Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
Add more filters










Publication year range
1.
Proc Natl Acad Sci U S A ; 121(31): e2320303121, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39008691

ABSTRACT

Influenza viruses pose a significant burden on global human health. Influenza has a broad cellular tropism in the airway, but how infection of different epithelial cell types impacts replication kinetics and burden in the airways is not fully understood. Using primary human airway cultures, which recapitulate the diverse epithelial cell landscape of the human airways, we investigated the impact of cell type composition on virus tropism and replication kinetics. Cultures were highly diverse across multiple donors and 30 independent differentiation conditions and supported a range of influenza replication. Although many cell types were susceptible to influenza, ciliated and secretory cells were predominantly infected. Despite the strong tropism preference for secretory and ciliated cells, which consistently make up 75% or more of infected cells, only ciliated cells were associated with increased virus production. Surprisingly, infected secretory cells were associated with overall reduced virus output. The disparate response and contribution to influenza virus production could be due to different pro- and antiviral interferon-stimulated gene signatures between ciliated and secretory populations, which were interrogated with single-cell RNA sequencing. These data highlight the heterogeneous outcomes of influenza virus infections in the complex cellular environment of the human airway and the disparate impacts of infected cell identity on multiround burst size, even among preferentially infected cell types.


Subject(s)
Epithelial Cells , Influenza, Human , Viral Tropism , Virus Replication , Humans , Influenza, Human/virology , Virus Replication/physiology , Epithelial Cells/virology , Epithelial Cells/metabolism , Cilia/virology , Cilia/metabolism , Cells, Cultured , Respiratory Mucosa/virology , Respiratory Mucosa/cytology
2.
Nat Rev Microbiol ; 21(2): 65, 2023 02.
Article in English | MEDLINE | ID: mdl-36513767
3.
Cell ; 186(1): 112-130.e20, 2023 01 05.
Article in English | MEDLINE | ID: mdl-36580912

ABSTRACT

How SARS-CoV-2 penetrates the airway barrier of mucus and periciliary mucins to infect nasal epithelium remains unclear. Using primary nasal epithelial organoid cultures, we found that the virus attaches to motile cilia via the ACE2 receptor. SARS-CoV-2 traverses the mucus layer, using motile cilia as tracks to access the cell body. Depleting cilia blocks infection for SARS-CoV-2 and other respiratory viruses. SARS-CoV-2 progeny attach to airway microvilli 24 h post-infection and trigger formation of apically extended and highly branched microvilli that organize viral egress from the microvilli back into the mucus layer, supporting a model of virus dispersion throughout airway tissue via mucociliary transport. Phosphoproteomics and kinase inhibition reveal that microvillar remodeling is regulated by p21-activated kinases (PAK). Importantly, Omicron variants bind with higher affinity to motile cilia and show accelerated viral entry. Our work suggests that motile cilia, microvilli, and mucociliary-dependent mucus flow are critical for efficient virus replication in nasal epithelia.


Subject(s)
COVID-19 , Respiratory System , SARS-CoV-2 , Humans , Cilia/physiology , Cilia/virology , COVID-19/virology , Respiratory System/cytology , Respiratory System/virology , SARS-CoV-2/physiology , Microvilli/physiology , Microvilli/virology , Virus Internalization , Epithelial Cells/physiology , Epithelial Cells/virology
4.
J Clin Invest ; 131(13)2021 07 01.
Article in English | MEDLINE | ID: mdl-34003804

ABSTRACT

The upper respiratory tract is compromised in the early period of COVID-19, but SARS-CoV-2 tropism at the cellular level is not fully defined. Unlike recent single-cell RNA-Seq analyses indicating uniformly low mRNA expression of SARS-CoV-2 entry-related host molecules in all nasal epithelial cells, we show that the protein levels are relatively high and that their localizations are restricted to the apical side of multiciliated epithelial cells. In addition, we provide evidence in patients with COVID-19 that SARS-CoV-2 is massively detected and replicated within the multiciliated cells. We observed these findings during the early stage of COVID-19, when infected ciliated cells were rapidly replaced by differentiating precursor cells. Moreover, our analyses revealed that SARS-CoV-2 cellular tropism was restricted to the nasal ciliated versus oral squamous epithelium. These results imply that targeting ciliated cells of the nasal epithelium during the early stage of COVID-19 could be an ideal strategy to prevent SARS-CoV-2 propagation.


Subject(s)
COVID-19/virology , Host Microbial Interactions , Nasal Mucosa/virology , SARS-CoV-2 , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Animals , COVID-19/pathology , COVID-19/physiopathology , Cell Differentiation , Cilia/pathology , Cilia/physiology , Cilia/virology , Furin/genetics , Furin/metabolism , Host Microbial Interactions/genetics , Host Microbial Interactions/physiology , Humans , Macaca , Models, Biological , Nasal Mucosa/pathology , Nasal Mucosa/physiopathology , Pandemics , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA-Seq , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity , SARS-CoV-2/physiology , Serine Endopeptidases/genetics , Serine Endopeptidases/metabolism , Stem Cells/pathology , Stem Cells/virology , Virus Internalization , Virus Replication/genetics , Virus Replication/physiology
5.
Physiol Genomics ; 53(6): 249-258, 2021 06 01.
Article in English | MEDLINE | ID: mdl-33855870

ABSTRACT

A worldwide coronavirus pandemic is in full swing and, at the time of writing, there are only few treatments that have been successful in clinical trials, but no effective antiviral treatment has been approved. Because of its lethality, it is important to understand the current strain's effects and mechanisms not only in the respiratory system but also in other affected organ systems as well. Past coronavirus outbreaks caused by SARS-CoV and MERS-CoV inflicted life-threatening acute kidney injuries (AKI) on their hosts leading to significant mortality rates, which went somewhat overlooked in the face of the severe respiratory effects. Recent evidence has emphasized renal involvement in SARS-CoV-2, stressing that kidneys are damaged in patients with COVID-19. The mechanism by which this virus inflicts AKI is still unclear, but evidence from other coronavirus strains may hold some clues. Two theories exist for the proposed mechanism of AKI: 1) the AKI is a secondary effect to reduced blood and oxygen levels causing hyperinflammation and 2) the AKI is due to cytotoxic effects. Kidneys express angiotensin-converting enzyme-2 (ACE2), the confirmed SARS-CoV-2 target receptor as well as collectrin, an ACE2 homologue that localizes to the primary cilium, an organelle historically targeted by coronaviruses. Although the available literature suggests that kidney damage is leading to higher mortality rates in patients with COVID-19, especially in those with preexisting kidney and cardiovascular diseases, the pathogenesis of COVID-19 is still being investigated. Here, we present brief literature review supporting our proposed hypothesis of a possible link between SARS-CoV-2 cellular infection and cilia.


Subject(s)
Acute Kidney Injury/virology , COVID-19/virology , Cilia/virology , Kidney/virology , SARS-CoV-2/pathogenicity , Virus Internalization , Acute Kidney Injury/etiology , Acute Kidney Injury/metabolism , Acute Kidney Injury/pathology , Angiotensin-Converting Enzyme 2/metabolism , Animals , COVID-19/complications , Cilia/metabolism , Cilia/pathology , Host-Pathogen Interactions , Humans , Kidney/metabolism , Kidney/pathology
6.
Respir Res ; 21(1): 282, 2020 Oct 27.
Article in English | MEDLINE | ID: mdl-33109186

ABSTRACT

BACKGROUND: Viral respiratory tract infections, such as influenza A virus (IAV), are common and life-threatening illnesses worldwide. The mechanisms by which viruses are removed from the respiratory tract are indispensable for airway host defense. Mucociliary clearance is an airway defense mechanism that removes pathogens from the respiratory tract. The coordination and modulation of the ciliary beating of airway epithelial cells play key roles in maintaining effective mucociliary clearance. However, the impact of respiratory virus infection on ciliary activity and mucociliary clearance remains unclear. METHODS: Tracheal samples were taken from wild-type (WT) and Toll-like receptor 3 (TLR3)-knockout (KO) mice. Transient organ culture of murine trachea was performed in the presence or absence of IAV, polyI:C, a synthetic TLR3 ligand, and/or reagents. Subsequently, cilia-driven flow and ciliary motility were analyzed. To evaluate cilia-driven flow, red fluorescent beads were loaded into culture media and movements of the beads onto the tracheal surface were observed using a fluorescence microscope. To evaluate ciliary motility, cilia tips were labeled with Indian ink diluted with culture medium. The motility of ink-labeled cilia tips was recorded by high-speed cameras. RESULTS: Short-term IAV infection significantly increased cilia-driven flow and ciliary beat frequency (CBF) compared with the control level in WT culture. Whereas IAV infection did not elicit any increases of cilia-driven flow and CBF in TLR3-KO culture, indicating that TLR3 was essential to elicit an increase of cilia-driven flow and CBF in response to IAV infection. TLR3 activation by polyI:C readily induced adenosine triphosphate (ATP) release from the trachea and increases of cilia-driven flow and CBF in WT culture, but not in TLR3-KO culture. Moreover, blockade of purinergic P2 receptors (P2Rs) signaling using P2R antagonist, suramin, suppressed polyI:C-mediated increases of cilia-driven flow and CBF, indicating that TLR3-mediated ciliary activation depended on released extracellular ATP and the autocrine ATP-P2R loop. CONCLUSIONS: IAV infection readily increases ciliary activity and cilia-driven flow via TLR3 activation in the airway epithelium, thereby hastening mucociliary clearance and "sweeping" viruses from the airway as an initial host defense response. Mechanically, extracellular ATP release in response to TLR3 activation promotes ciliary activity through autocrine ATP-P2R loop.


Subject(s)
Cilia/metabolism , Influenza A virus/physiology , Mucociliary Clearance/physiology , Respiratory Mucosa/metabolism , Toll-Like Receptor 3/deficiency , Animals , Cilia/virology , Female , Mice , Mice, Inbred BALB C , Mice, Knockout , Organ Culture Techniques , Respiratory Mucosa/virology
7.
FEBS J ; 287(17): 3672-3676, 2020 09.
Article in English | MEDLINE | ID: mdl-32692465

ABSTRACT

The novel coronavirus SARS-CoV-2 is the causative agent of the global coronavirus disease 2019 (COVID-19) outbreak. In addition to pneumonia, other COVID-19-associated symptoms have been reported, including loss of smell (anosmia). However, the connection between infection with coronavirus and anosmia remains enigmatic. It has been reported that defects in olfactory cilia lead to anosmia. In this Viewpoint, we summarize transmission electron microscopic studies of cilia in virus-infected cells. In the human nasal epithelium, coronavirus infects the ciliated cells and causes deciliation. Research has shown that viruses such as influenza and Sendai attach to the ciliary membrane. The Sendai virus enters cilia by fusing its viral membrane with the ciliary membrane. A recent study on SARS-CoV-2-human protein-protein interactions revealed that the viral nonstructural protein Nsp13 interacts with the centrosome components, providing a potential molecular link. The mucociliary escalator removes inhaled pathogenic particles and functions as the first line of protection mechanism against viral infection in the human airway. Thus, future investigation into the virus-cilium interface will help further the battle against COVID-19.


Subject(s)
Anosmia/metabolism , COVID-19/metabolism , Centrosome/virology , Cilia/virology , Nasal Mucosa/virology , SARS-CoV-2/pathogenicity , Viral Nonstructural Proteins/metabolism , Anosmia/complications , Anosmia/physiopathology , Anosmia/virology , COVID-19/complications , COVID-19/physiopathology , COVID-19/virology , Centrosome/metabolism , Centrosome/ultrastructure , Cilia/metabolism , Cilia/ultrastructure , Host-Pathogen Interactions/genetics , Humans , Methyltransferases/genetics , Methyltransferases/metabolism , Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/metabolism , Nasal Mucosa/metabolism , Nasal Mucosa/ultrastructure , Orthomyxoviridae/metabolism , Orthomyxoviridae/pathogenicity , Protein Binding , RNA Helicases/genetics , RNA Helicases/metabolism , SARS-CoV-2/metabolism , Sendai virus/metabolism , Sendai virus/pathogenicity , Severity of Illness Index , Smell/physiology , Viral Nonstructural Proteins/genetics
8.
Avian Pathol ; 49(3): 243-250, 2020 Jun.
Article in English | MEDLINE | ID: mdl-31951468

ABSTRACT

This paper describes the characterization of a new infectious bronchitis virus (IBV) strain D181, that rapidly evolved from a low-level incidental finding in 2017 to become the second most isolated IBV strain in Dutch layers and breeders in 2018, as well as being found in samples from Germany and Belgium. Based on the sequence of the S gene and the results of cross-neutralization tests, D181 can be considered as a new serotype and the second lineage within genotype II (GII-2). The experimental infection of SPF hens confirmed the ability of D181 to cause a drop in egg production, and immunohistochemistry showed presence of the virus in the trachea, lung and conjunctiva at 5 days post inoculation and in the caecal tonsils at 5 and 8 days post inoculation. In silico analysis of several widely used PCR primers indicated that primer sets adapted for GII might be needed to detect D181, as many general S1 primers might miss it.


Subject(s)
Chickens , Coronavirus Infections/veterinary , Infectious bronchitis virus/genetics , Poultry Diseases/virology , Serogroup , Animals , Cilia/pathology , Cilia/virology , Coronavirus Infections/epidemiology , Coronavirus Infections/virology , Europe/epidemiology , Genotype , Phylogeny , Poultry Diseases/epidemiology , Trachea/pathology , Trachea/virology
9.
Alcohol ; 80: 17-24, 2019 11.
Article in English | MEDLINE | ID: mdl-31235345

ABSTRACT

Alcohol impairs resolution of respiratory viral infections. Numerous immune response pathways are altered in response to alcohol misuse, including alcohol-induced ciliary dysfunction in the lung. We hypothesized that mucociliary clearance-mediated innate immunity to respiratory syncytial virus (RSV) would be compromised by alcohol exposure. Cilia were assayed using Sisson-Ammons Video Analysis by quantitating the average number of motile points in multiple whole field measurements of mouse tracheal epithelial cells grown on an air-liquid interface. Pretreatment with ethanol alone (100 mM for 24 hours) had no effect on the number of motile cilia. A single dose (TCID50 1 × 105) of RSV resulted in a significant (p < 0.05) decrease in motile cilia after 2 days. Ethanol pretreatment significantly (p < 0.05) potentiated RSV-induced cilia loss by 2 days. Combined RSV and ethanol treatment led to a sustained activation-induced auto-downregulation of PKC epsilon (PKCε). Ethanol-induced enhancement of ciliated cell detachment was confirmed by dynein ELISA and LDH activity from the supernates. RSV-induced cilia loss was evident until 7 days, when RSV-only infected cells demonstrated no significant cilia loss vs. control cells. However, cells pretreated with ethanol showed significant cilia loss until 10 days post-RSV infection. To address the functional significance of ethanol-enhanced cilia detachment, mice fed alcohol ad libitum (20% for 12 weeks) were infected once with RSV, and clearance was measured by plaque-forming assay from lung homogenates for up to 7 days. After 3 days, RSV plaque formation was no longer detected from the lungs of control mice, while significant (p < 0.01) RSV plaque-forming units were detected at 7 days in alcohol-fed mice. Alcohol-fed mice demonstrated enhanced cilia loss and delayed cilia recovery from tracheal measurements in wild-type C57BL/6 mice, but not PKCε KO mice. These data suggest that alcohol worsens RSV-mediated injury to ciliated epithelium in a PKCε-dependent manner.


Subject(s)
Cilia/drug effects , Ethanol/adverse effects , Respiratory Mucosa/drug effects , Respiratory Syncytial Virus Infections/complications , Animals , Cilia/pathology , Cilia/virology , Female , Mice , Mice, Inbred C57BL , Mucociliary Clearance/drug effects , Respiratory Mucosa/pathology , Respiratory Mucosa/virology , Respiratory Syncytial Virus Infections/pathology
10.
J Virol ; 93(10)2019 05 15.
Article in English | MEDLINE | ID: mdl-30814288

ABSTRACT

Ferrets represent an invaluable animal model to study influenza virus pathogenesis and transmission. To further characterize this model, we developed a differentiated primary ferret nasal epithelial cell (FNEC) culture model for investigation of influenza A virus infection and virus-host interactions. This well-differentiated culture consists of various cell types, a mucociliary clearance system, and tight junctions, representing the nasal ciliated pseudostratified respiratory epithelium. Both α2,6-linked and α2,3-linked sialic acid (SA) receptors, which preferentially bind the hemagglutinin (HA) of human and avian influenza viruses, respectively, were detected on the apical surface of the culture with different cellular tropisms. In accordance with the distribution of SA receptors, we observed that a pre-2009 seasonal A(H1N1) virus infected both ciliated and nonciliated cells, whereas a highly pathogenic avian influenza (HPAI) A(H5N1) virus primarily infected nonciliated cells. Transmission electron microscopy revealed that virions were released from or associated with the apical membranes of ciliated, nonciliated, and mucin-secretory goblet cells. Upon infection, the HPAI A(H5N1) virus replicated to titers higher than those of the human A(H1N1) virus at 37°C; however, replication of the A(H5N1) virus was significantly attenuated at 33°C. Furthermore, we found that infection with the A(H5N1) virus induced higher expression levels of immune mediator genes and resulted in more cell damage/loss than with the human A(H1N1) virus. This primary differentiated FNEC culture model, recapitulating the structure of the nasal epithelium, provides a useful model to bridge in vivo and in vitro studies of cellular tropism, infectivity, and pathogenesis of influenza viruses during the initial stages of infection.IMPORTANCE Although ferrets serve as an important model of influenza virus infection, much remains unknown about virus-host interactions in this species at the cellular level. The development of differentiated primary cultures of ferret nasal epithelial cells is an important step toward understanding cellular tropism and the mechanisms of influenza virus infection and replication in the airway milieu of this model. Using lectin staining and microscopy techniques, we characterized the sialic acid receptor distribution and the cellular composition of the culture model. We then evaluated the replication of and immune response to human and avian influenza viruses at relevant physiological temperatures. Our findings offer significant insight into this first line of defense against influenza virus infection and provide a model for the evaluation of emerging influenza viruses in a well-controlled in vitro environmental setting.


Subject(s)
Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H5N1 Subtype/genetics , Viral Tropism/genetics , Animals , Bronchi/virology , Cell Culture Techniques/methods , Cilia/virology , Disease Models, Animal , Epithelial Cells/virology , Ferrets/virology , Goblet Cells/metabolism , Goblet Cells/virology , Humans , Influenza A Virus, H1N1 Subtype/metabolism , Influenza A Virus, H1N1 Subtype/pathogenicity , Influenza A Virus, H5N1 Subtype/pathogenicity , Influenza A virus/physiology , Influenza, Human/virology , Nasal Mucosa/metabolism , Nasal Mucosa/virology , Primary Cell Culture , Receptors, Cell Surface/metabolism , Receptors, Virus/metabolism , Respiratory Mucosa/virology , Trachea/virology , Virus Diseases/genetics
11.
Acta Biomed ; 90(2-S)2019 01 14.
Article in English | MEDLINE | ID: mdl-30715030

ABSTRACT

Ciliocytophthoria (CCP) defines a degenerative process of the ciliated cells consequent to viral infections, and it is characterized by typical morphological changes. We evaluated the distinct and characteristic phases of CCP, by means of the optical microscopy of the nasal mucosa (nasal cytology), in 20 patients (12 males and 8 females; aged between 18 and 40 years). Three phases of CCP by nasal cytology are detected. This outcome confirms that CCP represents a sign of suffering nasal epithelial cell.


Subject(s)
Cilia/virology , Epithelial Cells/pathology , Nasal Mucosa/pathology , Rhinitis/virology , Adult , Ambulatory Care/methods , Biopsy, Needle , Cells, Cultured , Cilia/pathology , Cohort Studies , Endoscopy/methods , Female , Hospitals, University , Humans , Immunohistochemistry , Italy , Male , Rhinitis/pathology , Young Adult
12.
Am J Rhinol Allergy ; 33(2): 121-128, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30457015

ABSTRACT

BACKGROUND: The respiratory epithelium is frequently infected by the respiratory syncytial virus, resulting in inflammation, a reduction in cilia activity and an increase in the production of mucus. METHODS: In this study, an automatic method has been proposed to characterize the ciliary motility from cell cultures by means of a motility index using a dense optical flow algorithm. This method allows us to determine the ciliary beat frequency (CBF) together with a ciliary motility index of the cells in the cultures. The object of this analysis is to automatically distinguish between normal and infected cells in a culture. RESULTS: The method was applied in 2 stages. It was concluded from the first stage that the CBF is not a good enough indicator to discriminate between the control and infected cultures. However, the ciliary motility index does succeed in discriminating between the control and infected cultures using the t test with a value t = 6.46 and P < .001. In the second stage, it has been shown that the ciliary motility index did not differ significantly between patients, and the analysis of variance test gives α = 0.05, F = 1.61, P = .20. A threshold for this index has been determined using a receiver operating characteristics analysis that gives an area under the curve of 0.93. CONCLUSIONS: We have obtained a ciliary motility index that is able to discriminate between control and infected cultures after the eighth postinfection day. After infection, there is a rapid cilia loss of the cells and the measured CBF corresponds to the remaining noninfected cells. This is why the CBF does not discriminate between the control and the infected cells.


Subject(s)
Cilia/pathology , Epithelial Cells/pathology , Respiratory Syncytial Viruses/physiology , Algorithms , Bronchi/pathology , Cell Movement , Cells, Cultured , Cilia/virology , Epithelial Cells/virology , Humans , Image Processing, Computer-Assisted , Optical Imaging
13.
Respir Res ; 18(1): 84, 2017 05 04.
Article in English | MEDLINE | ID: mdl-28472984

ABSTRACT

BACKGROUND: The Rhinovirus C (RV-C), first identified in 2006, produce high symptom burdens in children and asthmatics, however, their primary target host cell in the airways remains unknown. Our primary hypotheses were that RV-C target ciliated airway epithelial cells (AECs), and that cell specificity is determined by restricted and high expression of the only known RV-C cell-entry factor, cadherin related family member 3 (CDHR3). METHODS: RV-C15 (C15) infection in differentiated human bronchial epithelial cell (HBEC) cultures was assessed using immunofluorescent and time-lapse epifluorescent imaging. Morphology of C15-infected differentiated AECs was assessed by immunohistochemistry. RESULTS: C15 produced a scattered pattern of infection, and infected cells were shed from the epithelium. The percentage of cells infected with C15 varied from 1.4 to 14.7% depending on cell culture conditions. Infected cells had increased staining for markers of ciliated cells (acetylated-alpha-tubulin [aat], p < 0.001) but not markers of goblet cells (wheat germ agglutinin or Muc5AC, p = ns). CDHR3 expression was increased on ciliated epithelial cells, but not other epithelial cells (p < 0.01). C15 infection caused a 27.4% reduction of ciliated cells expressing CDHR3 (p < 0.01). During differentiation of AECs, CDHR3 expression progressively increased and correlated with both RV-C binding and replication. CONCLUSIONS: The RV-C only replicate in ciliated AECs in vitro, leading to infected cell shedding. CDHR3 expression positively correlates with RV-C binding and replication, and is largely confined to ciliated AECs. Our data imply that factors regulating differentiation and CDHR3 production may be important determinants of RV-C illness severity.


Subject(s)
Bronchi/cytology , Bronchi/virology , Enterovirus/physiology , Epithelial Cells/cytology , Epithelial Cells/virology , Virus Internalization , Virus Replication/physiology , Cells, Cultured , Cilia/physiology , Cilia/ultrastructure , Cilia/virology , Enterovirus/ultrastructure , Humans , Virus Shedding/physiology
14.
PLoS One ; 12(1): e0169161, 2017.
Article in English | MEDLINE | ID: mdl-28060951

ABSTRACT

Recurrent lung infections and pneumonia are emerging as significant comorbidities in the HIV-infected population in the era of combination antiretroviral therapy (cART). HIV infection has been reported to suppress nasal mucociliary clearance (MCC). Since the primary components driving nasal MCC and bronchial MCC are identical, it is possible that bronchial MCC is affected as well. Effective MCC requires optimal ciliary beating which depends on the maintenance of the airway surface liquid (ASL), a function of cystic fibrosis transmembrane conductance regulator (CFTR) activity and the integrity of the signaling mechanism that regulates ciliary beating and fluid secretion. Impairment of either component of the MCC apparatus can compromise its efficacy and promote microbial colonization. We demonstrate that primary bronchial epithelium expresses HIV receptor CD4 and co-receptors CCR5 and CXCR4 and can be infected by both R5 and X4 tropic strains of HIV. We show that HIV Tat suppresses CFTR biogenesis and function in primary bronchial epithelial cells by a pathway involving TGF-ß signaling. HIV infection also interferes with bronchial epithelial cell differentiation and suppresses ciliogenesis. These findings suggest that HIV infection suppresses tracheobronchial mucociliary clearance and this may predispose HIV-infected patients to recurrent lung infections, pneumonia and chronic bronchitis.


Subject(s)
HIV Infections/immunology , HIV Infections/virology , HIV/physiology , Mucociliary Clearance/immunology , Respiratory Mucosa/immunology , Respiratory Mucosa/virology , Cilia/pathology , Cilia/virology , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Epithelial Cells/metabolism , Epithelial Cells/virology , Gene Expression , HIV Infections/genetics , HIV Infections/metabolism , Humans , Immunity, Innate , Proviruses , RNA, Viral , Receptors, HIV/genetics , Receptors, HIV/metabolism , Respiratory Mucosa/metabolism , Reverse Transcription , Signal Transduction , Transforming Growth Factor beta/metabolism , tat Gene Products, Human Immunodeficiency Virus/metabolism
15.
Virology ; 484: 395-411, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26231613

ABSTRACT

The distribution of cilia and the respiratory syncytial virus (RSV) nucleocapsid (N) protein, fusion (F) protein, attachment (G) protein, and M2-1 protein in human ciliated nasal epithelial cells was examined at between 1 and 5 days post-infection (dpi). All virus structural proteins were localized at cell surface projections that were distinct from cilia. The F protein was also trafficked into the cilia, and while its presence increased as the infection proceeded, the N protein was not detected in the cilia at any time of infection. The presence of the F protein in the cilia correlated with cellular changes in the cilia and reduced cilia function. At 5dpi extensive cilia loss and further reduced cilia function was noted. These data suggested that although RSV morphogenesis occurs at non-cilia locations on ciliated nasal epithelial cells, RSV infection induces changes in the cilia body that leads to extensive cilia loss.


Subject(s)
Epithelial Cells/virology , Membrane Microdomains/virology , Respiratory Syncytial Viruses/physiology , Virus Assembly , Adult , Cells, Cultured , Cilia/chemistry , Cilia/virology , Epithelial Cells/chemistry , Humans , Membrane Microdomains/chemistry , Respiratory Syncytial Viruses/chemistry , Viral Structural Proteins/analysis
16.
PLoS One ; 10(6): e0130517, 2015.
Article in English | MEDLINE | ID: mdl-26107373

ABSTRACT

Respiratory syncytial virus (RSV) is the principal cause of bronchiolitis in infants and a significant healthcare problem. The RSV Glycoprotein (G) mediates attachment of the virus to the cell membrane, which facilitates interaction of the RSV Fusion (F) protein with nucleolin, thereby triggering fusion of the viral and cellular membranes. However, a host protein ligand for G has not yet been identified. Here we show that CX3CR1 is expressed in the motile cilia of differentiated human airway epithelial (HAE) cells, and that CX3CR1 co-localizes with RSV particles. Upon infection, the distribution of CX3CR1 in these cells is significantly altered. Complete or partial deletion of RSV G results in viruses binding at least 72-fold less efficiently to cells, and reduces virus replication. Moreover, an antibody targeting an epitope near the G protein's CX3CR1-binding motif significantly inhibits binding of the virus to airway cells. Given previously published evidence of the interaction of G with CX3CR1 in human lymphocytes, these findings suggest a role for G in the interaction of RSV with ciliated lung cells. This interpretation is consistent with past studies showing a protective benefit in immunizing against G in animal models of RSV infection, and would support targeting the CX3CR1-G protein interaction for prophylaxis or therapy. CX3CR1 expression in lung epithelial cells may also have implications for other respiratory diseases such as asthma.


Subject(s)
Epithelial Cells/metabolism , Receptors, Chemokine/genetics , Respiratory Mucosa/metabolism , Respiratory Syncytial Virus, Human/genetics , Viral Envelope Proteins/genetics , Viral Fusion Proteins/genetics , Antibodies/pharmacology , Base Sequence , Binding Sites , CX3C Chemokine Receptor 1 , Cell Differentiation , Child , Cilia/metabolism , Cilia/pathology , Cilia/virology , Epithelial Cells/pathology , Epithelial Cells/virology , Epitopes/chemistry , Epitopes/immunology , Gene Expression , Humans , Molecular Sequence Data , Primary Cell Culture , Protein Binding , Receptors, Chemokine/antagonists & inhibitors , Receptors, Chemokine/chemistry , Receptors, Chemokine/metabolism , Respiratory Mucosa/pathology , Respiratory Mucosa/virology , Respiratory Syncytial Virus, Human/metabolism , Sequence Deletion , Viral Envelope Proteins/antagonists & inhibitors , Viral Envelope Proteins/chemistry , Viral Envelope Proteins/metabolism , Viral Fusion Proteins/chemistry , Viral Fusion Proteins/metabolism
17.
Curr Top Microbiol Immunol ; 372: 83-104, 2013.
Article in English | MEDLINE | ID: mdl-24362685

ABSTRACT

The two major glycoproteins on the surface of the respiratory syncytial virus (RSV) virion, the attachment glycoprotein (G) and the fusion glycoprotein (F), control the initial phases of infection. G targets the ciliated cells of the airways, and F causes the virion membrane to fuse with the target cell membrane. The F protein is the major target for antiviral drug development, and both G and F glycoproteins are the antigens targeted by neutralizing antibodies induced by infection. In this chapter, we review the structure and function of the RSV surface glycoproteins, including recent X-ray crystallographic data of the F glycoprotein in its pre- and postfusion conformations, and discuss how this information informs antigen selection and vaccine development.


Subject(s)
Antibodies, Viral/immunology , Respiratory Syncytial Virus Infections/prevention & control , Respiratory Syncytial Virus Vaccines/immunology , Respiratory Syncytial Virus, Human/chemistry , Viral Fusion Proteins/chemistry , Antibodies, Neutralizing/immunology , Antiviral Agents/chemical synthesis , Antiviral Agents/pharmacology , Cilia/immunology , Cilia/virology , Humans , Models, Molecular , Protein Conformation , Receptors, Virus/chemistry , Receptors, Virus/physiology , Respiratory Mucosa/immunology , Respiratory Mucosa/virology , Respiratory Syncytial Virus Infections/immunology , Respiratory Syncytial Virus Vaccines/administration & dosage , Respiratory Syncytial Virus, Human/drug effects , Respiratory Syncytial Virus, Human/immunology , Viral Fusion Proteins/antagonists & inhibitors , Viral Fusion Proteins/physiology , Virion/chemistry , Virion/physiology
18.
Curr Top Microbiol Immunol ; 372: 371-87, 2013.
Article in English | MEDLINE | ID: mdl-24362700

ABSTRACT

Respiratory syncytial virus (RSV) is an important human respiratory pathogen with narrow species tropism. Limited availability of human pathologic specimens during early RSV-induced lung disease and ethical restrictions for RSV challenge studies in the lower airways of human volunteers has slowed our understanding of how RSV causes airway disease and greatly limited the development of therapeutic strategies for reducing RSV disease burden. Our current knowledge of RSV infection and pathology is largely based on in vitro studies using nonpolarized epithelial cell-lines grown on plastic or in vivo studies using animal models semipermissive for RSV infection. Although these models have revealed important aspects of RSV infection, replication, and associated inflammatory responses, these models do not broadly recapitulate the early interactions and potential consequences of RSV infection of the human columnar airway epithelium in vivo. In this chapter, the pro et contra of in vitro models of human columnar airway epithelium and their usefulness in respiratory virus pathogenesis and vaccine development studies will be discussed. The use of such culture models to predict characteristics of RSV infection and the correlation of these findings to the human in vivo situation will likely accelerate our understanding of RSV pathogenesis potentially identifying novel strategies for limiting the severity of RSV-associated airway disease.


Subject(s)
Cilia/pathology , Epithelial Cells/pathology , Respiratory Mucosa/pathology , Respiratory Syncytial Virus Infections/pathology , Respiratory Syncytial Virus, Human/physiology , Animals , Cell Polarity , Cells, Cultured , Cilia/immunology , Cilia/virology , Cytokines/biosynthesis , Cytokines/immunology , Epithelial Cells/immunology , Epithelial Cells/virology , Host Specificity , Host-Pathogen Interactions , Humans , Models, Biological , Respiratory Mucosa/immunology , Respiratory Mucosa/virology , Respiratory Syncytial Virus Infections/immunology , Respiratory Syncytial Virus Infections/virology , Virus Replication
19.
Article in English | MEDLINE | ID: mdl-24110720

ABSTRACT

Persistent respiratory syncytial virus (RSV) infections have been associated with the exacerbation of chronic inflammatory diseases, including chronic obstructive pulmonary disease (COPD). This virus infects the respiratory epithelium, leading to chronic inflammation, and induces the release of mucins and the loss of cilia activity, two factors that determine mucus clearance and the increase in sputum volume. In this study, an automatic method has been established to determine the ciliary motility activity from cell cultures by means of optical flow computation, and has been applied to 136 control cultures and to 144 RSV-infected cultures. The control group presented an average of cell surface with cilia motility per field of 41 ± 15 % (mean ± standard deviation), while the infected group presented a 11 ± 5 %, t-Student p<0.001. The cutoff value to classify a infected specimen was <17.89 % (sensitivity 0.94, specificity 0.93). This methodology has proved to be a robust technique to evaluate cilia motility in cell cultures.


Subject(s)
Algorithms , Cilia/metabolism , Pulmonary Disease, Chronic Obstructive/diagnosis , Cell Movement/physiology , Cells, Cultured , Cilia/virology , Epithelial Cells/pathology , Epithelial Cells/virology , Humans , Image Processing, Computer-Assisted , Inflammation/pathology , Inflammation/virology , Models, Theoretical , Pulmonary Disease, Chronic Obstructive/pathology , Pulmonary Disease, Chronic Obstructive/virology , Respiratory Syncytial Viruses/growth & development , Respiratory Syncytial Viruses/isolation & purification , Sensitivity and Specificity
20.
J Pediatr Gastroenterol Nutr ; 57(1): 96-101, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23609896

ABSTRACT

OBJECTIVES: Biliary atresia (BA) is a rapidly progressive form of biliary fibrosis affecting neonates. We previously reported that primary cilia on the intrahepatic cholangiocytes of patients with both syndromic and nonsyndromic BA were structurally abnormal. Our objective was to determine whether extrahepatic cholangiocytes in human biliary atresia, intrahepatic and extrahepatic cholangiocytes of rhesus rotavirus (RRV)-infected neonatal mice, and RRV-infected primary neonatal extrahepatic cholangiocytes also demonstrate ciliary abnormalities. METHODS: The livers of neonatal BALB/c mice injected with RRV that developed jaundice, human extrahepatic bile duct samples obtained at time of hepatoportoenterostomy, and RRV-infected primary neonatal cholangiocytes were stained with antibodies against acetylated α tubulin to identify primary cilia. RESULTS: Extrahepatic cholangiocytes from RRV-treated mice demonstrated minimal loss of primary cilia at day 3 but almost complete loss at day 8 and partial loss at day 12. No changes were seen in mouse intrahepatic bile ducts at any of the time points. In the human BA samples, primary cilia were almost completely absent from extrahepatic duct cholangiocytes. There were, however, abundant cilia in the peribiliary glands adjacent to extrahepatic ducts in the BA sample. Cilia in RRV-infected primary neonatal cholangiocytes were significantly decreased compared with controls. CONCLUSIONS: Primary cilia are selectively lost from neonatal extrahepatic but not intrahepatic cholangiocytes after RRV infection in BALB/c mice. The cilia are also decreased in RRV-infected primary cholangiocytes and the extrahepatic ducts from human patients with BA. This suggests that ciliary abnormalities are part of the pathophysiology of BA.


Subject(s)
Bile Ducts, Extrahepatic/pathology , Biliary Atresia/pathology , Acetylation , Animals , Animals, Newborn , Bile Ducts, Extrahepatic/metabolism , Bile Ducts, Extrahepatic/virology , Bile Ducts, Intrahepatic/metabolism , Bile Ducts, Intrahepatic/pathology , Bile Ducts, Intrahepatic/virology , Biliary Atresia/etiology , Biliary Atresia/metabolism , Biomarkers/metabolism , Cells, Cultured , Cilia/metabolism , Cilia/pathology , Cilia/virology , Disease Models, Animal , Humans , Infant, Newborn , Jaundice, Neonatal/etiology , Mice , Mice, Inbred BALB C , Microscopy, Fluorescence , Protein Processing, Post-Translational , Rotavirus/growth & development , Rotavirus Infections/metabolism , Rotavirus Infections/pathology , Rotavirus Infections/physiopathology , Tubulin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...