Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 923
Filter
1.
Microbiome ; 12(1): 96, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38790063

ABSTRACT

BACKGROUND: The eukaryotic-bacterial symbiotic system plays an important role in various physiological, developmental, and evolutionary processes. However, our current understanding is largely limited to multicellular eukaryotes without adequate consideration of diverse unicellular protists, including ciliates. RESULTS: To investigate the bacterial profiles associated with unicellular organisms, we collected 246 ciliate samples spanning the entire Ciliophora phylum and conducted single-cell based metagenome sequencing. This effort has yielded the most extensive collection of bacteria linked to unicellular protists to date. From this dataset, we identified 883 bacterial species capable of cohabiting with ciliates, unveiling the genomes of 116 novel bacterial cohabitants along with 7 novel archaeal cohabitants. Highlighting the intimate relationship between ciliates and their cohabitants, our study unveiled that over 90% of ciliates coexist with bacteria, with individual hosts fostering symbiotic relationships with multiple bacteria concurrently, resulting in the observation of seven distinct symbiotic patterns among bacteria. Our exploration of symbiotic mechanisms revealed the impact of host digestion on the intracellular diversity of cohabitants. Additionally, we identified the presence of eukaryotic-like proteins in bacteria as a potential contributing factor to their resistance against host digestion, thereby expanding their potential host range. CONCLUSIONS: As the first large-scale analysis of prokaryotic associations with ciliate protists, this study provides a valuable resource for future research on eukaryotic-bacterial symbioses. Video Abstract.


Subject(s)
Bacteria , Ciliophora , Symbiosis , Ciliophora/genetics , Ciliophora/classification , Ciliophora/physiology , Bacteria/genetics , Bacteria/classification , Archaea/genetics , Archaea/classification , Phylogeny , Metagenome , Biodiversity
2.
Protist ; 175(3): 126034, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38569353

ABSTRACT

The relationships of the mainly free living, obligately anaerobic ciliated protists belonging to order Metopida continue to be clarified and now comprise three families: Metopidae, Tropidoatractidae, and Apometopidae. The most species-rich genus of the Metopidae, Metopus has undergone considerable subdivision into new genera in recent years as more taxa are characterized by modern morphologic and molecular methods. The genus, Castula, was established to accommodate setae-bearing species previously assigned to Metopus: C. setosa and C. fusca, and one new species, C. flexibilis. Another new species, C. specialis, has been added since. Here we redescribe another species previously included in Metopus, using morphologic and molecular methods, and transfer it to Castula as C. strelkowi n. comb. (original combination Metopus strelkowi). We also reassess the monotypic genus, Pileometopus, which nests within the strongly supported Castula clade in 18S rRNA gene trees and conclude that it represents a morphologically divergent species of Castula.


Subject(s)
Fresh Water , Phylogeny , Czech Republic , Fresh Water/parasitology , Ciliophora/classification , Ciliophora/genetics , Ciliophora/cytology , Species Specificity , RNA, Ribosomal, 18S/genetics , DNA, Protozoan/genetics , DNA, Ribosomal/genetics
3.
Environ Microbiol ; 26(4): e16619, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38649189

ABSTRACT

Ciliates play a key role in most ecosystems. Their abundance in natural samples is crucial for answering many ecological questions. Traditional methods of quantifying individual species, which rely on microscopy, are often labour-intensive, time-consuming and can be highly biassed. As a result, we investigated the potential of digital polymerase chain reaction (dPCR) for quantifying ciliates. A significant challenge in this process is the high variation in the copy number of the taxonomic marker gene (ribosomal RNA [rRNA]). We first quantified the rRNA gene copy numbers (GCN) of the model ciliate, Paramecium tetraurelia, during different stages of the cell cycle and growth phases. The per-cell rRNA GCN varied between approximately 11,000 and 130,000, averaging around 50,000 copies per cell. Despite these variations in per-cell rRNA GCN, we found a highly significant correlation between GCN and cell numbers. This is likely due to the coexistence of different cellular stages in an uncontrolled (environmental) ciliate population. Thanks to the high sensitivity of dPCR, we were able to detect the target gene in a sample that contained only a single cell. The dPCR approach presented here is a valuable addition to the molecular toolbox in protistan ecology. It may guide future studies in quantifying and monitoring the abundance of targeted (even rare) ciliates in natural samples.


Subject(s)
Gene Dosage , Polymerase Chain Reaction/methods , Paramecium tetraurelia/genetics , Ciliophora/genetics , Ciliophora/classification , Genes, rRNA , RNA, Ribosomal/genetics , DNA, Protozoan/genetics
4.
J Eukaryot Microbiol ; 71(3): e13028, 2024.
Article in English | MEDLINE | ID: mdl-38613145

ABSTRACT

The phylogenetic and taxonomic affinities of lineages currently assigned to the non-monophyletic ciliate order Loxocephalida Jankowski (1980) within subclass Scuticociliatia Small (1967) remain unresolved. In the current study, we redescribe the morphology of the type species, Loxocephalus luridus Eberhard (1862) based on two Czech populations and include the first scanning and transmission electron microscopy images of the species. We provide the first 18S rRNA gene sequences for L. luridus and consider its phylogenetic position. Our results support the separation of Dexiotricha from Loxocephalus; however, the former genus is recovered as non-monophyletic. The monophyly of genus Dexiotricha and that of Loxocephalus + Dexiotricha is rejected. Loxocephalus luridus, together with Dexiotricha species, nests within a fully supported clade with Conchophthirus species, long presumed to belong to the Pleuronematida. Haptophrya is recovered as sister to this clade. The monophyly of the Astomatia Schewiakoff (1896) including Haptophrya is rejected. No clear morphologic synapomorphy is identified for the fully supported clade consisting of Haptophrya, Dexiotricha, Loxocephalus, and Conchophthirus.


Subject(s)
DNA, Protozoan , Phylogeny , RNA, Ribosomal, 18S , Czech Republic , RNA, Ribosomal, 18S/genetics , DNA, Protozoan/genetics , DNA, Ribosomal/genetics , Microscopy, Electron, Scanning , Sequence Analysis, DNA , Microscopy, Electron, Transmission , Ciliophora/classification , Ciliophora/genetics , Ciliophora/ultrastructure , Molecular Sequence Data
5.
Parasitology ; 151(4): 400-411, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38465385

ABSTRACT

Individual organisms can host multiple species of parasites (or symbionts), and one species of parasite can infect different host species, creating complex interactions among multiple hosts and parasites. When multiple parasite species coexist in a host, they may compete or use strategies, such as spatial niche partitioning, to reduce competition. Here, we present a host­symbiont system with two species of Selenidium (Apicomplexa, Gregarinida) and one species of astome ciliate co-infecting two different species of slime feather duster worms (Annelida, Sabellidae, Myxicola) living in neighbouring habitats. We examined the morphology of the endosymbionts with light and scanning electron microscopy (SEM) and inferred their phylogenetic interrelationships using small subunit (SSU) rDNA sequences. In the host 'Myxicola sp. Quadra', we found two distinct species of Selenidium; S. cf. mesnili exclusively inhabited the foregut, and S. elongatum n. sp. inhabited the mid to hindgut, reflecting spatial niche partitioning. Selenidium elongatum n. sp. was also present in the host M. aesthetica, which harboured the astome ciliate Pennarella elegantia n. gen. et sp. Selenidium cf. mesnili and P. elegantia n. gen. et sp. were absent in the other host species, indicating host specificity. This system offers an intriguing opportunity to explore diverse aspects of host­endosymbiont interactions and competition among endosymbionts.


Subject(s)
Apicomplexa , Host Specificity , Phylogeny , Symbiosis , Animals , Apicomplexa/physiology , Apicomplexa/genetics , Apicomplexa/classification , Apicomplexa/ultrastructure , Coinfection/parasitology , Coinfection/veterinary , Ciliophora/physiology , Ciliophora/classification , Ciliophora/genetics , Annelida , Host-Parasite Interactions , Microscopy, Electron, Scanning , Bird Diseases/parasitology
6.
Sci Total Environ ; 858(Pt 2): 159866, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36328255

ABSTRACT

It is well-established that environmental variability and cyanobacterial blooms have major effects on the assembly and functioning of bacterial communities in both marine and freshwater habitats. It remains unclear, however, how the ciliate community responds to such changes over the long-term, particularly in subtropical lake and reservoir ecosystems. We analysed 9-year planktonic ciliate data series from the surface water of two subtropical reservoirs to elucidate the role of cyanobacterial bloom and environmental variabilities on the ciliate temporal dynamics. We identified five distinct periods of cyanobacterial succession in both reservoirs. Using multiple time-scale analyses, we found that the interannual variability of ciliate communities was more strongly related to cyanobacterial blooms than to other environmental variables or to seasonality. Moreover, the percentage of species turnover across cyanobacterial bloom and non-bloom periods increased significantly with time over the 9-year period. Phylogenetic analyses further indicated that 84 %-86 % of ciliate community turnover was governed by stochastic dispersal limitation or undominated processes, suggesting that the ciliate communities in subtropical reservoirs were mainly controlled by neutral processes. However, short-term blooms increased the selection pressure and drove 30 %-53 % of the ciliate community turnover. We found that the ciliate community composition was influenced by environmental conditions with nutrients, cyanobacterial biomass and microzooplankton having direct and/or indirect significant effects on the ciliate taxonomic or functional community dynamics. Our results provide new insights into the long-term temporal dynamics of planktonic ciliate communities under cyanobacterial bloom disturbance.


Subject(s)
Ciliophora , Cyanobacteria , Ecosystem , Ciliophora/classification , Ciliophora/physiology , Cyanobacteria/physiology , Eutrophication , Lakes/microbiology , Lakes/parasitology , Phylogeny , Plankton/classification , Plankton/physiology , Biodiversity , Population Dynamics
7.
Zool Res ; 43(5): 827-842, 2022 Sep 18.
Article in English | MEDLINE | ID: mdl-35993134

ABSTRACT

During faunal studies of psammophilic ciliates along the coast of Qingdao, China, several marine karyorelictean species were isolated. Among them, four species within the genus Remanella were investigated, including two species new to science: i.e., R. rugosa, Remanella elongata sp. nov., Remanella aposinica sp. nov., and R. unicorpusculata. Remanella rugosa has been reported several times, but this study is the first to provide detailed morphological characters and phylogenetics. Remanella elongata sp. nov. can be distinguished from its congeners by the presence of complex cortical granules, fewer macronuclei, and longer body size. Remanella aposinica sp. nov. differs from its congeners by having 14-17 right lateral ciliary rows and 24-37 dikinetids of intrabuccal kinety. Poorly known Remanella rugosa var. unicorpusculata (Kahl, 1933) Foissner, 1996 should be elevated from subspecies to species level, Remanella unicorpusculata (Foissner, 1996) stat. nov., based on detailed redescriptions with statistical data, living morphology, infraciliature, and species definitions. Small subunit (SSU) rDNA was sequenced for the four species, and phylogenetic analysis revealed that all known taxa in Remanella formed the outline branch to the genus Loxodes with moderate to high bootstrap support among Remanella lineages.


Subject(s)
Ciliophora , Animals , China , Ciliophora/classification , Ciliophora/genetics , DNA, Ribosomal/genetics , Phylogeny
8.
Int J Mol Sci ; 23(3)2022 Feb 03.
Article in English | MEDLINE | ID: mdl-35163686

ABSTRACT

Three Dysteria species, D. crassipes Claparède & Lachmann, 1859; D. brasiliensis Faria et al., 1922; and D. paracrassipes n. sp., were collected from subtropical coastal waters of the East China Sea, near Ningbo, China. The three species were studied based on their living morphology, infraciliature, and molecular data. The new species D. paracrassipes n. sp. is very similar to D. crassipes in most morphological features except the preoral kinety, which is double-rowed in the new species (vs. single-rowed in D. crassipes). The difference in the small ribosomal subunit sequences (SSU rDNA) between these two species is 56 bases, supporting the establishment of the new species. The Ningbo population of D. crassipes is highly similar in morphology to other known populations. Nevertheless, the SSU rDNA sequences of these populations are very different, indicating high genetic diversity and potentially cryptic species. Dysteria brasiliensis is cosmopolitan with many described populations worldwide and four deposited SSU rDNA sequences. The present work supplies morphological and molecular information from five subtropical populations of D. brasiliensis that bear identical molecular sequences but show significant morphological differences. The findings of this study provide an opportunity to improve understanding of the morphological and genetic diversity of ciliates.


Subject(s)
Ciliophora/classification , Ciliophora/genetics , Phylogeny , Base Sequence , China , DNA, Ribosomal/genetics , Geography , Likelihood Functions , RNA, Ribosomal/genetics , Ribosome Subunits, Small/genetics , Sequence Homology, Nucleic Acid , Species Specificity
9.
Article in English | MEDLINE | ID: mdl-34427553

ABSTRACT

The morphology and molecular phylogeny of Plagiopyla ovata Kahl, 1931, a poorly known anaerobic ciliate, were investigated based on a population isolated from sand samples collected from the Yellow Sea coast at Qingdao, PR China. Details of the oral ciliature are documented for the first time to our knowledge and an improved species diagnosis is given. The small subunit ribosomal RNA (SSU rRNA) gene was newly sequenced and phylogenetic analyses revealed that P. ovata clusters within the monophyletic family Plagiopylidae. However, evolutionary relationships within both the family Plagiopylidae and the genus Plagiopyla remain obscure owing to undersampling, the lack of sequence data from known species and low nodal support or unstable topologies in gene trees. A key to the identification of the species of the genus Plagiopyla with validly published names is also supplied.


Subject(s)
Ciliophora , Phylogeny , Seawater/microbiology , Anaerobiosis , China , Ciliophora/classification , Genes, rRNA , Sequence Analysis, DNA
10.
Parasit Vectors ; 14(1): 318, 2021 Jun 10.
Article in English | MEDLINE | ID: mdl-34112204

ABSTRACT

BACKGROUND: Pseudocohnilembus persalinus and Uronema marinum (Ciliophora, Scuticociliatia), as parasitic scuticociliatid ciliates, were isolated from Scophthalmus maximus and Takifugu rubripes, respectively, in our previous studies. These ciliates are morphologically very similar; hence, it is difficult to identify specific scuticociliate species using traditional classification methods for performing taxonomic research and disease control studies. METHODS: We annotated the mitochondrial genomes of these two scuticociliates on the basis of previous sequencing, including analyses of nucleotide composition, codon usage, Ka/Ks, and p-distance. We also compared the nucleotide and amino acid similarity of the mitochondrial genomes of P. persalinus, U. marinum, and other 12 related ciliates, and a phylogenetic tree was constructed using 16 common genes. We chose the nad4 and nad7 genes to design specific PCR primers for identification. RESULTS: P. persalinus and U. marinum were found to have a close evolutionary relationship. Although codon preferences were similar, differences were observed in the usage of codons such as CGA, CGC, and GTC. Both Ka/Ks and p-distance were less than 1. Except for yejR, ymf57, ymf67, and ymf75, the amino acid sequence similarity between P. persalinus and U. marinum was greater than 50%. CONCLUSIONS: The mitochondrial genomes of P. persalinus and U. marinum were thoroughly compared to provide a reference for disease prevention and control. The specific PCR primers enabled us to identify P. persalinus and U. marinum rapidly and accurately at the molecular level, thus providing a basis for classification and identification.


Subject(s)
Ciliophora/classification , Ciliophora/genetics , DNA Primers/genetics , Genome, Mitochondrial/genetics , Phylogeny , Animals , Flounder/parasitology , Polymerase Chain Reaction/methods
11.
Acta Trop ; 221: 106015, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34146536

ABSTRACT

Endoparasitic trichodinids are rather rare ciliates. In this study we describe a new species named Trichodina lishuiensis from the bladder of Odorrana schmackeri collected in Zhejiang, China, with the prevalence of 20% (9/45). We identified T. lishuiensis as a new species by morphological comparison and molecular analysis. The ciliates were observed using the dry-silver and protargol staining methods, as well as SEM (scanning electron microscopy). Trichodina lishuiensis is a small species (cell diameter 31.8-43.9 µm), with incompact denticles connection, medium-wide blades and thick rays. We also sequenced a 1712 bp-long fragment of the small subunit ribosomal RNA gene (SSU rRNA). Phylogenetic analyses showed that the new species clustered with Trichodina unionis. The route of transmission of Trichodina species in the urinary bladder remains a mystery. We hypothesize that the transmisison takes place during the amplexus, with eggs and sperm discharged from the cloaca, and that trichodinids 'accompany' the amphibian through its whole life cycle, but further studies are needed to test this hypothesis.


Subject(s)
Ciliophora , Ranidae/parasitology , Urinary Bladder , Animals , China , Ciliophora/classification , Phylogeny , Urinary Bladder/parasitology
12.
Eur J Protistol ; 80: 125802, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34090088

ABSTRACT

A new ciliate species of the genus Loxophyllum Dujardin, 1841, Loxophyllum paludosum sp. n., is described from a mangrove wetland near Daya Bay in Guangdong Province, southern China, based on morphological and molecular analyses. The new species can be distinguished from its congeners by a combination of the following characters: (1) 12-14 right kineties and 4-6 left kineties; (2) two macronuclear nodules and one micronucleus; (3) a single contractile vacuole located terminally; (4) extrusomes bar-shaped, evenly spaced along entire ventral margin, and clustered to form 5-7 warts along dorsal margin; and (5) presence of three ridges on the left side of cell. The new species is divergent from its congeners from 0.4% to 6.7% (5-104 nucleotide sites) based on the small subunit (SSU) rRNA gene sequence data. The validity of the new species is also supported by molecular phylogenetic trees inferred from SSU rRNA gene sequences.


Subject(s)
Ciliophora/classification , Phylogeny , China , Ciliophora/cytology , Ciliophora/genetics , DNA, Protozoan/genetics , DNA, Ribosomal/genetics , Species Specificity , Wetlands
13.
Protist ; 172(2): 125803, 2021 04.
Article in English | MEDLINE | ID: mdl-33940500

ABSTRACT

Spirostomum is a widely distributed heterotrichean genus composed of well-known species with described ecology and phylogenetic affinities. The morphological classification of Spirostomum species is mostly based on the body size/shape, number of cortical granule rows and macronuclear characteristics. These features along with molecular phylogenies based on ribosomal genes divide the genus into two phylogroups, one including species with a compact macronucleus, and another including species with a moniliform macronucleus. Here, we present our observations on atypical Spirostomum specimens with unusually two distinct macronuclei and shortened adoral zone of membranelles. These atypical forms appeared in the cultures of S. minus and S. yagiui, sampled at different sites in South America (Chile and Brazil) and associated with unrelated substrate types. Morphological observations of living and stained cells, 18S rRNA gene analyses, and a thorough investigation of the literature suggest that the atypical phenotype may be a result of uncommon pathways during the conjugative process. Thus, we demonstrate that studies of ciliate natural populations and their morphological variations, especially from undersampled biogeographical regions, can reveal the boundaries of widely used morphological characters for Spirostomum taxonomy and species identification.


Subject(s)
Ciliophora/classification , Classification/methods , Genetic Variation , Macronucleus/genetics , South America , Species Specificity
14.
Parasitol Res ; 120(7): 2595-2616, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33851248

ABSTRACT

The presence of parasitic ciliates of the hymenostome genus Tetrahymena was examined in 150 mollusks belonging to six bivalve and 13 gastropod species in Slovakia, Central Europe. Tetrahymenids were detected only in two species, viz., in the invasive Lusitanian slug (Arion vulgaris) and in the native swollen river mussel (Unio tumidus). Although only 10.52% of the examined mollusk taxa were positive, their Tetrahymena infections were very intensive accounting for several hundreds of ciliates per host. Phylogenetic analyses of the 16S and 18S rRNA genes as well as of the barcoding region of the gene encoding for cytochrome c oxidase subunit I revealed that both isolates represent new taxa, T. foissneri sp. n. and T. unionis sp. n. The former species belongs to the 'borealis' clade and its nearest relative is T. limacis, a well-known parasite of slugs and snails. Besides molecular data, T. foissneri can be distinguished from T. limacis also morphologically by the body shape of the parasitic-phase form, dimensions of micronuclei, and the silverline system. On the other hand, T. unionis was classified within the 'paravorax' clade along with T. pennsylvaniensis, T. glochidiophila, and T. nigricans. Although these four species are genetically distinct, T. unionis could be morphologically separated only from T. nigricans by body shape and size. The present study suggests that both aquatic and terrestrial mollusks represent interesting hosts for the discovery of novel Tetrahymena lineages.


Subject(s)
Bivalvia/parasitology , Snails/parasitology , Tetrahymena/classification , Animals , Ciliophora/classification , Cyclooxygenase 1/genetics , Europe , Phylogeny , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 18S/genetics , Seafood , Slovakia , Tetrahymena/genetics , Tetrahymena/growth & development
15.
Mol Phylogenet Evol ; 161: 107174, 2021 08.
Article in English | MEDLINE | ID: mdl-33831547

ABSTRACT

Mobilids are among the most taxonomically diverse but morphologically uniform groups of epibiotic ciliates. They attach to their hosts by means of an adhesive disc as harmless commensals such as Urceolaria, or as parasites causing significant economic loss such as some Trichodina species. We investigated the diversity, species boundaries, and phylogenetic relationships of mobilids associated with freshwater planarians, using 114 new sequences of two mitochondrial (16S rRNA gene and cytochrome c oxidase gene) and five nuclear (18S rRNA gene, ITS1-5.8S-ITS2 region, D1/D2 domains of 28S rRNA gene) markers. Although the morphological disparity of the isolated trichodinids and urceolariids was low, Bayesian coalescent analyses revealed the existence of five distinct evolutionary lineages/species given the seven molecular markers. The occurrence of mobilids perfectly correlated with their planarian hosts: Trichodina steinii and two Urceolaria mitra-like taxa were associated exclusively with the planarian Dugesia gonocephala, Trichodina polycelis sp. n. with the planarian Polycelis felina, and Trichodina schmidtea sp. n. with the planarian Schmidtea polychroa. Host organisms thus very likely constitute sharply isolated niches that might permit speciation of their epibiotic ciliates, even though no distinct morphological features appear to be recognizable among ciliates originating from different hosts.


Subject(s)
Ciliophora/classification , Ciliophora/genetics , Fresh Water , Genetic Speciation , Host-Parasite Interactions , Phylogeny , Planarians/parasitology , Animals , Bayes Theorem , RNA, Ribosomal, 16S
16.
Sci Rep ; 11(1): 5916, 2021 03 15.
Article in English | MEDLINE | ID: mdl-33723272

ABSTRACT

Species of the genus Coleps are one of the most common planktonic ciliates in lake ecosystems. The study aimed to identify the phenotypic plasticity and genetic variability of different Coleps isolates from various water bodies and from culture collections. We used an integrative approach to study the strains by (i) cultivation in a suitable culture medium, (ii) screening of the morphological variability including the presence/absence of algal endosymbionts of living cells by light microscopy, (iii) sequencing of the SSU and ITS rDNA including secondary structures, (iv) assessment of their seasonal and spatial occurrence in two lakes over a one-year cycle both from morphospecies counts and high-throughput sequencing (HTS), and, (v) proof of the co-occurrence of Coleps and their endosymbiotic algae from HTS-based network analyses in the two lakes. The Coleps strains showed a high phenotypic plasticity and low genetic variability. The algal endosymbiont in all studied strains was Micractinium conductrix and the mutualistic relationship turned out as facultative. Coleps is common in both lakes over the whole year in different depths and HTS has revealed that only one genotype respectively one species, C. viridis, was present in both lakes despite the different lifestyles (mixotrophic with green algal endosymbionts or heterotrophic without algae). Our results suggest a future revision of the species concept of the genus Coleps.


Subject(s)
Ciliophora/classification , Ciliophora/genetics , Water/parasitology , Biodiversity , Biological Variation, Population , Ciliophora/cytology , DNA, Protozoan/chemistry , DNA, Protozoan/genetics , DNA, Ribosomal Spacer/chemistry , DNA, Ribosomal Spacer/genetics , Ecology , Ecosystem , Lakes , Nucleic Acid Conformation , Phenotype , Phylogeny , Seasons , Symbiosis
17.
Mol Phylogenet Evol ; 158: 107089, 2021 05.
Article in English | MEDLINE | ID: mdl-33545277

ABSTRACT

The evolutionary relationships among Oligohymenophorea subclasses are under debate as the phylogenomic analysis using a large dataset of nuclear coding genes is significantly different to the 18S rDNA phylogeny, and it is unfortunately not stable within and across different published studies. In addition to nuclear genes, the faster-evolving mitochondrial genes have also shown the ability to solve phylogenetic problems in many ciliated taxa. However, due to the paucity of mitochondrial data, the corresponding work is scarce, let alone the phylogenomic analysis based on mitochondrial gene dataset. In this work, we presented the characterization on Thuricola similis Bock, 1963, a loricate peritrich (Oligohymenophorea), incorporating mitogenome sequencing into integrative taxonomy. As the first mitogenome for the subclass Peritrichia, it is linear, 38,802 bp long, and contains two rRNAs, 12 tRNAs, and 43 open reading frames (ORFs). As a peculiarity, it includes a central repeated region composed of tandemly repeated A-T rich units working as a bi-transcriptional start. Moreover, taking this opportunity, the phylogenomic analyses based on a set of mitochondrial genes were also performed, revealing that T. similis, as a representative of Peritrichia subclass, branches basally to other three Oligohymenophorea subclasses, namely Hymenostomatia, Peniculia, and Scuticociliatia. Evolutionary relationships among those Oligohymenophorea subclasses were discussed, also in the light of recent phylogenomic reconstructions based on a set of nuclear genes. Besides, as a little-known species, T. similis was also redescribed and neotypified based on data from two populations collected from wastewater treatment plants (WWTPs) in Brazil and Italy, by means of integrative methods (i.e., living observation, silver staining methods, scanning and transmission electron microscopy, and 18S rDNA phylogeny). After emended diagnosis, it is characterized by: (1) the sewage habitat; (2) the lorica with a single valve and small undulations; (3) the 7-22 µm-long inner stalk; and (4) the presence of only a single postciliary microtubule on the left side of the aciliferous row in the haplokinety. Among Vaginicolidae family, our 18S rRNA gene-based phylogenetic analysis revealed that Thuricola and Cothurnia are monophyletic genera, and Vaginicola could be a polyphyletic genus.


Subject(s)
Ciliophora/genetics , Genome, Mitochondrial/genetics , Oligohymenophorea/genetics , Biological Evolution , Brazil , Ciliophora/classification , Ciliophora/physiology , Italy , Microscopy, Electron, Transmission , Oligohymenophorea/classification , Oligohymenophorea/physiology , Open Reading Frames/genetics , Phylogeny , RNA, Ribosomal, 18S/classification , RNA, Ribosomal, 18S/genetics
18.
Exp Parasitol ; 223: 108081, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33549536

ABSTRACT

Artificial breeding of small yellow croaker (Larimichthys polyactis) was recently achieved, providing a bright future for its commercial farming. In May 2019, a disease outbreak occurred among small yellow croakers in an aquaculture farm near Xiangshan Bay, charactering by white spots spotted on the surface of fish skin, gills and fins. The parasite was preliminarily identified as Cryptocaryon irritans based on morphological feature of the parasite and the symptoms on fish. However, the previously published specific primer pairs failed to confirm the existence of C. iriitans. Six nucleotides mismatches were discovered after mapping specific forward primer back to targeted gene. Therefore, an updated PCR specific primer was developed within the 9th highly variable region of 18S rRNA gene and conserved in all C. irritans sequences available in GenBank database. The specificity was verified in silico by Primer-BLAST against GenBank nucleotide. Laboratory cultured ciliates (Mesanophrys, Pseudokeronopsis and Uronema) as well as natural microbial community samples collected from sea water and river water was used as negative control to verify the specificity of the primer in situ. Besides, tank transfer method was used to evaluate the treatment of the parasite infection. By tank transfer method, 2.00 ± 0.61 out of 10 fish that already sever infected were successfully survived after 8 days treatment, meanwhile the control group died out at d 6. More loss to the treatment group during first five days was observed and may attribute to the combined effect from infection and stress the recent domesticated fish suffered during rotation. Therefore, tank transfer method was also effective to prevent small yellow croaker from further infection, however the loss of the small yellow croaker suffered from stress during rotation also needs to be carefully concerned. In conclusion, this study reported the first diagnose of C. irritans infection on small yellow croaker, provided updated specific primer to detect C. irritans infection on fish body and reported the effect of tank transfer on small yellow croaker treatment.


Subject(s)
Ciliophora Infections/veterinary , Ciliophora/isolation & purification , Fish Diseases/parasitology , Perciformes/parasitology , Animal Fins/parasitology , Animal Fins/pathology , Animals , China/epidemiology , Ciliophora/classification , Ciliophora/genetics , Ciliophora Infections/diagnosis , Ciliophora Infections/epidemiology , Ciliophora Infections/parasitology , Disease Outbreaks/veterinary , Fish Diseases/diagnosis , Fish Diseases/epidemiology , Fish Diseases/therapy , Fisheries , Gills/parasitology , Gills/pathology , Muscle, Skeletal/parasitology , Muscle, Skeletal/pathology , Phylogeny , RNA, Ribosomal, 18S/genetics , Skin/parasitology , Skin/pathology , Species Specificity
19.
Eur J Protistol ; 78: 125769, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33549969

ABSTRACT

A little-known haptorid ciliate, Helicoprorodon multinucleatum Dragesco, 1960, was found in a sandy beach at Qingdao, China. Its morphology was studied based on microscopic observations of live and protargol-stained specimens and morphometrics, and the phylogeny was analyzed using SSU rRNA gene sequences. Helicoprorodon multinucleatum is characterized by the combination of the following features: (i) a very narrowly worm-like body with a size of about 300-1500 µm × 30-60 µm in vivo, and two circles of horn-like protuberances around the head; (ii) 50-160 spherical macronuclear nodules scattered throughout the body; (iii) rod-shaped, 10-50 µm long extrusomes gathered into several bunches, which are randomly distributed beneath pellicle; and (iv) 42-88 somatic kineties, including four oralized kineties and two dorsal brush rows. Phylogenetic analyses reveal that both the family Helicoprorodontidae and the genus Helicoprorodon might be monophyletic. In addition, we provide an illustrated key to the species and the geographical distribution of the genus Helicoprorodon.


Subject(s)
Ciliophora/classification , Phylogeny , China , Ciliophora/cytology , Ciliophora/genetics , DNA, Protozoan/genetics , RNA, Ribosomal, 18S/genetics , Species Specificity
20.
Eur J Protistol ; 78: 125768, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33549970

ABSTRACT

In a study of marine ciliate diversity, we collected an Anteholosticha monilata-like population from Vietnam. To identify this population, we analyzed its morphology, some morphogenetic stages, and molecular phylogeny. Based on these data, we conclude that the Vietnamese population is new to science. Anteholosticha foissneri n. sp. resembles Anteholosticha monilata-like species considering (1) the number and arrangement of macronuclear nodules and micronuclei; (2) the presence of cortical granules; and (3) the saline habitat. However, the new species can be easily distinguished from these species by the arrangement, color, and shape of the cortical granules. The divisional morphogenesis commences with the de novo proliferation of basal bodies as a single longitudinal patch left of the posteriormost midventral cirral pair. This character state has not been reported before in Anteholosticha (based on check of the available data) and probably reflects a distinct clade within the nuclear small subunit ribosomal RNA gene tree.


Subject(s)
Ciliophora/classification , Morphogenesis , Phylogeny , Ciliophora/cytology , Ciliophora/genetics , DNA, Protozoan/genetics , RNA, Ribosomal, 18S/genetics , Species Specificity , Vietnam
SELECTION OF CITATIONS
SEARCH DETAIL
...