Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.386
Filter
1.
Sci Rep ; 14(1): 10394, 2024 05 06.
Article in English | MEDLINE | ID: mdl-38710815

ABSTRACT

Tobacco use significantly influences the oral microbiome. However, less is known about how different tobacco products specifically impact the oral microbiome over time. To address this knowledge gap, we characterized the oral microbiome of cigarette users, smokeless tobacco users, and non-users over 4 months (four time points). Buccal swab and saliva samples (n = 611) were collected from 85 participants. DNA was extracted from all samples and sequencing was carried out on an Illumina MiSeq, targeting the V3-V4 region of the 16S rRNA gene. Cigarette and smokeless tobacco users had more diverse oral bacterial communities, including a higher relative abundance of Firmicutes and a lower relative abundance of Proteobacteria, when compared to non-users. Non-users had a higher relative abundance of Actinomyces, Granulicatella, Haemophilus, Neisseria, Oribacterium, Prevotella, Pseudomonas, Rothia, and Veillonella in buccal swab samples, compared to tobacco users. While the most abundant bacterial genera were relatively constant over time, some species demonstrated significant shifts in relative abundance between the first and last time points. In addition, some opportunistic pathogens were detected among tobacco users including Neisseria subflava, Bulleidia moorei and Porphyromonas endodontalis. Overall, our results provide a more holistic understanding of the structure of oral bacterial communities in tobacco users compared to non-users.


Subject(s)
Dysbiosis , Microbiota , Mouth , RNA, Ribosomal, 16S , Tobacco, Smokeless , Humans , Tobacco, Smokeless/adverse effects , Male , Female , Dysbiosis/microbiology , Adult , RNA, Ribosomal, 16S/genetics , Mouth/microbiology , Saliva/microbiology , Middle Aged , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Smokers , Young Adult , Cigarette Smoking/adverse effects , Mouth Mucosa/microbiology
2.
Respir Res ; 25(1): 210, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755610

ABSTRACT

BACKGROUND: Mitogen-activated protein kinase (MAPK)signaling-mediated smoking-associated pulmonary vascular remodeling (PVR) plays an important role in the pathogenesis of group 3 pulmonary hypertension (PH). And G protein pathway suppressor 2 (GPS2) could suppress G-protein signaling such as Ras and MAPK, but its role in cigarette smoking -induced PVR (CS-PVR) is unclear. METHODS: An in vivo model of smoke-exposed rats was constructed to assess the role of GPS2 in smoking-induced PH and PVR. In vitro, the effects of GPS2 overexpression and silencing on the function of human pulmonary arterial smooth cells (HPASMCs) and the underlying mechanisms were explored. RESULTS: GPS2 expression was downregulated in rat pulmonary arteries (PAs) and HPASMCs after CS exposure. More importantly, CS-exposed rats with GPS2 overexpression had lower right ventricular systolic pressure (RVSP), right ventricular hypertrophy index (RVHI), and wall thickness (WT%) than those without. And enhanced proliferation and migration of HPASMCs induced by cigarette smoking extract (CSE) can be evidently inhibited by overexpressed GPS2. Besides, GPS2siRNA significantly enhanced the proliferation, and migration of HPASMCs as well as activated Ras and Raf/ERK signaling, while these effects were inhibited by zoledronic acid (ZOL). In addition, GPS2 promoter methylation level in rat PAs and HPASMCs was increased after CS exposure, and 5-aza-2-deoxycytidine (5-aza) inhibited CSE-induced GPS2 hypermethylation and downregulation in vitro. CONCLUSIONS: GPS2 overexpression could improve the CS-PVR, suggesting that GPS2 might serve as a novel therapeutic target for PH-COPD in the future.


Subject(s)
Cigarette Smoking , MAP Kinase Signaling System , Rats, Sprague-Dawley , Vascular Remodeling , Animals , Vascular Remodeling/drug effects , Vascular Remodeling/physiology , Rats , Male , Humans , Cigarette Smoking/adverse effects , MAP Kinase Signaling System/physiology , MAP Kinase Signaling System/drug effects , Cells, Cultured , ras Proteins/metabolism , Pulmonary Artery/drug effects , Pulmonary Artery/metabolism , Pulmonary Artery/pathology , raf Kinases/metabolism , raf Kinases/genetics , Hypertension, Pulmonary/metabolism , Hypertension, Pulmonary/pathology , Hypertension, Pulmonary/chemically induced , Extracellular Signal-Regulated MAP Kinases/metabolism
3.
Int J Chron Obstruct Pulmon Dis ; 19: 1141-1151, 2024.
Article in English | MEDLINE | ID: mdl-38817823

ABSTRACT

Background: This study sought to explore the underlying mechanism of miR-21 mediated apoptosis and inflammation in chronic obstructive pulmonary disease (COPD) induced by cigarette smoke (CS). Methods: We detected levels and PTEN/Akt/NF-κB axis protein levels in peripheral lung tissues of COPD patients and CS-exposed mice and HBE cells. Western blotting assay was used to determine the expression of cleaved caspase-3. IL-6 and IL-8 protein was detected in cell supernatant from cells by ELISA. HBE cells were transfected with a miR-21 inhibitor, and co-culture with A549. Results: Increased miR-21 expression, reduced PTEN expression and following activation of Akt in in peripheral lung tissues of COPD patients and CS-exposed mice and HBE cells. Inhibition of miR-21 showed enhanced PTEN levels and reduced the expression of phosphorylated form of Akt and NF-κB. Decreased expression of cleaved caspase-3, IL-6 and IL-8 in A549 cells co cultured with HBE cells transfected with miR-21 inhibitor compared with transfected with miR-21 control inhibitor. Conclusion: MiR-21 contributes to COPD pathogenesis by modulating apoptosis and inflammation through the PTEN/Akt/NF-κB pathway. Targeting miR-21 may increase PTEN expression and inhibit Akt/NF-κB pathway, offering potential diagnostic and therapeutic value in COPD management.


Subject(s)
Apoptosis , Disease Models, Animal , Lung , MicroRNAs , NF-kappa B , PTEN Phosphohydrolase , Proto-Oncogene Proteins c-akt , Pulmonary Disease, Chronic Obstructive , Signal Transduction , Pulmonary Disease, Chronic Obstructive/metabolism , Pulmonary Disease, Chronic Obstructive/genetics , Pulmonary Disease, Chronic Obstructive/pathology , MicroRNAs/metabolism , MicroRNAs/genetics , PTEN Phosphohydrolase/metabolism , PTEN Phosphohydrolase/genetics , Humans , Proto-Oncogene Proteins c-akt/metabolism , Animals , NF-kappa B/metabolism , A549 Cells , Lung/pathology , Lung/metabolism , Male , Middle Aged , Female , Mice, Inbred C57BL , Interleukin-8/metabolism , Inflammation Mediators/metabolism , Interleukin-6/metabolism , Phosphorylation , Cigarette Smoking/adverse effects , Case-Control Studies , Aged
4.
JAMA Netw Open ; 7(5): e2413869, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38814643

ABSTRACT

Importance: Cigarette smoking is a primary risk factor for chronic lower respiratory disease (CLRD) and is associated with worse symptoms among people with CLRD. It is important to evaluate the economic outcomes of smoking in this population. Objective: To estimate smoking prevalence and cigarette smoking-attributable health care expenditures (SAHEs) for adults with CLRD in the US. Design, Setting, and Participants: This cross-sectional study used data from the 2014-2018 and 2020 National Health Interview Surveys (NHIS) and the 2020 Medical Expenditure Panel Survey. The final study population, stratified by age 35 to 64 years and 65 years or older, was extracted from the 2014-2018 NHIS data. The data analysis was performed between February 1 and March 31, 2024. Exposures: Cigarette smoking, as classified into 4 categories: current smokers, former smokers who quit less than 15 years ago, former smokers who quit 15 or more years ago, and never smokers. Main Outcomes and Measures: Smoking-attributable health care expenditures were assessed using a prevalence-based annual cost approach. Econometric models for the association between cigarette smoking and health care utilization were estimated for 4 types of health care services: inpatient care, emergency department visits, physician visits, and home health visits. Results: In the 2014-2018 NHIS study sample of 13 017 adults, 7400 (weighted 62.4%) were aged 35 to 64 years, 5617 (weighted 37.6%) were 65 years or older, and 8239 (weighted 61.9%) were female. In 2020, among 11 211 222 adults aged 35 to 64 with CLRD, 3 508 504 (31.3%) were current smokers and 3 496 790 (31.2%) were former smokers. Total SAHEs in 2020 for this age group were $13.6 billion, averaging $2752 per current smoker and $1083 per former smoker. In 2020, 7 561 909 adults aged 65 years or older had CLRD, with 1 451 033 (19.2%) being current smokers and 4 104 904 (54.3%) being former smokers. Total SAHEs in 2020 for the older age group were $5.3 billion, averaging $1704 per current smoker and $682 per former smoker. In sum, SAHEs for adults with CLRD aged 35 years or older amounted to $18.9 billion in 2020. Conclusions and Relevance: In this cross-sectional study of adults with CLRD, cigarette smoking was associated with a substantial health care burden. The higher per-person SAHEs for current smokers compared with former smokers suggest potential cost savings of developing targeted smoking cessation interventions for this population.


Subject(s)
Health Expenditures , Humans , Middle Aged , Male , Female , Adult , Health Expenditures/statistics & numerical data , Cross-Sectional Studies , United States/epidemiology , Aged , Prevalence , Cigarette Smoking/epidemiology , Cigarette Smoking/economics , Cigarette Smoking/adverse effects , Chronic Disease/economics , Chronic Disease/epidemiology
5.
Genes (Basel) ; 15(5)2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38790194

ABSTRACT

Depression is heritable, differs by sex, and has environmental risk factors such as cigarette smoking. However, the effect of single nucleotide polymorphisms (SNPs) on depression through cigarette smoking and the role of sex is unclear. In order to examine the association of SNPs with depression and smoking in the UK Biobank with replication in the COPDGene study, we used counterfactual-based mediation analysis to test the indirect or mediated effect of SNPs on broad depression through the log of pack-years of cigarette smoking, adjusting for age, sex, current smoking status, and genetic ancestry (via principal components). In secondary analyses, we adjusted for age, sex, current smoking status, genetic ancestry (via principal components), income, education, and living status (urban vs. rural). In addition, we examined sex-stratified mediation models and sex-moderated mediation models. For both analyses, we adjusted for age, current smoking status, and genetic ancestry (via principal components). In the UK Biobank, rs6424532 [LOC105378800] had a statistically significant indirect effect on broad depression through the log of pack-years of cigarette smoking (p = 4.0 × 10-4) among all participants and a marginally significant indirect effect among females (p = 0.02) and males (p = 4.0 × 10-3). Moreover, rs10501696 [GRM5] had a marginally significant indirect effect on broad depression through the log of pack-years of cigarette smoking (p = 0.01) among all participants and a significant indirect effect among females (p = 2.2 × 10-3). In the secondary analyses, the sex-moderated indirect effect was marginally significant for rs10501696 [GRM5] on broad depression through the log of pack-years of cigarette smoking (p = 0.01). In the COPDGene study, the effect of an SNP (rs10501696) in GRM5 on depressive symptoms and medication was mediated by log of pack-years (p = 0.02); however, no SNPs had a sex-moderated mediated effect on depressive symptoms. In the UK Biobank, we found SNPs in two genes [LOC105378800, GRM5] with an indirect effect on broad depression through the log of pack-years of cigarette smoking. In addition, the indirect effect for GRM5 on broad depression through smoking may be moderated by sex. These results suggest that genetic regions associated with broad depression may be mediated by cigarette smoking and this relationship may be moderated by sex.


Subject(s)
Depression , Polymorphism, Single Nucleotide , Humans , Male , Female , Depression/genetics , Depression/epidemiology , Middle Aged , Aged , Smoking/genetics , Sex Factors , Genetic Predisposition to Disease , United Kingdom/epidemiology , Cigarette Smoking/genetics , Cigarette Smoking/adverse effects , Risk Factors
6.
COPD ; 21(1): 2342797, 2024 12.
Article in English | MEDLINE | ID: mdl-38712759

ABSTRACT

Objective: To investigate the effects of cigarette smoke (CS) on Serine/Threonine Kinase 11 (STK11) and to determine STK11's role in CS-induced airway epithelial cell cytotoxicity.Methods: STK11 expression levels in the lung tissues of smokers with or without COPD and mice exposed to CS or room air (RA) were determined by immunoblotting and RT-PCR. BEAS-2Bs-human bronchial airway epithelial cells were exposed to CS extract (CSE), and the changes in STK11 expression levels were determined by immunoblotting and RT-PCR. BEAS-2B cells were transfected with STK11-specific siRNA or STK11 expression plasmid, and the effects of CSE on airway epithelial cell cytotoxicity were measured. To determine the specific STK11 degradation-proteolytic pathway, BEAS-2Bs were treated with cycloheximide alone or combined with MG132 or leupeptin. Finally, to identify the F-box protein mediating the STK11 degradation, a screening assay was performed using transfection with a panel of FBXL E3 ligase subunits.Results: STK11 protein levels were significantly decreased in the lung tissues of smokers with COPD relative to smokers without COPD. STK11 protein levels were also significantly decreased in mouse lung tissues exposed to CS compared to RA. Exposure to CSE shortened the STK11 mRNA and protein half-life to 4 h in BEAS-2B cells. STK11 protein overexpression attenuated the CSE-induced cytotoxicity; in contrast, its knockdown augmented CSE-induced cytotoxicity. FBXL19 mediates CSE-induced STK11 protein degradation via the ubiquitin-proteasome pathway in cultured BEAS-2B cells. FBXL19 overexpression led to accelerated STK11 ubiquitination and degradation in a dose-dependent manner.Conclusions: Our results suggest that CSE enhances the degradation of STK11 protein in airway epithelial cells via the FBXL19-mediated ubiquitin-proteasomal pathway, leading to augmented cell death.HIGHLIGHTSLung tissues of COPD-smokers exhibited a decreased STK11 RNA and protein expression.STK11 overexpression attenuates CS-induced airway epithelial cell cytotoxicity.STK11 depletion augments CS-induced airway epithelial cell cytotoxicity.CS diminishes STK11 via FBXL19-mediated ubiquitin-proteasome degradation.


Subject(s)
AMP-Activated Protein Kinases , Epithelial Cells , F-Box Proteins , Protein Serine-Threonine Kinases , Smoke , Animals , Humans , Male , Mice , AMP-Activated Protein Kinase Kinases , Cell Line , Cigarette Smoking/adverse effects , Cycloheximide/pharmacology , Epithelial Cells/metabolism , Epithelial Cells/drug effects , F-Box Proteins/metabolism , F-Box Proteins/genetics , Leupeptins/pharmacology , Mice, Inbred C57BL , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Proteolysis/drug effects , Pulmonary Disease, Chronic Obstructive/metabolism , Pulmonary Disease, Chronic Obstructive/genetics , Respiratory Mucosa/metabolism , Respiratory Mucosa/drug effects , RNA, Small Interfering , Smoke/adverse effects
7.
Stem Cell Res Ther ; 15(1): 145, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38764093

ABSTRACT

BACKGROUND: Mesenchymal stem cells (MSCs) play important roles in tissue homeostasis by providing a supportive microenvironmental niche for the hematopoietic system. Cigarette smoking induces systemic abnormalities, including an impeded recovery process after hematopoietic stem cell transplantation. However, the role of cigarette smoking-mediated alterations in MSC niche function have not been investigated. METHODS: In the present study, we investigated whether exposure to cigarette smoking extract (CSE) disrupts the hematopoietic niche function of MSCs, and pathways impacted. To investigate the effects on bone marrow (BM)-derived MSCs and support of hematopoietic stem and progenitor cells (HSPCs), mice were repeatedly infused with the CSE named 3R4F, and hematopoietic stem and progenitor cells (HSPCs) supporting function was determined. The impact of 3R4F on MSCs at cellular level were screened by bulk-RNA sequencing and subsequently validated through qRT-PCR. Specific inhibitors were treated to verify the ROS or NLRP3-specific effects, and the cells were then transplanted into the animal model or subjected to coculture with HSPCs. RESULTS: Both direct ex vivo and systemic in vivo MSC exposure to 3R4F resulted in impaired engraftment in a humanized mouse model. Furthermore, transcriptomic profile analysis showed significantly upregulated signaling pathways related to reactive oxygen species (ROS), inflammation, and aging in 3R4F-treated MSCs. Notably, ingenuity pathway analysis revealed the activation of NLRP3 inflammasome signaling pathway in 3R4F-treated MSCs, and pretreatment with the NLRP3 inhibitor MCC950 rescued the HSPC-supporting ability of 3R4F-treated MSCs. CONCLUSION: In conclusion, these findings indicate that exposure to CSE reduces HSPCs supportive function of MSCs by inducing robust ROS production and subsequent NLRP3 activation.


Subject(s)
Hematopoietic Stem Cells , Indenes , Mesenchymal Stem Cells , NLR Family, Pyrin Domain-Containing 3 Protein , Reactive Oxygen Species , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/drug effects , Animals , Reactive Oxygen Species/metabolism , Mice , Indenes/pharmacology , Hematopoietic Stem Cells/metabolism , Hematopoietic Stem Cells/drug effects , Hematopoietic Stem Cells/cytology , Furans/pharmacology , Sulfones/pharmacology , Heterocyclic Compounds, 4 or More Rings/pharmacology , Mice, Inbred C57BL , Sulfonamides/pharmacology , Cigarette Smoking/adverse effects , Humans , Inflammasomes/metabolism
9.
Sci Rep ; 14(1): 12371, 2024 05 29.
Article in English | MEDLINE | ID: mdl-38811588

ABSTRACT

This study aimed to examine the interaction between diet quality indices (DQIs) and smoking on the incidence of hypertension (HTN), stroke, cardiovascular diseases, and all-cause mortality. We prospectively followed 5720 participants and collected dietary data via a validated food frequency questionnaire to calculate DQI-international (DQI-I) and DQI-revised (DQI-R). Considering an interaction analysis, we classified participants based on diet quality (median: higher/lower) and smoking status. Over 9 years of follow-up, higher diet quality scores were associated with a lower risk of stroke and mortality. While current smokers had a higher risk of stroke and mortality but had a lower risk of developing HTN. Compared to the current smokers with lower diet quality, nonsmokers with higher diet quality according to the DQI-I [HR 0.24; 95% CI (0.08, 0.66)], and DQI-R [HR 0.20; 95% CI (0.07, 0.57)] had a lower risk of stroke. Moreover, the lower risk of mortality was more evident in nonsmokers with higher DQI-I [HR 0.40; 95% CI (0.22-0.75)] and DQI-R scores [HR 0.34; 95% CI (0.18-0.63)] compared to nonsmokers with lower diet quality. While higher DQI-I and DQI-R scores were associated with a lower risk of stroke and mortality, this beneficial effect may be negated by smoking.


Subject(s)
Cardiovascular Diseases , Cigarette Smoking , Diet , Hypertension , Stroke , Humans , Male , Female , Hypertension/epidemiology , Hypertension/mortality , Stroke/mortality , Stroke/epidemiology , Stroke/etiology , Middle Aged , Incidence , Cardiovascular Diseases/mortality , Cardiovascular Diseases/etiology , Cardiovascular Diseases/epidemiology , Cigarette Smoking/adverse effects , Cigarette Smoking/epidemiology , Adult , Prospective Studies , Risk Factors , Aged
10.
Respir Res ; 25(1): 161, 2024 Apr 13.
Article in English | MEDLINE | ID: mdl-38614991

ABSTRACT

BACKGROUND: Longitudinal studies have identified childhood asthma as a risk factor for obstructive pulmonary disease (COPD) and asthma-COPD overlap (ACO) where persistent airflow limitation can develop more aggressively. However, a causal link between childhood asthma and COPD/ACO remains to be established. Our study aimed to model the natural history of childhood asthma and COPD and to investigate the cellular/molecular mechanisms that drive disease progression. METHODS: Allergic airways disease was established in three-week-old young C57BL/6 mice using house dust mite (HDM) extract. Mice were subsequently exposed to cigarette smoke (CS) and HDM for 8 weeks. Airspace enlargement (emphysema) was measured by the mean linear intercept method. Flow cytometry was utilised to phenotype lung immune cells. Bulk RNA-sequencing was performed on lung tissue. Volatile organic compounds (VOCs) in bronchoalveolar lavage-fluid were analysed to screen for disease-specific biomarkers. RESULTS: Chronic CS exposure induced emphysema that was significantly augmented by HDM challenge. Increased emphysematous changes were associated with more abundant immune cell lung infiltration consisting of neutrophils, interstitial macrophages, eosinophils and lymphocytes. Transcriptomic analyses identified a gene signature where disease-specific changes induced by HDM or CS alone were conserved in the HDM-CS group, and further revealed an enrichment of Mmp12, Il33 and Il13, and gene expression consistent with greater expansion of alternatively activated macrophages. VOC analysis also identified four compounds increased by CS exposure that were paradoxically reduced in the HDM-CS group. CONCLUSIONS: Early-life allergic airways disease worsened emphysematous lung pathology in CS-exposed mice and markedly alters the lung transcriptome.


Subject(s)
Asthma , Cigarette Smoking , Emphysema , Hypersensitivity , Pulmonary Emphysema , Humans , Animals , Mice , Mice, Inbred C57BL , Pyroglyphidae , Cigarette Smoking/adverse effects , Pulmonary Emphysema/etiology , Inflammation
12.
Respir Res ; 25(1): 158, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38594707

ABSTRACT

BACKGROUND: Airway remodelling plays an important role in the pathogenesis of chronic obstructive pulmonary disease (COPD). Epithelial-mesenchymal transition (EMT) is a significant process during the occurrence of airway remodelling. Increasing evidence suggests that glucose transporter 3 (GLUT3) is involved in the epithelial mesenchymal transition (EMT) process of various diseases. However, the role of GLUT3 in EMT in the airway epithelial cells of COPD patients remains unclear. METHODS: We detected the levels of GLUT3 in the peripheral lung tissue of COPD patients and cigarette smoke (CS)-exposed mice. Two Gene Expression Omnibus GEO datasets were utilised to analyse GLUT3 gene expression profiles in COPD. Western blot and immunofluorescence were used to detect GLUT3 expression. In addition, we used the AAV9-GLUT3 inhibitor to reduce GLUT3 expression in the mice model. Masson's staining and lung function measurement were used detect the collagen deposition and penh in the mice. A cell study was performed to confirm the regulatory effect of GLUT3. Inhibition of GLUT3 expression with siRNA, Western blot, and immunofluorescence were used to detect the expression of E-cadherin, N-cadherin, vimentin, p65, and ZEB1. RESULTS: Based on the GEO data set analysis, GLUT3 expression in COPD patients was higher than in non-smokers. Moreover, GLUT3 was highly expressed in COPD patients, CS exposed mice, and BEAS-2B cells treated with CS extract (CSE). Further research revealed that down-regulation of GLUT3 significantly alleviated airway remodelling in vivo and in vitro. Lung function measurement showed that GLUT3 reduction reduced airway resistance in experimental COPD mice. Mechanistically, our study showed that reduction of GLUT3 inhibited CSE-induced EMT by down-regulating the NF-κB/ZEB1 pathway. CONCLUSION: We demonstrate that CS enhances the expression of GLUT3 in COPD and further confirm that GLUT3 may regulate airway remodelling in COPD through the NF-κB/ZEB1 pathway; these findings have potential value in the diagnosis and treatment of COPD. The down-regulation of GLUT3 significantly alleviated airway remodelling and reduced airway resistance in vivo. Our observations uncover a key role of GLUT3 in modulating airway remodelling and shed light on the development of GLUT3-targeted therapeutics for COPD.


Subject(s)
Cigarette Smoking , Pulmonary Disease, Chronic Obstructive , Humans , Mice , Animals , NF-kappa B/metabolism , Airway Remodeling , Cigarette Smoking/adverse effects , Glucose Transporter Type 3/metabolism , Pulmonary Disease, Chronic Obstructive/metabolism , Epithelial-Mesenchymal Transition , Epithelial Cells/metabolism , Zinc Finger E-box-Binding Homeobox 1/genetics
13.
Article in English | MEDLINE | ID: mdl-38650680

ABSTRACT

Introduction: The Lifei Decoction (LD) is a commonly utilized Chinese medicine for the treatment of sepsis and bronchial inflammation. However, its therapeutic potential in chronic obstructive pulmonary disease (COPD) remains unknown. Therefore, the objective of this study was to investigate the therapeutic efficacy and underlying mechanism of LD in a mouse model of COPD induced by cigarette smoke (CS) combined with lipopolysaccharide (LPS). Methods: Hematoxylin-eosin (H&E) staining was employed to observe the pathological alterations in lung tissue, while ELISA was utilized for the detection of levels of inflammatory factors in both lung tissue and bronchoalveolar lavage fluid (BALF). Additionally, Western blot analysis was conducted to assess the expression of p-NF-κB, GDF11, ZO-1, and Occludin-1 proteins. The changes in intestinal flora were evaluated using the viable bacteria count method. Results: The administration of LD demonstrates significant efficacy in mitigating pulmonary tissue damage in a murine model, while concurrently inhibiting the activation of the inflammatory pathway NF-κB to attenuate the levels of pro-inflammatory factors. Moreover, LD exhibits the capacity to enhance the expression of intestinal functional proteins ZO-1 and Occludin-1, thereby rectifying dysbiosis within the gut microbiota. Conclusion: The LD shows great promise as a potential treatment for COPD.


Subject(s)
Anti-Inflammatory Agents , Disease Models, Animal , Drugs, Chinese Herbal , Inflammation Mediators , Lipopolysaccharides , Lung , NF-kappa B , Occludin , Pulmonary Disease, Chronic Obstructive , Signal Transduction , Zonula Occludens-1 Protein , Animals , Pulmonary Disease, Chronic Obstructive/drug therapy , Pulmonary Disease, Chronic Obstructive/metabolism , Pulmonary Disease, Chronic Obstructive/microbiology , Lung/drug effects , Lung/metabolism , Lung/pathology , Lung/microbiology , Drugs, Chinese Herbal/pharmacology , Zonula Occludens-1 Protein/metabolism , NF-kappa B/metabolism , Occludin/metabolism , Inflammation Mediators/metabolism , Anti-Inflammatory Agents/pharmacology , Male , Gastrointestinal Microbiome/drug effects , Mice, Inbred C57BL , Smoke/adverse effects , Bronchoalveolar Lavage Fluid , Cigarette Smoking/adverse effects , Mice
14.
Pathol Res Pract ; 257: 155295, 2024 May.
Article in English | MEDLINE | ID: mdl-38603841

ABSTRACT

Tobacco smoking is a leading cause of preventable mortality, and it is the major contributor to diseases such as COPD and lung cancer. Cigarette smoke compromises the pulmonary antiviral immune response, increasing susceptibility to viral infections. There is currently no therapy that specifically addresses the problem of impaired antiviral response in cigarette smokers and COPD patients, highlighting the necessity to develop novel treatment strategies. 18-ß-glycyrrhetinic acid (18-ß-gly) is a phytoceutical derived from licorice with promising anti-inflammatory, antioxidant, and antiviral activities whose clinical application is hampered by poor solubility. This study explores the therapeutic potential of an advanced drug delivery system encapsulating 18-ß-gly in poly lactic-co-glycolic acid (PLGA) nanoparticles in addressing the impaired antiviral immunity observed in smokers and COPD patients. Exposure of BCi-NS1.1 human bronchial epithelial cells to cigarette smoke extract (CSE) resulted in reduced expression of critical antiviral chemokines (IP-10, I-TAC, MIP-1α/1ß), mimicking what happens in smokers and COPD patients. Treatment with 18-ß-gly-PLGA nanoparticles partially restored the expression of these chemokines, demonstrating promising therapeutic impact. The nanoparticles increased IP-10, I-TAC, and MIP-1α/1ß levels, exhibiting potential in attenuating the negative effects of cigarette smoke on the antiviral response. This study provides a novel approach to address the impaired antiviral immune response in vulnerable populations, offering a foundation for further investigations and potential therapeutic interventions. Further studies, including a comprehensive in vitro characterization and in vivo testing, are warranted to validate the therapeutic efficacy of 18-ß-gly-PLGA nanoparticles in respiratory disorders associated with compromised antiviral immunity.


Subject(s)
Glycyrrhetinic Acid , Nanoparticles , Humans , Glycyrrhetinic Acid/pharmacology , Glycyrrhetinic Acid/analogs & derivatives , Antiviral Agents/pharmacology , Smoke/adverse effects , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Cell Line , Pulmonary Disease, Chronic Obstructive/drug therapy , Pulmonary Disease, Chronic Obstructive/immunology , Epithelial Cells/drug effects , Epithelial Cells/virology , Cigarette Smoking/adverse effects
15.
Int J Mol Sci ; 25(7)2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38612871

ABSTRACT

Chronic obstructive pulmonary disease (COPD) patients and smokers have a higher incidence of intestinal disorders. The aim of this study was to gain insight into the transcriptomic changes in the lungs and intestines, and the fecal microbial composition after cigarette smoke exposure. Mice were exposed to cigarette smoke and their lung and ileum tissues were analyzed by RNA sequencing. The top 15 differentially expressed genes were investigated in publicly available gene expression datasets of COPD and Crohn's disease (CD) patients. The murine microbiota composition was determined by 16S rRNA sequencing. Increased expression of MMP12, GPNMB, CTSK, CD68, SPP1, CCL22, and ITGAX was found in the lungs of cigarette smoke-exposed mice and COPD patients. Changes in the intestinal expression of CD79B, PAX5, and FCRLA were observed in the ileum of cigarette smoke-exposed mice and CD patients. Furthermore, inflammatory cytokine profiles and adhesion molecules in both the lungs and intestines of cigarette smoke-exposed mice were profoundly changed. An altered intestinal microbiota composition and a reduction in bacterial diversity was observed in cigarette smoke-exposed mice. Altered gene expression in the murine lung was detected after cigarette smoke exposure, which might simulate COPD-like alterations. The transcriptomic changes in the intestine of cigarette smoke-exposed mice had some similarities with those of CD patients and were associated with changes in the intestinal microbiome. Future research could benefit from investigating the specific mechanisms underlying the observed gene expression changes due to cigarette smoke exposure, focusing on identifying potential therapeutic targets for COPD and CD.


Subject(s)
Cigarette Smoking , Crohn Disease , Gastrointestinal Microbiome , Pulmonary Disease, Chronic Obstructive , Humans , Animals , Mice , Crohn Disease/genetics , Cigarette Smoking/adverse effects , RNA, Ribosomal, 16S , Gene Expression Profiling , Pulmonary Disease, Chronic Obstructive/genetics , Membrane Glycoproteins
16.
Paediatr Perinat Epidemiol ; 38(4): 316-326, 2024 May.
Article in English | MEDLINE | ID: mdl-38558461

ABSTRACT

BACKGROUND: Although many studies suggested the benefit of smoking cessation among pregnant women in reducing the risk of preterm birth (PTB), the timing of the effect of the cessation remains inconclusive. OBJECTIVES: To examine the association of trimester-specific smoking cessation behaviours with PTB risk. METHODS: We included 199,453 live births in Western New York between 2004 and 2018. Based on self-reported cigarette smoking during preconception and in each trimester, we created six mutually exclusive groups: non-smokers, quitters in each trimester, those who smoked throughout pregnancy, and inconsistent smokers. Risk ratios (RRs) and 95% confidence intervals (CIs) were estimated using Poisson regression to examine the association between smoking cessation and PTB. Effect modification by illegal drug use, maternal age, race and ethnicity and pre-pregnancy body mass index (BMI) was investigated multiplicatively by ratio of relative risk and additively by relative excess risk due to interaction (RERI). RESULTS: Overall, 6.7% of women had a PTB; 14.1% smoked throughout pregnancy and 3.4%, 1.8% and 0.8% reported quitting smoking during the first, second and third trimesters, respectively. Compared to non-smokers, third-trimester cessation (RR 1.20, 95% CI 1.01, 1.43) and smoking throughout pregnancy (RR 1.27, 95% CI 1.21, 1.33) were associated with a higher PTB risk, while quitting smoking during the first or second trimester, or inconsistent smoking was not associated with PTB. A positive additive interaction was identified for maternal age and late smoking cessation or smoking throughout pregnancy on PTB risk (RERI 0.17, 95% CI 0.00, 0.36), and a negative interaction was observed for pre-pregnancy BMI ≥30 kg/m2 (ratio of relative risk 0.70, 95% CI 0.63, 0.78; RERI -0.42, 95% CI -0.56, -0.30). CONCLUSION: Compared to non-smokers, smoking throughout pregnancy and third-trimester smoking cessation are associated with an increased risk of PTB, while quitting before the third trimester may not increase PTB risk.


Subject(s)
Cigarette Smoking , Pregnancy Trimesters , Premature Birth , Smoking Cessation , Humans , Female , Pregnancy , Smoking Cessation/statistics & numerical data , Premature Birth/epidemiology , Premature Birth/etiology , Adult , New York/epidemiology , Young Adult , Cigarette Smoking/adverse effects , Cigarette Smoking/epidemiology , Risk Factors , Infant, Newborn
17.
Article in English | MEDLINE | ID: mdl-38544929

ABSTRACT

Background: The incidence of chronic obstructive pulmonary disease (COPD) is increasing year by year. Kruppel-like factor 6 (KLF6) plays an important role in inflammatory diseases. However, the regulatory role of KLF6 in COPD has not been reported so far. Methods: The viability of human bronchial epithelial cells BEAS-2B induced by cigarette smoke extract (CSE) was detected by CCK-8 assay. The protein expression of KLF6 and sirtuin 4 (SIRT4) was appraised with Western blot. RT-qPCR and Western blot were applied to examine the transfection efficacy of sh-KLF6 and Oe-KLF6. Cell apoptosis was detected using flow cytometry. The levels of inflammatory factors IL-6, TNF-α and IL-1ß were assessed with ELISA assay. DCFH-DA staining was employed for the detection of ROS activity and the levels of oxidative stress markers SOD, CAT and MDA were estimated with corresponding assay kits. The mitochondrial membrane potential (MMP), adenosine triphosphate (ATP) content and Complex I activity were evaluated with JC-1 staining, ATP colorimetric/fluorometric assay kit and Complex I enzyme activity microplate assay kit. With the application of mitochondrial permeability transition pore detection kit, mPTP opening was measured. Luciferase report assay was employed to evaluate the activity of SIRT4 promoter and chromatin immunoprecipitation (ChIP) to verify the binding ability of KLF6 and SIRT4 promoter. Results: KLF6 expression was significantly elevated in CSE-induced cells. KLF6 was confirmed to suppress SIRT4 transcription. Interference with KLF6 expression significantly inhibited cell viability damage, cell apoptosis, inflammatory response, oxidative stress and mitochondrial dysfunction in CSE-induced BEAS-2B cells, which were all reversed by SIRT4 overexpression. Conclusion: Silencing KLF6 alleviated CSE-induced mitochondrial dysfunction in bronchial epithelial cells by SIRT4 upregulation.


Subject(s)
Cigarette Smoking , Mitochondrial Diseases , Pulmonary Disease, Chronic Obstructive , Sirtuins , Humans , Pulmonary Disease, Chronic Obstructive/metabolism , Up-Regulation , Cell Line , Kruppel-Like Factor 6/genetics , Kruppel-Like Factor 6/metabolism , Cigarette Smoking/adverse effects , Apoptosis , Epithelial Cells/metabolism , Adenosine Triphosphate/adverse effects , Adenosine Triphosphate/metabolism , Mitochondrial Diseases/metabolism , Mitochondrial Proteins/adverse effects , Mitochondrial Proteins/metabolism , Sirtuins/genetics
18.
BMC Biotechnol ; 24(1): 13, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38459479

ABSTRACT

OBJECTIVE: Smoking was a major risk factor for chronic obstructive pulmonary disease (COPD). This study plan to explore the mechanism of Polyphyllin B in lung injury induced by cigarette smoke (CSE) in COPD. METHODS: Network pharmacology and molecular docking were applied to analyze the potential binding targets for Polyphyllin B and COPD. Commercial unfiltered CSE and LPS were used to construct BEAS-2B cell injury in vitro and COPD mouse models in vivo, respectively, which were treated with Polyphyllin B or fecal microbiota transplantation (FMT). CCK8, LDH and calcein-AM were used to detect the cell proliferation, LDH level and labile iron pool. Lung histopathology, Fe3+ deposition and mitochondrial morphology were observed by hematoxylin-eosin, Prussian blue staining and transmission electron microscope, respectively. ELISA was used to measure inflammation and oxidative stress levels in cells and lung tissues. Immunohistochemistry and immunofluorescence were applied to analyze the 4-HNE, LC3 and Ferritin expression. RT-qPCR was used to detect the expression of FcRn, pIgR, STAT3 and NCOA4. Western blot was used to detect the expression of Ferritin, p-STAT3/STAT3, NCOA4, GPX4, TLR2, TLR4 and P65 proteins. 16S rRNA gene sequencing was applied to detect the gut microbiota. RESULTS: Polyphyllin B had a good binding affinity with STAT3 protein, which as a target gene in COPD. Polyphyllin B inhibited CS-induced oxidative stress, inflammation, mitochondrial damage, and ferritinophagy in COPD mice. 16S rRNA sequencing and FMT confirmed that Akkermansia and Escherichia_Shigella might be the potential microbiota for Polyphyllin B and FMT to improve CSE and LPS-induced COPD, which were exhausted by the antibiotics in C + L and C + L + P mice. CSE and LPS induced the decrease of cell viability and the ferritin and LC3 expression, and the increase of NCOA4 and p-STAT3 expression in BEAS-2B cells, which were inhibited by Polyphyllin B. Polyphyllin B promoted ferritin and LC3II/I expression, and inhibited p-STAT3 and NCOA4 expression in CSE + LPS-induced BEAS-2B cells. CONCLUSION: Polyphyllin B improved gut microbiota disorder and inhibited STAT3/NCOA4 pathway to ameliorate lung tissue injury in CSE and LPS-induced mice.


Subject(s)
Cigarette Smoking , Gastrointestinal Microbiome , Lung Injury , Pulmonary Disease, Chronic Obstructive , Animals , Mice , Cell Line , Cigarette Smoking/adverse effects , Ferritins/metabolism , Inflammation/pathology , Lipopolysaccharides/adverse effects , Lung , Lung Injury/complications , Lung Injury/metabolism , Lung Injury/pathology , Molecular Docking Simulation , Pulmonary Disease, Chronic Obstructive/therapy , Pulmonary Disease, Chronic Obstructive/drug therapy , RNA, Ribosomal, 16S , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/metabolism
19.
Exp Lung Res ; 50(1): 53-64, 2024.
Article in English | MEDLINE | ID: mdl-38509754

ABSTRACT

OBJECTIVE: The aim of this study is to assess the impact of Liver X receptors (LXRs) on airway inflammation, airway remodeling, and lipid deposition induced by cigarette smoke and lipopolysaccharide (LPS) exposure in the lung. METHODS: Wild mice and LXR-deficient mice were exposed to cigarette smoke and LPS to induce airway inflammation and remodeling. In addition, some wild mice received intraperitoneal treatment with the LXR agonist GW3965 before exposure to cigarette smoke and LPS. Lung tissue and bronchoalveolar lavage fluid were collected to evaluate airway inflammation, airway remodeling and lipid deposition. RESULTS: Exposure to cigarette smoke and LPS resulted in airway inflammation, emphysema and lipid accumulation in wild mice. These mice also exhibited downregulated LXRα and ABCA1 in the lung. Treatment with GW3965 mitigated inflammation, remodeling and lipid deposition, while the deletion of LXRs exacerbated these effects. Furthermore, GW3965 treatment following exposure to cigarette smoke and LPS increased LXRα and ABCA1 expression and attenuated MyD88 expression in wild mice. CONCLUSION: LXRs demonstrate the potential to mitigate cigarette smoke and LPS- induced airway inflammation, emphysema and lipid disposition in mice.


Subject(s)
Benzoates , Benzylamines , Cigarette Smoking , Emphysema , Pulmonary Emphysema , Animals , Mice , Airway Remodeling , Bronchoalveolar Lavage Fluid , Cigarette Smoking/adverse effects , Emphysema/metabolism , Inflammation/drug therapy , Inflammation/metabolism , Lipopolysaccharides/pharmacology , Liver X Receptors/metabolism , Lung/metabolism , Mice, Inbred C57BL
20.
Respir Res ; 25(1): 148, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38555458

ABSTRACT

BACKGROUND: Astaxanthin (AXT) is a keto-carotenoid with a variety of biological functions, including antioxidant and antifibrotic effects. Small airway remodeling is the main pathology of chronic obstructive pulmonary disease (COPD) and is caused by epithelial-to-mesenchymal transition (EMT) and fibroblast differentiation and proliferation. Effective therapies are still lacking. This study aimed to investigate the role of AXT in small airway remodeling in COPD and its underlying mechanisms. METHODS: First, the model of COPD mice was established by cigarette smoke (CS) exposure combined with intraperitoneal injection of cigarette smoke extract (CSE). The effects of AXT on the morphology of CS combined with CSE -induced emphysema, EMT, and small airway remodeling by using Hematoxylin-eosin (H&E) staining, immunohistochemical staining, and western blot. In addition, in vitro experiments, the effects of AXT on CSE induced-EMT and fibroblast function were further explored. Next, to explore the specific mechanisms underlying the protective effects of AXT in COPD, potential targets of AXT in COPD were analyzed using network pharmacology. Finally, the possible mechanism was verified through molecular docking and in vitro experiments. RESULTS: AXT alleviated pulmonary emphysema, EMT, and small airway remodeling in a CS combined with CSE -induced mouse model. In addition, AXT inhibited the EMT process in airway cells and the differentiation and proliferation of fibroblasts. Mechanistically, AXT inhibited myofibroblast activation by directly binding to and suppressing the phosphorylation of AKT1. Therefore, our results show that AXT protects against small airway remodeling by inhibiting AKT1. CONCLUSIONS: The present study identified and illustrated a new food function of AXT, indicating that AXT could be used in the therapy of COPD-induced small airway remodeling.


Subject(s)
Cigarette Smoking , Pulmonary Disease, Chronic Obstructive , Pulmonary Emphysema , Mice , Animals , Cigarette Smoking/adverse effects , Airway Remodeling , Molecular Docking Simulation , Signal Transduction , Pulmonary Disease, Chronic Obstructive/metabolism , Pulmonary Emphysema/chemically induced , Pulmonary Emphysema/drug therapy , Nicotiana/toxicity , Xanthophylls
SELECTION OF CITATIONS
SEARCH DETAIL
...