fed a diet supplemented with AMF at concentrations of 0 (AMF0; control), 5 (AMF5), 10 (AMF10), 15 (AMF15), or 20 (AMF20) g/kg for 8 weeks. The results show that the final body weight, weight gain, specific growth rate, average daily gain, and feed conversion ratio were significantly higher in fish fed AMF15 and AMF20 compared to those fed the control diet (P < 0.05). Moreover, significant increases in antioxidant enzyme activities and non-specific immune responses were observed in groups fed AMF15 and AMF20. Interestingly, the level of cholesterol decreased with increasing AMF concentrations in the diet. As dietary AMF levels increased, digestive enzyme activities significantly improved. After the feeding trial, fish were injected intraperitoneally with Streptococcus agalactiae, and the 14-day cumulative mortality was calculated. A high survival rate after challenge with S. agalactiae was observed in all groups that received AMF-supplemented feed. Therefore, the present study suggests that supplementing the diet of Nile tilapia with AMF at a concentration of 20 g/kg could encourage their growth, improve their immunity and antioxidant status, and provide strong protection against S. agalactiae.


Subject(s)
Aegle , Cichlids , Diet , Fish Diseases , Plant Extracts , Streptococcal Infections , Aegle/chemistry , Animal Feed/analysis , Animals , Antioxidants , Cichlids/growth & development , Cichlids/immunology , Diet/veterinary , Dietary Supplements/analysis , Disease Resistance , Fish Diseases/microbiology , Fruit/chemistry , Plant Extracts/pharmacology , Plants, Medicinal/chemistry , Streptococcal Infections/veterinary , Streptococcus agalactiae
SELECTION OF CITATIONS
SEARCH DETAIL
...