Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 14.190
Filter
1.
J Cell Biol ; 223(9)2024 Sep 02.
Article in English | MEDLINE | ID: mdl-38829962

ABSTRACT

Two sets of motor proteins underpin motile cilia/flagella function. The axoneme-associated inner and outer dynein arms drive sliding of adjacent axoneme microtubule doublets to periodically bend the flagellum for beating, while intraflagellar transport (IFT) kinesins and dyneins carry IFT trains bidirectionally along the axoneme. Despite assembling motile cilia and flagella, IFT train speeds have only previously been quantified in immobilized flagella-mechanical immobilization or genetic paralysis. This has limited investigation of the interaction between IFT and flagellar beating. Here, in uniflagellate Leishmania parasites, we use high-frequency, dual-color fluorescence microscopy to visualize IFT train movement in beating flagella. We discovered that adhesion of flagella to a microscope slide is detrimental, reducing IFT train speed and increasing train stalling. In flagella free to move, IFT train speed is not strongly dependent on flagella beat type; however, permanent disruption of flagella beating by deletion of genes necessary for formation or regulation of beating showed an inverse correlation of beat frequency and IFT train speed.


Subject(s)
Dyneins , Flagella , Flagella/metabolism , Flagella/genetics , Dyneins/metabolism , Dyneins/genetics , Biological Transport , Protozoan Proteins/metabolism , Protozoan Proteins/genetics , Cilia/metabolism , Cilia/genetics , Kinesins/metabolism , Kinesins/genetics , Axoneme/metabolism , Axoneme/genetics , Leishmania/genetics , Leishmania/metabolism
2.
Cell Mol Neurobiol ; 44(1): 48, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38822888

ABSTRACT

C3-positive reactive astrocytes play a neurotoxic role in various neurodegenerative diseases. However, the mechanisms controlling C3-positive reactive astrocyte induction are largely unknown. We found that the length of the primary cilium, a cellular organelle that receives extracellular signals was increased in C3-positive reactive astrocytes, and the loss or shortening of primary cilium decreased the count of C3-positive reactive astrocytes. Pharmacological experiments suggested that Ca2+ signalling may synergistically promote C3 expression in reactive astrocytes. Conditional knockout (cKO) mice that specifically inhibit primary cilium formation in astrocytes upon drug stimulation exhibited a reduction in the proportions of C3-positive reactive astrocytes and apoptotic cells in the brain even after the injection of lipopolysaccharide (LPS). Additionally, the novel object recognition (NOR) score observed in the cKO mice was higher than that observed in the neuroinflammation model mice. These results suggest that the primary cilium in astrocytes positively regulates C3 expression. We propose that regulating astrocyte-specific primary cilium signalling may be a novel strategy for the suppression of neuroinflammation.


Subject(s)
Astrocytes , Cilia , Mice, Knockout , Animals , Astrocytes/metabolism , Astrocytes/drug effects , Cilia/metabolism , Cilia/drug effects , Mice , Complement C3/metabolism , Mice, Inbred C57BL , Lipopolysaccharides/pharmacology , Apoptosis/drug effects
3.
Nat Commun ; 15(1): 3698, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38693102

ABSTRACT

Mouse models of autosomal dominant polycystic kidney disease (ADPKD) show that intact primary cilia are required for cyst growth following the inactivation of polycystin-1. The signaling pathways underlying this process, termed cilia-dependent cyst activation (CDCA), remain unknown. Using translating ribosome affinity purification RNASeq on mouse kidneys with polycystin-1 and cilia inactivation before cyst formation, we identify the differential 'CDCA pattern' translatome specifically dysregulated in kidney tubule cells destined to form cysts. From this, Glis2 emerges as a candidate functional effector of polycystin signaling and CDCA. In vitro changes in Glis2 expression mirror the polycystin- and cilia-dependent changes observed in kidney tissue, validating Glis2 as a cell culture-based indicator of polycystin function related to cyst formation. Inactivation of Glis2 suppresses polycystic kidney disease in mouse models of ADPKD, and pharmacological targeting of Glis2 with antisense oligonucleotides slows disease progression. Glis2 transcript and protein is a functional target of CDCA and a potential therapeutic target for treating ADPKD.


Subject(s)
Cilia , Disease Models, Animal , Polycystic Kidney, Autosomal Dominant , Signal Transduction , TRPP Cation Channels , Animals , Humans , Male , Mice , Cilia/metabolism , Kidney/metabolism , Kidney/pathology , Mice, Inbred C57BL , Mice, Knockout , Oligonucleotides, Antisense/pharmacology , Polycystic Kidney Diseases/metabolism , Polycystic Kidney Diseases/genetics , Polycystic Kidney Diseases/pathology , Polycystic Kidney, Autosomal Dominant/metabolism , Polycystic Kidney, Autosomal Dominant/genetics , Polycystic Kidney, Autosomal Dominant/pathology , Polycystic Kidney, Autosomal Dominant/drug therapy , TRPP Cation Channels/metabolism , TRPP Cation Channels/genetics
4.
PLoS Biol ; 22(5): e3002596, 2024 May.
Article in English | MEDLINE | ID: mdl-38718086

ABSTRACT

Autism spectrum disorders (ASD) frequently accompany macrocephaly, which often involves hydrocephalic enlargement of brain ventricles. Katnal2 is a microtubule-regulatory protein strongly linked to ASD, but it remains unclear whether Katnal2 knockout (KO) in mice leads to microtubule- and ASD-related molecular, synaptic, brain, and behavioral phenotypes. We found that Katnal2-KO mice display ASD-like social communication deficits and age-dependent progressive ventricular enlargements. The latter involves increased length and beating frequency of motile cilia on ependymal cells lining ventricles. Katnal2-KO hippocampal neurons surrounded by enlarged lateral ventricles show progressive synaptic deficits that correlate with ASD-like transcriptomic changes involving synaptic gene down-regulation. Importantly, early postnatal Katnal2 re-expression prevents ciliary, ventricular, and behavioral phenotypes in Katnal2-KO adults, suggesting a causal relationship and a potential treatment. Therefore, Katnal2 negatively regulates ependymal ciliary function and its deletion in mice leads to ependymal ciliary hyperfunction and hydrocephalus accompanying ASD-related behavioral, synaptic, and transcriptomic changes.


Subject(s)
Autism Spectrum Disorder , Cilia , Ependyma , Mice, Knockout , Phenotype , Animals , Male , Mice , Autism Spectrum Disorder/genetics , Autism Spectrum Disorder/metabolism , Autism Spectrum Disorder/physiopathology , Behavior, Animal , Cilia/metabolism , Disease Models, Animal , Ependyma/metabolism , Hippocampus/metabolism , Hydrocephalus/genetics , Hydrocephalus/metabolism , Hydrocephalus/pathology , Hydrocephalus/physiopathology , Katanin/metabolism , Katanin/genetics , Mice, Inbred C57BL , Neurons/metabolism , Synapses/metabolism , Transcriptome/genetics
5.
Anat Histol Embryol ; 53(4): e13061, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38778674

ABSTRACT

Present study was conducted to determine the changes in the surface structure of the upper respiratory tract of Siirt-coloured mohair goats by the silicone plastination method. Accordingly, the heads of 10 Siirt-coloured mohair goats procured from slaughterhouses were divided into two halves. Half of each head was plastinated. After macro-comparisons were made, the deformations of silicone plastination on the surface were examined by comparing the scanning electron microscope (SEM) findings of both upper respiratory tract tissue samples collected from plastinates and fresh material. When the data from scanning electron microscopy were analysed, cilia, cobblestone patterns, goblet cells and gland ducts on the epithelial surface were identified in areas on the upper respiratory tract. The SEM images of the plastinated tissues showed that the surface structures were degenerated due to the deformation of the surface epithelium. The plastination technique damaged the structures on the surface epithelium. Since the plastination technique and scanning electron microscopy have been studied together for the first time, we believe this would contribute to the scientific literature.


Subject(s)
Goats , Microscopy, Electron, Scanning , Plastination , Animals , Microscopy, Electron, Scanning/veterinary , Goats/anatomy & histology , Respiratory System/ultrastructure , Respiratory System/anatomy & histology , Goblet Cells/ultrastructure , Cilia/ultrastructure
6.
Article in English | MEDLINE | ID: mdl-38780290

ABSTRACT

ABSTRACT: Uterine adenomyosis is an estrogen-dependent chronic inflammatory condition and may cause painful symptoms, abnormal uterine bleeding, and/or subfertility/infertility. It is characterized by the presence of endometrial glands and stroma within the myometrium causing enlargement of the uterus as a result of reactive hyperplastic and/or hypertrophic change of the surrounding myometrium. Similar to endometriosis, adenomyosis has a negative impact on female fertility. Abnormal uterotubal sperm transport, tissue inflammation, and the toxic effect of chemical mediators have been proposed as contributing factors. Inflammation-induced damage of the mucosal cilia in the fallopian tube has been reported. Besides other proposed mechanisms, our most recent study with transmission electron microscopy analysis indicated that microvilli damage and an axonemal alteration in the apical endometria occur in response to endometrial inflammation. This may be involved in the negative fertility outcome in women with adenomyosis. We present a critical analysis of the literature data concerning the mechanistic basis of infertility in women with adenomyosis and its impact on fertility outcome.


Subject(s)
Adenomyosis , Endometrium , Infertility, Female , Humans , Female , Adenomyosis/pathology , Adenomyosis/metabolism , Infertility, Female/pathology , Infertility, Female/etiology , Endometrium/pathology , Cilia/pathology , Cilia/ultrastructure , Cilia/metabolism
7.
Life Sci Alliance ; 7(7)2024 Jul.
Article in English | MEDLINE | ID: mdl-38719753

ABSTRACT

We recently reported that growth/differentiation factor 15 (GDF15) and its receptor GDNF family receptor alpha-like (GFRAL) are expressed in the periventricular germinal epithelium thereby regulating apical progenitor proliferation. However, the mechanisms are unknown. We now found GFRAL in primary cilia and altered cilia morphology upon GDF15 ablation. Mutant progenitors also displayed increased histone deacetylase 6 (Hdac6) and ciliary adenylate cyclase 3 (Adcy3) transcript levels. Consistently, microtubule acetylation, endogenous sonic hedgehog (SHH) activation and ciliary ADCY3 were all affected in this group. Application of exogenous GDF15 or pharmacological antagonists of either HDAC6 or ADCY3 similarly normalized ciliary morphology, proliferation and SHH signalling. Notably, Gdf15 ablation affected Hdac6 expression and cilia length only in the mutant periventricular niche, in concomitance with ciliary localization of GFRAL. In contrast, in the hippocampus, where GFRAL was not expressed in the cilium, progenitors displayed altered Adcy3 expression and SHH signalling, but Hdac6 expression, cilia morphology and ciliary ADCY3 levels remained unchanged. Thus, ciliary signalling underlies the effect of GDF15 on primary cilia elongation and proliferation in apical progenitors.


Subject(s)
Adenylyl Cyclases , Cell Proliferation , Cilia , Hedgehog Proteins , Histone Deacetylase 6 , Signal Transduction , Animals , Mice , Acetylation , Adenylyl Cyclases/metabolism , Adenylyl Cyclases/genetics , Cell Proliferation/genetics , Cilia/metabolism , Glial Cell Line-Derived Neurotrophic Factor Receptors/metabolism , Glial Cell Line-Derived Neurotrophic Factor Receptors/genetics , Hedgehog Proteins/metabolism , Hedgehog Proteins/genetics , Histone Deacetylase 6/metabolism , Histone Deacetylase 6/genetics , Mice, Knockout , Stem Cells/metabolism , Stem Cells/cytology
8.
J Cell Biol ; 223(9)2024 Sep 02.
Article in English | MEDLINE | ID: mdl-38767515

ABSTRACT

Ciliopathies are often caused by defects in the ciliary microtubule core. Glutamylation is abundant in cilia, and its dysregulation may contribute to ciliopathies and neurodegeneration. Mutation of the deglutamylase CCP1 causes infantile-onset neurodegeneration. In C. elegans, ccpp-1 loss causes age-related ciliary degradation that is suppressed by a mutation in the conserved NEK10 homolog nekl-4. NEKL-4 is absent from cilia, yet it negatively regulates ciliary stability via an unknown, glutamylation-independent mechanism. We show that NEKL-4 was mitochondria-associated. Additionally, nekl-4 mutants had longer mitochondria, a higher baseline mitochondrial oxidation state, and suppressed ccpp-1∆ mutant lifespan extension in response to oxidative stress. A kinase-dead nekl-4(KD) mutant ectopically localized to ccpp-1∆ cilia and rescued degenerating microtubule doublet B-tubules. A nondegradable nekl-4(PEST∆) mutant resembled the ccpp-1∆ mutant with dye-filling defects and B-tubule breaks. The nekl-4(PEST∆) Dyf phenotype was suppressed by mutation in the depolymerizing kinesin-8 KLP-13/KIF19A. We conclude that NEKL-4 influences ciliary stability by activating ciliary kinesins and promoting mitochondrial homeostasis.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Cilia , Microtubules , Mitochondria , Neurons , Animals , Microtubules/metabolism , Microtubules/genetics , Mitochondria/metabolism , Mitochondria/genetics , Cilia/metabolism , Cilia/genetics , Caenorhabditis elegans/metabolism , Caenorhabditis elegans/genetics , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/genetics , Neurons/metabolism , Mutation/genetics
9.
Genesis ; 62(3): e23602, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38721990

ABSTRACT

Cilia play a key role in the regulation of signaling pathways required for embryonic development, including the proper formation of the neural tube, the precursor to the brain and spinal cord. Forward genetic screens were used to generate mouse lines that display neural tube defects (NTD) and secondary phenotypes useful in interrogating function. We describe here the L3P mutant line that displays phenotypes of disrupted Sonic hedgehog signaling and affects the initiation of cilia formation. A point mutation was mapped in the L3P line to the gene Rsg1, which encodes a GTPase-like protein. The mutation lies within the GTP-binding pocket and disrupts the highly conserved G1 domain. The mutant protein and other centrosomal and IFT proteins still localize appropriately to the basal body of cilia, suggesting that RSG1 GTPase activity is not required for basal body maturation but is needed for a downstream step in axonemal elongation.


Subject(s)
Cilia , Neural Tube Defects , Neural Tube , Animals , Cilia/metabolism , Cilia/genetics , Mice , Neural Tube/metabolism , Neural Tube/embryology , Neural Tube Defects/genetics , Neural Tube Defects/metabolism , Hedgehog Proteins/metabolism , Hedgehog Proteins/genetics , Signal Transduction , Point Mutation
10.
Sci Rep ; 14(1): 12470, 2024 05 30.
Article in English | MEDLINE | ID: mdl-38816374

ABSTRACT

Atrial fibrosis serves as an arrhythmogenic substrate in atrial fibrillation (AF) and contributes to AF persistence. Treating atrial fibrosis is challenging because atrial fibroblast activity is multifactorial. We hypothesized that the primary cilium regulates the profibrotic response of AF atrial fibroblasts, and explored therapeutic potentials of targeting primary cilia to treat fibrosis in AF. We included 25 patients without AF (non-AF) and 26 persistent AF patients (AF). Immunohistochemistry using a subset of the patients (non-AF: n = 10, AF: n = 10) showed less ciliated fibroblasts in AF versus non-AF. Acetylated α-tubulin protein levels were decreased in AF, while the gene expressions of AURKA and NEDD9 were highly increased in AF patients' left atrium. Loss of primary cilia in human atrial fibroblasts through IFT88 knockdown enhanced expression of ECM genes, including FN1 and COL1A1. Remarkably, restoration or elongation of primary cilia by an AURKA selective inhibitor or lithium chloride, respectively, prevented the increased expression of ECM genes induced by different profibrotic cytokines in atrial fibroblasts of AF patients. Our data reveal a novel mechanism underlying fibrotic substrate formation via primary cilia loss in AF atrial fibroblasts and suggest a therapeutic potential for abrogating atrial fibrosis by restoring primary cilia.


Subject(s)
Atrial Fibrillation , Aurora Kinase A , Cilia , Fibroblasts , Fibrosis , Heart Atria , Humans , Atrial Fibrillation/metabolism , Atrial Fibrillation/pathology , Atrial Fibrillation/genetics , Fibroblasts/metabolism , Fibroblasts/pathology , Cilia/metabolism , Cilia/pathology , Heart Atria/metabolism , Heart Atria/pathology , Male , Female , Middle Aged , Aurora Kinase A/metabolism , Aurora Kinase A/genetics , Aurora Kinase A/antagonists & inhibitors , Aged , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Tubulin/metabolism , Cells, Cultured , Tumor Suppressor Proteins
11.
J Cell Biol ; 223(8)2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38743010

ABSTRACT

Basal bodies (BBs) are conserved eukaryotic structures that organize cilia. They are comprised of nine, cylindrically arranged, triplet microtubules (TMTs) connected to each other by inter-TMT linkages which stabilize the structure. Poc1 is a conserved protein important for BB structural integrity in the face of ciliary forces transmitted to BBs. To understand how Poc1 confers BB stability, we identified the precise position of Poc1 in the Tetrahymena BB and the effect of Poc1 loss on BB structure. Poc1 binds at the TMT inner junctions, stabilizing TMTs directly. From this location, Poc1 also stabilizes inter-TMT linkages throughout the BB, including the cartwheel pinhead and the inner scaffold. The full localization of the inner scaffold protein Fam161A requires Poc1. As ciliary forces are increased, Fam161A is reduced, indicative of a force-dependent molecular remodeling of the inner scaffold. Thus, while not essential for BB assembly, Poc1 promotes BB interconnections that establish an architecture competent to resist ciliary forces.


Subject(s)
Basal Bodies , Cilia , Microtubules , Protozoan Proteins , Tetrahymena thermophila , Basal Bodies/metabolism , Cilia/metabolism , Microtubule-Associated Proteins/metabolism , Microtubule-Associated Proteins/genetics , Microtubules/metabolism , Protein Binding , Protozoan Proteins/metabolism , Protozoan Proteins/genetics , Tetrahymena thermophila/metabolism , Tetrahymena thermophila/genetics
12.
Nat Commun ; 15(1): 4316, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773095

ABSTRACT

As signalling organelles, cilia regulate their G protein-coupled receptor content by ectocytosis, a process requiring localised actin dynamics to alter membrane shape. Photoreceptor outer segments comprise an expanse of folded membranes (discs) at the tip of highly-specialised connecting cilia, into which photosensitive GPCRs are concentrated. Discs are shed and remade daily. Defects in this process, due to mutations, cause retinitis pigmentosa (RP). Whilst fundamental for vision, the mechanism of photoreceptor disc generation is poorly understood. Here, we show membrane deformation required for disc genesis is driven by dynamic actin changes in a process akin to ectocytosis. We show RPGR, a leading RP gene, regulates actin-binding protein activity central to this process. Actin dynamics, required for disc formation, are perturbed in Rpgr mouse models, leading to aborted membrane shedding as ectosome-like vesicles, photoreceptor death and visual loss. Actin manipulation partially rescues this, suggesting the pathway could be targeted therapeutically. These findings help define how actin-mediated dynamics control outer segment turnover.


Subject(s)
Actins , Eye Proteins , Retinitis Pigmentosa , Animals , Actins/metabolism , Mice , Retinitis Pigmentosa/metabolism , Retinitis Pigmentosa/genetics , Eye Proteins/metabolism , Eye Proteins/genetics , Cilia/metabolism , Humans , Retinal Photoreceptor Cell Outer Segment/metabolism , Mice, Knockout , Mice, Inbred C57BL , Cell Membrane/metabolism
13.
J Cell Sci ; 137(20)2024 Oct 15.
Article in English | MEDLINE | ID: mdl-38804679

ABSTRACT

The definitive demonstration of protein localization on primary cilia has been a challenge for cilia biologists. Primary cilia are solitary thread-like projections that have a specialized protein composition, but as the ciliary structure overlays the cell membrane and other cell parts, the identity of ciliary proteins are difficult to ascertain by conventional imaging approaches like immunofluorescence microscopy. Surface scanning electron microscopy combined with immunolabeling (immuno-SEM) bypasses some of these indeterminacies by unambiguously showing protein expression in the context of the three-dimensional ultrastructure of the cilium. Here, we apply immuno-SEM to specifically identify proteins on the primary cilia of mouse and human pancreatic islets, including post-translationally modified tubulin, intraflagellar transport (IFT)88, the small GTPase Arl13b, as well as subunits of axonemal dynein. Key parameters in sample preparation, immunolabeling and imaging acquisition are discussed to facilitate similar studies by others in the cilia research community.


Subject(s)
Cilia , Islets of Langerhans , Cilia/ultrastructure , Cilia/metabolism , Animals , Humans , Mice , Islets of Langerhans/ultrastructure , Islets of Langerhans/metabolism , Microscopy, Electron, Scanning/methods
14.
Anat Histol Embryol ; 53(3): e13034, 2024 May.
Article in English | MEDLINE | ID: mdl-38563613

ABSTRACT

The ultrastructure of the olfactory system of most fossorial rodents remains largely unexplored. This study sought to investigate the functional structure of the olfactory mucosa and olfactory bulb of two species of fossorial rodents that have distinct behaviour and ecology, the East African root rat (RR) and the naked mole rat (NMR). Transmission electron microscopy and scanning electron microscopy were employed. The basic ultrastructural design of the olfactory system of the two species was largely comparable. In both species, the olfactory mucosa comprised an olfactory epithelium and an underlying lamina propria. The olfactory epithelium revealed olfactory knobs, cilia and microvilli apically and sustentancular cells, olfactory receptor neurons and basal cells in the upper, middle and basal zones, respectively. The lamina propria was constituted by Bowman's glands, olfactory nerve bundles and vasculature supported by loose connective tissue. Within the olfactory bulb, intracellular and extracellular structures including cell organelles, axons and dendrites were elucidated. Notable species differences were observed in the basal zone of the olfactory epithelium and on the luminal surface of the olfactory mucosa. The basal zone of the olfactory epithelium of the RR consisted of a single layer of flattened electron-dense horizontal basal cells while the NMR had juxtaposed electron-dense and electron-lucent heterogenous cells, an occurrence seen as being indicative of quiescent and highly proliferative states of the olfactory epithelia in the two species, respectively. The olfactory epithelial surface of the NMR comprised an elaborate cilia network that intertwined extensively forming loop-like structures whereas in the RR, the surface was rugged and consisted of finger-like processes and irregular masses. With gross and histological studies showing significant differences in the olfactory structures of the two species, these findings are a further manifestation that the olfactory system of the RR and the NMR have evolved differently to reflect their varied olfactory functional needs.


Subject(s)
East African People , Olfactory Receptor Neurons , Animals , Humans , Mole Rats , Axons , Cilia
15.
Front Immunol ; 15: 1318316, 2024.
Article in English | MEDLINE | ID: mdl-38605967

ABSTRACT

Background: Nonspecific orbital inflammation (NSOI) represents a perplexing and persistent proliferative inflammatory disorder of idiopathic nature, characterized by a heterogeneous lymphoid infiltration within the orbital region. This condition, marked by the aberrant metabolic activities of its cellular constituents, starkly contrasts with the metabolic equilibrium found in healthy cells. Among the myriad pathways integral to cellular metabolism, purine metabolism emerges as a critical player, providing the building blocks for nucleic acid synthesis, such as DNA and RNA. Despite its significance, the contribution of Purine Metabolism Genes (PMGs) to the pathophysiological landscape of NSOI remains a mystery, highlighting a critical gap in our understanding of the disease's molecular underpinnings. Methods: To bridge this knowledge gap, our study embarked on an exploratory journey to identify and validate PMGs implicated in NSOI, employing a comprehensive bioinformatics strategy. By intersecting differential gene expression analyses with a curated list of 92 known PMGs, we aimed to pinpoint those with potential roles in NSOI. Advanced methodologies, including Gene Set Enrichment Analysis (GSEA) and Gene Set Variation Analysis (GSVA), facilitated a deep dive into the biological functions and pathways associated with these PMGs. Further refinement through Lasso regression and Support Vector Machine-Recursive Feature Elimination (SVM-RFE) enabled the identification of key hub genes and the evaluation of their diagnostic prowess for NSOI. Additionally, the relationship between these hub PMGs and relevant clinical parameters was thoroughly investigated. To corroborate our findings, we analyzed expression data from datasets GSE58331 and GSE105149, focusing on the seven PMGs identified as potentially crucial to NSOI pathology. Results: Our investigation unveiled seven PMGs (ENTPD1, POLR2K, NPR2, PDE6D, PDE6H, PDE4B, and ALLC) as intimately connected to NSOI. Functional analyses shed light on their involvement in processes such as peroxisome targeting sequence binding, seminiferous tubule development, and ciliary transition zone organization. Importantly, the diagnostic capabilities of these PMGs demonstrated promising efficacy in distinguishing NSOI from non-affected states. Conclusions: Through rigorous bioinformatics analyses, this study unveils seven PMGs as novel biomarker candidates for NSOI, elucidating their potential roles in the disease's pathogenesis. These discoveries not only enhance our understanding of NSOI at the molecular level but also pave the way for innovative approaches to monitor and study its progression, offering a beacon of hope for individuals afflicted by this enigmatic condition.


Subject(s)
Cilia , Computational Biology , Humans , Homeostasis , Immunotherapy , Purines
16.
Cells ; 13(7)2024 Mar 24.
Article in English | MEDLINE | ID: mdl-38607006

ABSTRACT

Primary ciliary dyskinesia (PCD) is an inherited disorder that impairs motile cilia, essential for respiratory health, with a reported prevalence of 1 in 16,309 within Hispanic populations. Despite 70% of Puerto Rican patients having the RSPH4A [c.921+3_921+6del (intronic)] founder mutation, the characterization of the ciliary dysfunction remains unidentified due to the unavailability of advanced diagnostic modalities like High-Speed Video Microscopy Analysis (HSVA). Our study implemented HSVA for the first time on the island as a tool to better diagnose and characterize the RSPH4A [c.921+3_921+6del (intronic)] founder mutation in Puerto Rican patients. By applying HSVA, we analyzed the ciliary beat frequency (CBF) and pattern (CBP) in native Puerto Rican patients with PCD. Our results showed decreased CBF and a rotational CBP linked to the RSPH4A founder mutation in Puerto Ricans, presenting a novel diagnostic marker that could be implemented as an axillary test into the PCD diagnosis algorithm in Puerto Rico. The integration of HSVA technology in Puerto Rico substantially enhances the PCD evaluation and diagnosis framework, facilitating prompt detection and early intervention for improved disease management. This initiative, demonstrating the potential of HSVA as an adjunctive test within the PCD diagnostic algorithm, could serve as a blueprint for analogous developments throughout Latin America.


Subject(s)
Kartagener Syndrome , Humans , Algorithms , Cilia/pathology , Hispanic or Latino , Kartagener Syndrome/diagnosis , Kartagener Syndrome/genetics , Microscopy, Video
17.
BMC Biol ; 22(1): 84, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38610043

ABSTRACT

BACKGROUND: Post-translational transport is a vital process which ensures that each protein reaches its site of function. Though most do so via an ordered ER-to-Golgi route, an increasing number of proteins are now shown to bypass this conventional secretory pathway. RESULTS: In the Drosophila olfactory sensory neurons (OSNs), odorant receptors (ORs) are trafficked from the ER towards the cilia. Here, we show that Or22a, a receptor of various esters and alcoholic compounds, reaches the cilia partially through unconventional means. Or22a frequently present as puncta at the somatic cell body exit and within the dendrite prior to the cilia base. These rarely coincide with markers of either the intermediary ER-Golgi-intermediate-compartment (ERGIC) or Golgi structures. ERGIC and Golgi also displayed axonal localization biases, a further indication that at least some measure of OR transport may occur independently of their involvement. Additionally, neither the loss of several COPII genes involved in anterograde trafficking nor ERGIC itself affected puncta formation or Or22a transport to the cilium. Instead, we observed the consistent colocalization of Or22a puncta with Grasp65, the sole Drosophila homolog of mammalian GRASP55/Grh1, a marker of the unconventional pathway. The numbers of both Or22a and Grasp65-positive puncta were furthermore increased upon nutritional starvation, a condition known to enhance Golgi-bypassing secretory activity. CONCLUSIONS: Our results demonstrate an alternative route of Or22a transport, thus expanding the repertoire of unconventional secretion mechanisms in neurons.


Subject(s)
Olfactory Receptor Neurons , Receptors, Odorant , Animals , Receptors, Odorant/genetics , Secretory Pathway , Drosophila , Cilia , Mammals
18.
Science ; 384(6694): eadf5489, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38662826

ABSTRACT

Tubulin, one of the most abundant cytoskeletal building blocks, has numerous isotypes in metazoans encoded by different conserved genes. Whether these distinct isotypes form cell type- and context-specific microtubule structures is poorly understood. Based on a cohort of 12 patients with primary ciliary dyskinesia as well as mouse mutants, we identified and characterized variants in the TUBB4B isotype that specifically perturbed centriole and cilium biogenesis. Distinct TUBB4B variants differentially affected microtubule dynamics and cilia formation in a dominant-negative manner. Structure-function studies revealed that different TUBB4B variants disrupted distinct tubulin interfaces, thereby enabling stratification of patients into three classes of ciliopathic diseases. These findings show that specific tubulin isotypes have distinct and nonredundant subcellular functions and establish a link between tubulinopathies and ciliopathies.


Subject(s)
Axoneme , Centrioles , Cilia , Ciliary Motility Disorders , Tubulin , Animals , Humans , Mice , Axoneme/metabolism , Centrioles/metabolism , Cilia/metabolism , Ciliary Motility Disorders/genetics , Ciliary Motility Disorders/metabolism , Mutation , Protein Isoforms/genetics , Protein Isoforms/metabolism , Tubulin/genetics , Tubulin/metabolism , Male , Female , Mice, Knockout
19.
Nat Commun ; 15(1): 3365, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664376

ABSTRACT

Hedgehog (Hh) signaling relies on the primary cilium, a cell surface organelle that serves as a signaling hub for the cell. Using proximity labeling and quantitative proteomics, we identify Numb as a ciliary protein that positively regulates Hh signaling. Numb localizes to the ciliary pocket and acts as an endocytic adaptor to incorporate Ptch1 into clathrin-coated vesicles, thereby promoting Ptch1 exit from the cilium, a key step in Hh signaling activation. Numb loss impedes Sonic hedgehog (Shh)-induced Ptch1 exit from the cilium, resulting in reduced Hh signaling. Numb loss in spinal neural progenitors reduces Shh-induced differentiation into cell fates reliant on high Hh activity. Genetic ablation of Numb in the developing cerebellum impairs the proliferation of granule cell precursors, a Hh-dependent process, resulting in reduced cerebellar size. This study highlights Numb as a regulator of ciliary Ptch1 levels during Hh signal activation and demonstrates the key role of ciliary pocket-mediated endocytosis in cell signaling.


Subject(s)
Cerebellum , Cilia , Hedgehog Proteins , Nerve Tissue Proteins , Patched-1 Receptor , Signal Transduction , Hedgehog Proteins/metabolism , Hedgehog Proteins/genetics , Cilia/metabolism , Animals , Patched-1 Receptor/metabolism , Patched-1 Receptor/genetics , Mice , Nerve Tissue Proteins/metabolism , Nerve Tissue Proteins/genetics , Cerebellum/metabolism , Membrane Proteins/metabolism , Membrane Proteins/genetics , Humans , Endocytosis , Cell Differentiation , Cell Proliferation , Neural Stem Cells/metabolism , Neural Stem Cells/cytology , Mice, Knockout
20.
BMC Med Genomics ; 17(1): 106, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38671463

ABSTRACT

BACKGROUND: Syndromic ciliopathies are a group of congenital disorders characterized by broad clinical and genetic overlap, including obesity, visual problems, skeletal anomalies, mental retardation, and renal diseases. The hallmark of the pathophysiology among these disorders is defective ciliary functions or formation. Many different genes have been implicated in the pathogenesis of these diseases, but some patients still remain unclear about their genotypes. METHODS: The aim of this study was to identify the genetic causes in patients with syndromic ciliopathy. Patients suspected of or meeting clinical diagnostic criteria for any type of syndromic ciliopathy were recruited at a single diagnostic medical center in Southern Taiwan. Whole exome sequencing (WES) was employed to identify their genotypes and elucidate the mutation spectrum in Taiwanese patients with syndromic ciliopathy. Clinical information was collected at the time of patient enrollment. RESULTS: A total of 14 cases were molecularly diagnosed with syndromic ciliopathy. Among these cases, 10 had Bardet-Biedl syndrome (BBS), comprising eight BBS2 patients and two BBS7 patients. Additionally, two cases were diagnosed with Alström syndrome, one with Oral-facial-digital syndrome type 14, and another with Joubert syndrome type 10. A total of 4 novel variants were identified. A recurrent splice site mutation, BBS2: c.534 + 1G > T, was present in all eight BBS2 patients, suggesting a founder effect. One BBS2 patient with homozygous c.534 + 1G > T mutations carried a third ciliopathic allele, TTC21B: c.264_267dupTAGA, a nonsense mutation resulting in a premature stop codon and protein truncation. CONCLUSIONS: Whole exome sequencing (WES) assists in identifying molecular pathogenic variants in ciliopathic patients, as well as the genetic hotspot mutations in specific populations. It should be considered as the first-line genetic testing for heterogeneous disorders characterized by the involvement of multiple genes and diverse clinical manifestations.


Subject(s)
Cerebellum/abnormalities , Ciliopathies , Kidney Diseases, Cystic , Proteins , Retina/abnormalities , Humans , Male , Female , Taiwan , Ciliopathies/genetics , Child , Child, Preschool , Mutation , Exome Sequencing , Bardet-Biedl Syndrome/genetics , Adolescent , Infant , Abnormalities, Multiple/genetics , Retina/pathology , Syndrome , Cilia/pathology , Cilia/genetics , Eye Abnormalities/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...