Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 304
Filter
1.
Fish Shellfish Immunol ; 150: 109655, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38796044

ABSTRACT

High proportions of soybean meal in aquafeed have been confirmed to induce various intestinal pathologies. This study aims to investigate the regulatory effects of rosmarinic acid (RA), an antioxidant with anti-inflammatory and antimicrobial properties, when added to high soybean meal feeds in different doses, (0, 0.5, 1, and 4 g/kg). During the 56-day feeding trial, results indicated that, compared to the control group without RA (0 g/kg), the 1 g/kg and 4 g/kg RA groups increased bullfrog survival rates and total weight gain while reducing feed coefficient. Additionally, these doses markedly suppressed the expression of key intestinal inflammatory markers (tlr5, myd88, tnfα, il1ß, cxcl8, cxcl12) and the activity and content of intestinal antioxidants (CAT, MDA, GSH, GPX). Concurrently, RA significantly downregulated the transcription levels of antioxidant-related genes (cat, gpx5, cyba, cybb, mgst, gclc, gsta, gstp), suggesting RA's potential to alleviate intestinal inflammation and oxidative stress induced by high soybean meal and to help downregulate and restore normal expression of antioxidant enzyme genes. However, the 0.5 g/kg RA group did not show a significant improvement in survival rates; instead, it upregulated the transcription of some antioxidant genes (cat, gpx5, cyba, cybb), revealing the complexity and dose-dependency of RA's antioxidant action. Furthermore, RA supplementation significantly reshaped the intestinal microbial community structure and relative abundance in bullfrogs, particularly affecting the genera Hafnia, Phascolarctobacterium, and Lactococcus. Notably, high doses of RA (1 g/kg, 4 g/kg) were able to downregulate pathways associated with the enrichment of gut microbiota in diseases such as Parkinson's, Staphylococcus aureus infection, and Systemic lupus erythematosus, suggesting its potential in anti-inflammatory action and health maintenance to prevent potential diseases.


Subject(s)
Animal Feed , Cinnamates , Depsides , Diet , Dietary Supplements , Glycine max , Oxidative Stress , Rana catesbeiana , Rosmarinic Acid , Animals , Depsides/pharmacology , Depsides/administration & dosage , Glycine max/chemistry , Cinnamates/pharmacology , Cinnamates/administration & dosage , Animal Feed/analysis , Diet/veterinary , Oxidative Stress/drug effects , Rana catesbeiana/immunology , Dietary Supplements/analysis , Inflammation/veterinary , Dose-Response Relationship, Drug , Intestines/drug effects , Intestines/immunology , Random Allocation , Fish Diseases/immunology , Gastrointestinal Microbiome/drug effects , Antioxidants/administration & dosage , Antioxidants/pharmacology , Antioxidants/metabolism , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/administration & dosage
2.
Support Care Cancer ; 32(6): 331, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38710920

ABSTRACT

AIM: We evaluated the efficacy and safety of Nuvastatic™ (C5OSEW5050ESA) in improving cancer-related fatigue (CRF) among cancer patients. METHODS: This multicenter randomized double-blind placebo-controlled phase 2 trial included 110 solid malignant tumor patients (stage II-IV) undergoing chemotherapy. They were randomly selected and provided oral Nuvastatic™ 1000 mg (N = 56) or placebo (N = 54) thrice daily for 9 weeks. The primary outcomes were fatigue (Brief Fatigue Inventory (BFI)) and Visual Analog Scale for Fatigue (VAS-F)) scores measured before and after intervention at baseline and weeks 3, 6, and 9. The secondary outcomes were mean group difference in the vitality subscale of the Medical Outcome Scale Short Form-36 (SF-36) and urinary F2-isoprostane concentration (an oxidative stress biomarker), Eastern Cooperative Oncology Group scores, adverse events, and biochemical and hematologic parameters. Analysis was performed by intention-to-treat (ITT). Primary and secondary outcomes were assessed by two-way repeated-measures analysis of variance (mixed ANOVA). RESULTS: The Nuvastatic™ group exhibited an overall decreased fatigue score compared with the placebo group. Compared with the placebo group, the Nuvastatic™ group significantly reduced BFI-fatigue (BFI fatigue score, F (1.4, 147) = 16.554, p < 0.001, partial η2 = 0.333). The Nuvastatic™ group significantly reduced VAS-F fatigue (F (2, 210) = 9.534, p < 0.001, partial η2 = 0.083), improved quality of life (QoL) (F (1.2, 127.48) = 34.07, p < 0.001, partial η2 = 0.243), and lowered urinary F2-IsoP concentrations (mean difference (95% CI) = 55.57 (24.84, 86.30)), t (55) = 3.624, p < 0.001, Cohen's d (95% CI) = 0.48 (0.20, 0.75)). Reported adverse events were vomiting (0.9%), fever (5.4%), and headache (2.7%). CONCLUSION: Nuvastatic™ is potentially an effective adjuvant for CRF management in solid tumor patients and worthy of further investigation in larger trials. TRIAL REGISTRATION: ClinicalTrial.gov ID: NCT04546607. Study registration date (first submitted): 11-05-2020.


Subject(s)
Cinnamates , Depsides , Fatigue , Neoplasms , Rosmarinic Acid , Humans , Double-Blind Method , Fatigue/etiology , Fatigue/drug therapy , Female , Middle Aged , Male , Neoplasms/complications , Aged , Depsides/pharmacology , Depsides/administration & dosage , Depsides/therapeutic use , Adult , Cinnamates/administration & dosage , Cinnamates/therapeutic use , Cinnamates/pharmacology , Plant Extracts/administration & dosage
3.
Int. j. morphol ; 40(1): 157-167, feb. 2022. ilus, tab
Article in English | LILACS | ID: biblio-1385584

ABSTRACT

SUMMARY: Carbon tetrachloride (CCl4) is a manufactured chemical and does not occur naturally in the environment. CCl4 is a clear liquid that evaporates very easily. It has a sweet odor. CCl4 is toxic to the mammalian liver and is hepatocarcinogenic in both rats and mice. Rosemary (Rosmarinus Officinalis) is commonly used as a spice and flavoring agent in food processing. It is known for its antioxidant properties. The present study aims to investigate the antioxidant activity of rosmarinic acid (RA) on CCl4-induced liver toxicity in adult male albino rats. Forty adult male albino rats were divided into 4 groups with 10 rats in each group. Group I (control group). Group II animals received RA at a dose of 50 mg/kg/day by oral gavage for 4 weeks. Group III animals received CCl4 intraperitoneally at a dose of 3ml/kg twice weekly for 4 weeks. Group IV animals received CCl4 Plus RA. At the end of the experiment, liver specimens are processed for histological, immunohistochemical, EM and biochemical studies. Administration of RA deceased the elevated serum liver enzymes (AST, ALT, and ALP), elevated MDA level and immunoexpression of the proapoptotic protein (Bax) induced by CCl4. It increased reduced glutathione (GSH), glutathione peroxidase (GSH-Px), superoxide dismutase (SOD), and immunoexpression of the antiapoptotic protein (Bcl2). It also improved the histological and ultrastructural changes induced by CCl4. It appears that Rosmarinic acid has protective effects against CCl4-induced hepatotoxicity as indicated by biochemical, histological, immunohistochemical and ultrastructural results.


RESUMEN: El tetracloruro de carbono (CCl4) es un producto químico fabricado y no se encuentra de forma natural en el medio ambiente. CCl4 es un líquido transparente que se evapora fácilmente; tiene un olor dulce. CCl4 es tóxico para el hígado de los mamíferos y es hepatocarcinogénico tanto en ratas como en ratones. El romero (Rosmarinus officinalis) se usa comúnmente como condimento y agente aromatizante en el procesamiento de alimentos. Es conocido por sus propiedades antioxidantes. El presente estudio tuvo como objetivo investigar la actividad antioxidante del ácido rosmarínico (RA) sobre la toxicidad hepática inducida por CCl4 en ratas albinas macho adultas. Se dividieron cuarenta ratas albinas macho adultas en 4 grupos con 10 ratas en cada grupo. Grupo I (grupo control). Los animales del grupo II recibieron AR a una dosis de 50 mg / kg / día por sonda oral durante 4 semanas. Los animales del grupo III recibieron CCl4 por vía intraperitoneal a una dosis de 3 ml / kg dos veces por semana durante 4 semanas. Los animales del grupo IV recibieron CCl4 Plus RA. Al final del experimento, las muestras de hígado se procesaron para estudios histológicos, inmunohistoquímicos, EM y bioquímicos. La administración de AR eliminó las enzimas hepáticas séricas elevadas (AST, ALT y ALP), el nivel elevado de MDA y la inmunoexpresión de la proteína proapoptótica (Bax) inducida por CCl4. Aumentó el glutatión reducido (GSH), glutatión peroxidasa (GSH-Px), la superóxido dismutasa (SOD) y la inmunoexpresión de la proteína antiapoptótica (Bcl2). También mejoró los cambios histológicos y ultraestructurales inducidos por CCl4. El ácido rosmarínico puede tener efectos protectores contra la hepatotoxicidad inducida por CCl4, tal como lo indican los resultados bioquímicos, histológicos, inmunohistoquímicos y ultraestructurales.


Subject(s)
Animals , Male , Mice , Carbon Tetrachloride/toxicity , Cinnamates/administration & dosage , Depsides/administration & dosage , Chemical and Drug Induced Liver Injury/drug therapy , Antioxidants/administration & dosage , Superoxide Dismutase/analysis , Immunohistochemistry , Cinnamates/pharmacology , Oxidative Stress/drug effects , Microscopy, Electron, Transmission , Depsides/pharmacology , Glutathione Peroxidase/analysis , Malondialdehyde/analysis , Antioxidants/pharmacology
4.
Sci Rep ; 12(1): 1313, 2022 01 25.
Article in English | MEDLINE | ID: mdl-35079027

ABSTRACT

Cisplatin (CP) is a well-known anticancer drug used to effectively treat various kinds of solid tumors. CP causes acute kidney injury (AKI) and unfortunately, there is no therapeutic approach in hand to prevent AKI. Several signaling pathways are responsible for inducing AKI which leads to inflammation in proximal convoluted tubule cells in the kidney. Furthermore, the nucleotide-binding oligomerization domain (NOD)-like receptor containing pyrin domain 3 (NLRP3) inflammasome is involved in the CP-induced AKI. In this study, we investigated therapeutic effects of rosmarinic acid (RA) against inflammation-induced AKI. RA was orally administered at the dose of 100 mg/kg for two consecutive days after 24 h of a single injection of CP at the dose of 20 mg/kg administered intraperitoneally in Swiss albino male mice. Treatment of RA inhibited the activation of NLRP3 signaling pathway by blocking the activated caspase-1 and downstream signal molecules such as IL-1ß and IL18. CP activated HMGB1-TLR4/MyD88 axis was also found to be downregulated with the RA treatment. Activation of nuclear factor-κB and elevated protein expression of cyclooxygenase-2 (COX-2) were also found to be downregulated in RA-treated animals. Alteration of early tubular injury biomarker, kidney injury molecule-1 (KIM-1), was found to be subsided in RA-treated mice. RA has been earlier reported for antioxidant and anti-inflammatory properties. Our findings show that blocking a critical step of inflammasome signaling pathway by RA treatment can be a novel and beneficial approach to prevent the CP-induced AKI.


Subject(s)
Acute Kidney Injury/drug therapy , Acute Kidney Injury/metabolism , Anti-Inflammatory Agents/administration & dosage , Antioxidants/administration & dosage , Cinnamates/administration & dosage , Depsides/administration & dosage , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Signal Transduction/drug effects , Acute Kidney Injury/chemically induced , Administration, Oral , Animals , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/adverse effects , Cisplatin/administration & dosage , Cisplatin/adverse effects , Cyclooxygenase 2/metabolism , Disease Models, Animal , Hepatitis A Virus Cellular Receptor 1/metabolism , Kidney Tubules, Proximal/metabolism , Male , Mice , NF-kappa B/metabolism , Treatment Outcome , Rosmarinic Acid
5.
Anal Cell Pathol (Amst) ; 2021: 8388527, 2021.
Article in English | MEDLINE | ID: mdl-34858775

ABSTRACT

Stress is a ubiquitous part of our life, while appropriate stress levels can help improve the body's adaptability to the environment. However, sustained and excessive levels of stress can lead to the occurrence of multiple devastating diseases. As an emotional center, the amygdala plays a key role in the regulation of stress-induced psycho-behavioral disorders. The structural changes in the amygdala have been shown to affect its functional characteristics. The amygdala-related neurotransmitter imbalance is closely related to psychobehavioral abnormalities. However, the mechanism of structural and functional changes of glutamatergic neurons in the amygdala induced by stress has not been fully elucidated. Here, we identified that chronic stress could lead to the degeneration and death of glutamatergic neurons in the lateral amygdaloid nucleus, resulting in neuroendocrine and psychobehavioral disorders. Therefore, our studies further suggest that the Protein Kinase R-like ER Kinase (PERK) pathway may be therapeutically targeted as one of the key mechanisms of stress-induced glutamatergic neuronal degeneration and death in the amygdala.


Subject(s)
Anxiety , Basolateral Nuclear Complex/physiopathology , Glutamic Acid/metabolism , Neurons/pathology , Stress, Physiological/physiology , Stress, Psychological/physiopathology , Activating Transcription Factor 4/metabolism , Animals , Anxiety/physiopathology , Anxiety/prevention & control , Anxiety/psychology , Basolateral Nuclear Complex/metabolism , Basolateral Nuclear Complex/pathology , Chromatography, High Pressure Liquid/methods , Chronic Disease , Cinnamates/administration & dosage , Cinnamates/pharmacology , Eukaryotic Initiation Factor-2/metabolism , Immunohistochemistry/methods , Male , Motor Activity/drug effects , Motor Activity/physiology , Neurons/drug effects , Neurons/metabolism , Rats, Sprague-Dawley , Signal Transduction/drug effects , Thiourea/administration & dosage , Thiourea/analogs & derivatives , Thiourea/pharmacology , eIF-2 Kinase/metabolism
6.
Pharm Biol ; 59(1): 1286-1293, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34517734

ABSTRACT

CONTEXT: Rosmarinic acid (RA) dose-dependently ameliorates acetaminophen (APAP) induced hepatotoxicity in rats. However, whether RA hepatoprotective effect is by regulating RACK1 and its downstream signals is still unclear. OBJECTIVE: This study explores the RA protective effect on APAP-induced ALI and its mechanism. MATERIALS AND METHODS: Sixty Kunming mice 6-8 weeks old were randomly separated into six groups (n = 10) and pre-treated with normal saline, ammonium glycyrrhetate (AG) or RA (10, 20 or 40 mg/kg i.p./day) for two consecutive weeks. Then, APAP (300 mg/kg, i.g.) was administrated to induce ALI, except for the control. Serum alanine/aspartate aminotransferases (ALT and AST), malondialdehyde (MDA), superoxide dismutase (SOD) and histopathology were used to authenticate RA effect. The liver RACK1 and TNF-α were measured by western blot. RESULTS: Compared with the APAP group, different dosages RA significantly decreased ALT (52.09 ± 7.98, 55.13 ± 10.19, 65.08 ± 27.61 U/L, p < 0.05), AST (114.78 ± 19.87, 115.29 ± 31.91, 101.78 ± 21.85 U/L, p < 0.05), MDA (2.37 ± 0.87, 2.13 ± 0.87, 1.86 ± 0.39 nmol/mg, p < 0.01) and increased SOD (306.178 ± 90.80, 459.21 ± 58.54, 444.01 ± 78.09 U/mg, p < 0.05). With increasing doses of RA, RACK1 and TNF-α expression decreased. Moreover, the RACK1 and TNF-α levels were positively correlated with MDA (r = 0.8453 and r = 0.9391, p < 0.01). DISCUSSION AND CONCLUSIONS: Our findings support RA as a hepatoprotective agent to improve APAP-induced ALI and the antioxidant effect mediated through RACK1/TNF-α pathway.


Subject(s)
Acetaminophen/toxicity , Antioxidants/pharmacology , Chemical and Drug Induced Liver Injury/prevention & control , Cinnamates/pharmacology , Depsides/pharmacology , Animals , Animals, Outbred Strains , Antioxidants/administration & dosage , Chemical and Drug Induced Liver Injury/etiology , Cinnamates/administration & dosage , Depsides/administration & dosage , Dose-Response Relationship, Drug , Glycyrrhetinic Acid/analogs & derivatives , Glycyrrhetinic Acid/pharmacology , Male , Malondialdehyde/metabolism , Mice , Receptors for Activated C Kinase/metabolism , Superoxide Dismutase/metabolism , Tumor Necrosis Factor-alpha/metabolism , Rosmarinic Acid
7.
Life Sci ; 284: 119938, 2021 Nov 01.
Article in English | MEDLINE | ID: mdl-34506837

ABSTRACT

AIMS: The relationship between stress to endoplasmic reticulum (ER) and periodontitis has been known, and ER stress induced by Porphyromonas gingivalis results in the loss of alveolar bone. Salubrinal is a small synthetic compound and attenuates ER stress through inhibition of de-phosphorylation of eukaryotic translation initiation factor 2 alpha (eIF2α). In this study, we examined whether salubrinal attenuates periodontitis in a mouse model of experimental periodontal disease. MATERIALS AND METHODS: We evaluated loss of alveolar bone and attachment levels in periodontium using micro-computed tomography (µCT) and hematoxylin-eosin (HE) staining, respectively. Furthermore, we measured osteoclast numbers using tartrate-resistant acid phosphatase (TRAP) staining and osteoblast numbers using HE staining for bone resorption and for bone formation, respectively. To examine the inhibitory effects of salubrinal against pro-inflammatory cytokines, we measured TNF-α and IL1-ß score in periodontium using immunohistostaining. KEY FINDINGS: The results revealed that salubrinal suppressed loss of alveolar bone and attachment levels in periodontium induced by periodontitis. It decreased osteoclast numbers and increased osteoblasts. It also suppressed the expression levels of TNF-α in periodontium. SIGNIFICANCE: These results show that salubrinal alleviates periodontitis through suppression of alveolar bone resorption and the pro-inflammatory cytokine, and promotion of the bone formation. Since salubrinal has been shown to have these beneficial effects for periodontal disease, it may provide a novel therapeutic possibility for the disease.


Subject(s)
Alveolar Bone Loss/drug therapy , Cinnamates/therapeutic use , Thiourea/analogs & derivatives , Alveolar Bone Loss/complications , Alveolar Bone Loss/diagnostic imaging , Alveolar Bone Loss/pathology , Animals , Cell Count , Cinnamates/administration & dosage , Cinnamates/pharmacology , Disease Models, Animal , Endoplasmic Reticulum Stress/drug effects , Interleukin-1beta/metabolism , Male , Mice, Inbred C57BL , Osteoblasts/drug effects , Osteoblasts/pathology , Periodontitis/complications , Periodontitis/drug therapy , Periodontitis/pathology , Thiourea/administration & dosage , Thiourea/pharmacology , Thiourea/therapeutic use , Transcription Factor CHOP/metabolism , Tumor Necrosis Factor-alpha/metabolism , X-Ray Microtomography
8.
Daru ; 29(2): 483-492, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34495496

ABSTRACT

PURPOSE: Pancreatic ß-cells protection is integral to insulin secretion in diabetic conditions. In this context, we investigated cinnamic acid in combination with nicotinamide on the regulation of insulin secretion and apoptosis in pancreatic ß-cells using streptozotocin (STZ)-induced apoptotic model in vivo. METHODS: The pancreata of nicotinamide (NA)-cinnamic acid (CA) treated rats were studied using histopathological, immunofluorescence, molecular docking, and RT-PCR analyses, supported by serum glucose and insulin levels. RESULTS: The biochemical data revealed that the acute treatment of NA and CA in combination significantly increased serum insulin, thereby lowering blood glucose level in vivo. From histological findings, NA-CA pre-treatment displayed significant protection against STZ-apoptotic trends, improved insulin secretion, and recapitulated the STZ-induced morphology to normal control. The upregulated expressions of caspases, caused by STZ-treatments, were significantly downregulated with NA-CA in immunofluorescent detection and their translational levels, respectively. We found dense ERK½-insulin staining and p-ERK½ expression, which was further supported by strong ERK½ residues-ligands interactions based on in silico analysis. CONCLUSION: From the pre-clinical data, we thus conclude that NA-CA cocktail exerts dual insulin releasing and survival effects in pancreatic ß-cells by targeting ERK½ pathway.


Subject(s)
Cinnamates/administration & dosage , Diabetes Mellitus, Experimental/drug therapy , Insulin Secretion/drug effects , Insulin-Secreting Cells/cytology , Niacinamide/administration & dosage , Streptozocin/adverse effects , Animals , Apoptosis/drug effects , Blood Glucose/analysis , Cell Survival , Cinnamates/pharmacology , Diabetes Mellitus, Experimental/blood , Diabetes Mellitus, Experimental/chemically induced , Gene Expression Regulation/drug effects , Insulin-Secreting Cells/drug effects , Insulin-Secreting Cells/metabolism , MAP Kinase Signaling System/drug effects , Male , Molecular Docking Simulation , Niacinamide/pharmacology , Rats , Treatment Outcome
9.
Molecules ; 26(16)2021 Aug 10.
Article in English | MEDLINE | ID: mdl-34443429

ABSTRACT

A series of 16 new derivatives of harmine N9-Cinnamic acid were synthesized and fully characterized using NMR and MS. The in vitro antibacterial evaluation revealed that most of the synthesized harmine derivatives displayed better antibacterial activities against Gram-positive strains (S. aureus, S. albus and MRSA) than Gram-negative strains (E. coli and PA). In particular, compound 3c showed the strongest bactericidal activity with a minimum inhibitory concentration of 13.67 µg/mL. MTT assay showed that compound 3c displayed weaker cytotoxicity than harmine with IC50 of 340.30, 94.86 and 161.67 µmol/L against WI-38, MCF-7 and HepG2 cell lines, respectively. The pharmacokinetic study revealed that the distribution and elimination of 3c in vivo were rapid in rats with an oral bioavailability of 6.9%.


Subject(s)
Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/pharmacokinetics , Cinnamates/chemical synthesis , Cinnamates/pharmacokinetics , Animals , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/chemistry , Cell Death/drug effects , Cell Line, Tumor , Cinnamates/administration & dosage , Cinnamates/chemistry , Female , Humans , Injections, Intravenous , Male , Microbial Sensitivity Tests , Molecular Conformation , Rats, Sprague-Dawley , Time Factors
10.
Food Chem Toxicol ; 153: 112243, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33930481

ABSTRACT

Cyclamen aldehyde (CA; 3-(4-isopropylphenyl)-2-methylpropanal) is a widely used fragrance material. Repeated dose studies in rats revealed adverse effects on sperm maturation. Here we review all the mechanistic and in vivo evidence, to determine relevancy to human health. The effect on spermatogenesis appears to be linked to the metabolite p-isopropyl-benzoic acid (p-iPBA). Studies in rat, rabbit and human suspended hepatocytes indicated species differences with p-iPBA detected in rat hepatocytes only. In plated rat hepatocytes, p-iPBA is conjugated to Coenzyme A (CoA) and p-iPBA-CoA accumulates to stable levels over 22 h. In vitro accumulation of CoA conjugates is a metabolic hallmark correlated to male rat reproductive toxicity for related compounds. p-iPBA-CoA is formed in vivo in liver and testes of rats dosed with CA. In plated rabbit and human hepatocytes p-iPBA-CoA doesn't accumulate. Correlating to this lack of metabolite accumulation, no effects of CA on spermatogenesis were observed in a rabbit in vivo study. A species specific metabolic fate linked to CA toxicity in male rats is postulated which appears not relevant to the rabbit as non-responder species. Lack of accumulation of p-iPBA-CoA in human hepatocytes indicates that like rabbits, humans are unlikely to be vulnerable to p-iPBA hepatic and testicular toxicity.


Subject(s)
Cinnamates/toxicity , Infertility, Male/chemically induced , Animals , Cinnamates/administration & dosage , Cinnamates/chemistry , Cinnamates/metabolism , Male , Rats , Species Specificity , Spermatogenesis/drug effects
11.
Cochrane Database Syst Rev ; 4: CD003277, 2021 04 07.
Article in English | MEDLINE | ID: mdl-33825230

ABSTRACT

BACKGROUND: Lennox-Gastaut syndrome (LGS) is an age-specific epilepsy syndrome characterised by multiple seizure types, including drop seizures. LGS has a characteristic electroencephalogram, an onset before age eight years and an association with drug resistance. This is an updated version of the Cochrane Review published in 2013. OBJECTIVES: To assess the efficacy and tolerability of anti-seizure medications (ASMs) for LGS. SEARCH METHODS: We searched the Cochrane Register of Studies (CRS Web) and MEDLINE (Ovid, 1946 to 28 February 2020) on 2 March 2020. CRS Web includes randomised controlled trials (RCTs) or quasi-RCTs from the Cochrane Central Register of Controlled Trials (CENTRAL); the Specialised Registers of Cochrane Review Groups, including Cochrane Epilepsy; PubMed; Embase; ClinicalTrials.gov; and the World Health Organization's International Clinical Trials Registry Platform (ICTRP). We imposed no language restrictions. We contacted pharmaceutical companies and colleagues in the field to seek any unpublished or ongoing studies. SELECTION CRITERIA: We considered RCTs, including cross-over trials, of ASMs for LGS in children and adults. We included studies of ASMs used as either monotherapy or as an add-on (adjunctive) therapy. We excluded studies comparing different doses of the same ASM. DATA COLLECTION AND ANALYSIS: We used standard Cochrane methodological procedures, including independent, dual assessment for risk of bias and application of the GRADE approach to rate the evidence certainty for outcomes. MAIN RESULTS: We found no trials of ASM monotherapy. The review included 11 trials (1277 participants; approximately 11 weeks to 112 weeks follow-up after randomisation) using add-on ASMs for LGS in children, adolescents and adults. Two studies compared add-on cannabidiol (two doses) with add-on placebo in children and adolescents only. Neither study reported overall seizure cessation or reduction. We found high-certainty evidence that 72 more people per 1000 (confidence interval (CI) 4 more to 351 more) had adverse events (AE) leading to study discontinuation with add-on cannabidiol, compared to add-on placebo (two studies; 396 participants; risk ratio (RR) 4.90, 95% CI 1.21 to 19.87). One study compared add-on cinromide with add-on placebo in children and adolescents only. We found very low-certainty evidence that 35 more people per 1000 (CI 123 fewer to 434 more) had 50% or greater average reduction of overall seizures with add-on cinromide compared to add-on placebo (one study; 56 participants; RR 1.15, 95% CI 0.47 to 2.86). This study did not report participants with AE leading to study discontinuation. One study compared add-on clobazam (three doses) with add-on placebo. This study did not report overall seizure cessation or reduction. We found high-certainty evidence that 106 more people per 1000 (CI 0 more to 538 more) had AE leading to study discontinuation with add-on clobazam compared to add-on placebo (one study; 238 participants; RR 4.12, 95% CI 1.01 to 16.87). One study compared add-on felbamate with add-on placebo. No cases of seizure cessation occurred in either regimen during the treatment phase (one study; 73 participants; low-certainty evidence). There was low-certainty evidence that 53 more people per 1000 (CI 19 fewer to 716 more) with add-on felbamate were seizure-free during an EEG recording at the end of the treatment phase, compared to add-on placebo (RR 2.92, 95% CI 0.32 to 26.77). The study did not report overall seizure reduction. We found low-certainty evidence that one fewer person per 1000 (CI 26 fewer to 388 more) with add-on felbamate had AE leading to study discontinuation compared to add-on placebo (one study, 73 participants; RR 0.97, 95% CI 0.06 to 14.97). Two studies compared add-on lamotrigine with add-on placebo. Neither study reported overall seizure cessation. We found high-certainty evidence that 176 more people per 1000 (CI 30 more to 434 more) had ≥ 50% average seizure reduction with add-on lamotrigine compared to add-on placebo (one study; 167 participants; RR 2.12, 95% CI 1.19 to 3.76). We found low-certainty evidence that 40 fewer people per 1000 (CI 68 fewer to 64 more) had AE leading to study-discontinuation with add-on lamotrigine compared to add-on placebo (one study; 169 participants; RR 0.49, 95% CI 0.13 to 1.82). Two studies compared add-on rufinamide with add-on placebo. Neither study reported seizure cessation. We found high-certainty evidence that 202 more people per 1000 (CI 34 to 567 more) had ≥ 50% average seizure reduction (one study; 138 participants; RR 2.84, 95% CI 1.31 to 6.18). We found low-certainty evidence that 105 more people per 1000 (CI 17 fewer to 967 more) had AE leading to study discontinuation with add-on rufinamide compared to add-on placebo (one study; 59 participants; RR 4.14, 95% CI 0.49 to 34.86). One study compared add-on rufinamide with another add-on ASM. This study did not report overall seizure cessation or reduction. We found low-certainty evidence that three fewer people per 1000 (CI 75 fewer to 715 more) had AE leading to study discontinuation with add-on rufinamide compared to another add-on ASM (one study; 37 participants; RR 0.96, 95% CI 0.10 to 9.57). One study compared add-on topiramate with add-on placebo. This study did not report overall seizure cessation. We found low-certainty evidence for ≥ 75% average seizure reduction with add-on topiramate (one study; 98 participants; Peto odds ratio (Peto OR) 8.22, 99% CI 0.60 to 112.62) and little or no difference to AE leading to study discontinuation compared to add-on placebo; no participants experienced AE leading to study discontinuation (one study; 98 participants; low-certainty evidence). AUTHORS' CONCLUSIONS: RCTs of monotherapy and head-to-head comparison of add-on ASMs are currently lacking. However, we found high-certainty evidence for overall seizure reduction with add-on lamotrigine and rufinamide, with low-certainty evidence for AE leading to study discontinuation compared with add-on placebo or another add-on ASM. The evidence for other add-on ASMs for overall seizure cessation or reduction was low to very low with high- to low-certainty evidence for AE leading to study discontinuation. Future research should consider outcome reporting of overall seizure reduction (applying automated seizure detection devices), impact on development, cognition and behaviour; future research should also investigate age-specific efficacy of ASMs and target underlying aetiologies.


Subject(s)
Lennox Gastaut Syndrome/drug therapy , Adolescent , Adult , Age of Onset , Anticonvulsants/administration & dosage , Anticonvulsants/adverse effects , Cannabidiol/administration & dosage , Cannabidiol/adverse effects , Child , Child, Preschool , Cinnamates/administration & dosage , Cinnamates/adverse effects , Clobazam/administration & dosage , Electroencephalography , Felbamate/administration & dosage , Humans , Lamotrigine/administration & dosage , Middle Aged , Placebos/therapeutic use , Randomized Controlled Trials as Topic , Topiramate/administration & dosage , Triazoles/administration & dosage , Wakefulness/physiology , Young Adult
12.
Food Chem Toxicol ; 151: 112156, 2021 May.
Article in English | MEDLINE | ID: mdl-33781805

ABSTRACT

Acrylamide (AA) is a common endogenous contaminant in food, with a complex toxicity mechanism. The study on liver damage to experimental animals caused by AA has aroused a great attention. Rosmarinic acid (RosA) as a natural antioxidant shows excellent protective effects against AA-induced hepatotoxicity, but the potential mechanism is still unclear. In the current study, the protective effect of RosA on BRL-3A cell damage induced by AA was explored. RosA increased the activity of SOD and GSH, reduced the content of ROS and MDA, and significantly reduced the oxidative stress (OS) damage of BRL-3A cells induced by AA. RosA pretreatment inhibited the MAPK signaling pathway activated by AA, and down-regulated the phosphorylation of JNK, ERK and p38. RosA pretreatment also reduced the production of calcium ions caused by AA. In addition, the key proteins p-IRE1α, XBP-1s, TRAF2 of the IRE1 pathway, and the expression of endoplasmic reticulum stress (ERS) characteristic proteins GRP78, p-ASK1, Caspase-12 and CHOP were also down-regulated by RosA. NAC blocked the activation of the MAPK signaling pathway and inhibited the ERS pathway. RosA reduced the rate of apoptosis and down-regulated the expression of Bax/Bcl-2 and Caspase-3, thereby inhibiting AA-induced apoptosis. In conclusion, RosA reduced the OS and ERS induced by AA in BRL-3A cells, thereby inhibiting cell apoptosis, and it could be used as a potential protective agent against AA toxicity.


Subject(s)
Acrylamide/toxicity , Apoptosis/drug effects , Cinnamates/pharmacology , Depsides/pharmacology , Acetylcysteine/pharmacology , Animals , Antioxidants/pharmacology , Cell Line , Cinnamates/administration & dosage , Depsides/administration & dosage , Dose-Response Relationship, Drug , Endoplasmic Reticulum Stress/drug effects , MAP Kinase Signaling System/drug effects , Oxidative Stress/drug effects , Rats , Staurosporine/pharmacology , Rosmarinic Acid
13.
AAPS PharmSciTech ; 22(3): 103, 2021 Mar 12.
Article in English | MEDLINE | ID: mdl-33712964

ABSTRACT

The topical use of rosmarinic acid (RA) in skin inflammatory pathologies is restricted due to its poor water solubility, poor permeability, and chemical instability. In this study, RA-loaded transethosomes-in-Carbopol® formulations have been developed to evaluate its anti-inflammatory activity on imiquimod-induced psoriasis-like skin inflammation in mice. In vitro release profiles demonstrated sustained behavior due to the retentive action of gel and the entrapment of RA into the vesicles. However, the low viscosity of the combined formulation increased the drug release rate. Animal evaluation of anti-inflammatory activity demonstrated that transethosomes-in-gel containing dexamethasone (Dex-TE-Gel), as positive control, showed effect in all the pro-inflammatory parameters evaluated, evidencing that these drug-loaded nanocarriers have been effectively reached the site of action. In addition, transethosomes-in-gel containing RA (RA-TE-Gel) formulations produced a great reduction in the punch edema (P < 0.001) and in TNF-α and IL-6 (P < 0.05). However, non-significant differences were obtained for IL-1ß, IL17, and MPO. Despite the protecting effect of Carbopol® and transethosomes on oxidation index and antioxidant activity of RA over the 7 days of treatment, however, a degradation process of this antioxidant to caffeic acid may be the cause of these in vivo results. We have also checked that the pH existing into the intercellular space of damaged cells (pH 6.8) may be affecting. Therefore, our results suggest that RA-TE-Gel could act as an effective RA formulation for skin delivery; further studies will help to understand the loss of activity at the cellular level.


Subject(s)
Cinnamates/administration & dosage , Cinnamates/therapeutic use , Depsides/administration & dosage , Depsides/therapeutic use , Psoriasis/drug therapy , Administration, Cutaneous , Animals , Dexamethasone/administration & dosage , Dexamethasone/therapeutic use , Drug Carriers , Drug Compounding , Drug Delivery Systems , Drug Liberation , Female , Gels , Mice , Mice, Inbred BALB C , Viscosity , Rosmarinic Acid
14.
J Pharmacol Exp Ther ; 377(1): 29-38, 2021 04.
Article in English | MEDLINE | ID: mdl-33431611

ABSTRACT

Opioid use disorder affects over 2 million Americans with an increasing number of deaths due to overdose from the synthetic opioid fentanyl and its analogs. The Food and Drug Administration-approved opioid receptor antagonist naloxone (e.g., Narcan) is used currently to treat overdose; however, a short duration of action limits its clinical utility. Methocinnamox (MCAM) is a long-lasting opioid receptor antagonist that may reverse and prevent the ventilatory-depressant effects of fentanyl. This study compared the ability of naloxone (0.0001-10 mg/kg) and MCAM (0.0001-10 mg/kg) to reverse and prevent ventilatory depression by fentanyl and compared the duration of action of MCAM intravenously and subcutaneously in two procedures: ventilation and warm-water tail withdrawal. In male Sprague-Dawley rats (N = 8), fentanyl (0.0032-0.178 mg/kg, i.v.) decreased minute volume in a dose- and time-dependent manner with a dose of 0.178 mg/kg decreasing VE to less than 40% of control. MCAM and naloxone reversed the ventilatory-depressant effects of 0.178 mg/kg fentanyl in a dose-related manner. The day after antagonist administration, MCAM but not naloxone attenuated the ventilatory-depressant effects of fentanyl. The duration of action of MCAM lasted up to 3 days and at least 2 weeks after intravenous and subcutaneous administration, respectively. MCAM attenuated the antinociceptive effects of fentanyl, with antagonism lasting up to 5 days and more than 2 weeks after intravenous and subcutaneous administration, respectively. Reversal and prolonged antagonism by MCAM might provide an effective treatment option for the opioid crisis, particularly toxicity from fentanyl and related highly potent analogs. SIGNIFICANCE STATEMENT: This study demonstrates that like naloxone, methocinnamox (MCAM) reverses the ventilatory-depressant effects of fentanyl in a time- and dose-related manner. However, unlike naloxone, the duration of action of MCAM was greater than 2 weeks when administered subcutaneously and up to 5 days when administered intravenously. These data suggest that MCAM might be particularly useful for rescuing individuals from opioid overdose, including fentanyl overdose, as well as protecting against the reemergence of ventilatory depression (renarconization).


Subject(s)
Cinnamates/therapeutic use , Morphine Derivatives/therapeutic use , Narcotic Antagonists/therapeutic use , Respiratory Insufficiency/drug therapy , Animals , Cinnamates/administration & dosage , Fentanyl/toxicity , Injections, Intravenous , Male , Morphine Derivatives/administration & dosage , Narcotic Antagonists/administration & dosage , Narcotics/toxicity , Rats , Rats, Sprague-Dawley , Respiratory Insufficiency/etiology , Respiratory Insufficiency/prevention & control
15.
Dig Dis ; 39(3): 234-242, 2021.
Article in English | MEDLINE | ID: mdl-32759604

ABSTRACT

BACKGROUND: To make an accurate estimate of the response to thrombopoietin (TPO) receptor agonists for thrombocytopenia associated with chronic liver disease, we evaluated the influence of antiplatelet autoantibodies on the response to lusutrombopag in thrombocytopenic patients with liver disease. METHODS: A prospective study was conducted at 2 hospitals. Thrombocytopenic patients with liver disease received oral lusutrombopag 3.0 mg once daily for up to 7 days. We analyzed changes in platelet counts from baseline to the maximum platelet count on days 9-14. The definition of clinical response was a platelet count of ≥5 × 104/µL with an increased platelet count of ≥2 × 104/µL from baseline. We assessed the correlation between the response to treatment drug and antiplatelet autoantibodies measured by anti-GPIIb/IIIa antibody-producing B cells. RESULTS: Thirty patients received the trial drug. There were 25 responders and 5 nonresponders. The median change in platelet counts was 3.9 × 104/µL (95% CI 2.8-4.6, p < 0.0001). The correlation between change in platelet counts and the frequency of the anti-glycoprotein IIb/IIIa antibody-producing B cells was moderate (r = 0.414, 95% CI 0.064-0.674, p = 0.023). In multivariate analysis of factors affecting the change in platelet counts, the anti-GPIIb/IIIa antibody-producing B cells were identified as an independent factor (regression coefficient [B] = 0.089; CI 0.021-0.157, p = 0.013). CONCLUSION: Anti-GPIIb/IIIa antibody-producing B cells may be a predictor for TPO receptor agonists in patients with chronic liver disease.


Subject(s)
Autoantibodies/biosynthesis , B-Lymphocytes/immunology , Cinnamates/therapeutic use , Liver Diseases/complications , Platelet Glycoprotein GPIIb-IIIa Complex/immunology , Thiazoles/therapeutic use , Thrombocytopenia/drug therapy , Thrombocytopenia/immunology , Aged , Aged, 80 and over , Autoantibodies/immunology , Blood Platelets/pathology , Cinnamates/administration & dosage , Female , Humans , Liver Diseases/blood , Male , Middle Aged , Multivariate Analysis , Organ Size , Platelet Count , Prospective Studies , Spleen/pathology , Thiazoles/administration & dosage , Thrombocytopenia/blood , Thrombocytopenia/complications
16.
Neurosci Lett ; 741: 135471, 2021 01 10.
Article in English | MEDLINE | ID: mdl-33207243

ABSTRACT

AIM: To explore the inhibitory effect of FSC231, a PDZ domain inhibitor of protein interacting with C kinase 1 (PICK1), on paclitaxel induced neuralgia and its possible pathways. METHODS: Forty C57BL/6 mice were randomly divided into four groups (n = 10): the control group (CON), the FSC231 group (FSC), the paclitaxel group (PTL) and the FSC231 add paclitaxel group (F + P). Behavioral indictors of mice including the mechanical pain threshold, foot contraction reflex and inhibition rate were evaluated. ELISA, RT-qPCR and Western Blot were performed to determine the expression levels of IL-1ß, IL-10, substance P and PICK1. RESULTS: Compared with the control group, the foot contraction reflex time, mechanical pain threshold and IL-10 levels were significantly reduced in the PTL group, and IL-1ß, substance P and PICK1 levels were significantly increased (P < 0.05). Compared with the PTL group, the foot contraction reflex time, mechanical pain threshold and IL-10 level were significantly increased, while IL-1ß, SP and PICK1 levels were significantly decreased in the F + P group (P < 0.05). CONCLUSION: FSC231 could alleviate paclitaxel-induced neuralgia by inhibiting PICK1 and affecting the secretion of inflammatory factors and substance P. The results of this study provide experimental basis for FSC231 to treat neuralgia caused by chemotherapy.


Subject(s)
Analgesics/administration & dosage , Carbamates/administration & dosage , Cell Cycle Proteins/metabolism , Cinnamates/administration & dosage , Neuralgia/chemically induced , Neuralgia/metabolism , Paclitaxel/administration & dosage , Animals , Ganglia, Spinal/drug effects , Ganglia, Spinal/metabolism , Inflammation Mediators/metabolism , Male , Mice, Inbred C57BL , Neuralgia/prevention & control
17.
Neurochem Int ; 141: 104875, 2020 12.
Article in English | MEDLINE | ID: mdl-33039443

ABSTRACT

Rosmarinic acid (RA) lipid-nanotechnology-based delivery systems associate with mucoadhesive biopolymers for nasal administration has arisen as a new promising neuroprotective therapy for neurodegenerative disorders (ND). We have previously demonstrated the glioprotective effect of chitosan-coated RA nanoemulsions (RA CNE) against lipopolysaccharide (LPS)-induced damage in rat astrocyte primary culture. Here, we further investigate the protective effect of RA CNE nasal administration on LPS-induced memory deficit, neuroinflammation, and oxidative stress in Wistar rats, since these in vivo studies were crucial to understand the impact of developed delivery systems in the RA neuroprotective effects. The animals were treated through nasal route with RA CNE (2 mg·mL-1), free RA (2 mg·mL-1), blank CNE, and saline (control and LPS groups) administrations (n.a., 100 µL per nostril) twice a day (7 a.m./7 p.m.) for six days. On the sixth day, the animals received the last treatments and LPS was intraperitoneally (i.p.) administrated (250 µg·kg-1). Overall results, proved for the first time that the RA CNE nasal administration elicits a neuroprotective effect against LPS-induced damage, which was associated with increased 1.6 times recognition index, decreased 5.0 and 1.9 times in GFAP+ cell count and CD11b expression, respectively, as well as increased 1.7 times SH in cerebellum and decreased 3.9 times TBARS levels in cerebral cortex in comparison with LPS group. RA CNE treatment also facilitates RA bioavailability in the brain, confirmed by RA quantification. Free RA also demonstrates a protective effect in some studied parameters, although no RA was quantified in the brain.


Subject(s)
Chitosan/chemistry , Cinnamates/administration & dosage , Cinnamates/therapeutic use , Depsides/administration & dosage , Depsides/therapeutic use , Encephalitis/prevention & control , Memory Disorders/prevention & control , Neuroprotective Agents/administration & dosage , Neuroprotective Agents/therapeutic use , Oxidative Stress/drug effects , Administration, Intranasal , Animals , Antioxidants/pharmacology , Biological Availability , Cinnamates/chemistry , Depsides/chemistry , Drug Compounding , Emulsions , Encephalitis/chemically induced , Lipopolysaccharides , Male , Memory Disorders/chemically induced , Neuroprotective Agents/chemistry , Psychomotor Performance/drug effects , Rats , Rats, Wistar , Rosmarinic Acid
18.
Biol Pharm Bull ; 43(11): 1749-1759, 2020 Nov 01.
Article in English | MEDLINE | ID: mdl-32893253

ABSTRACT

Rosmarinic acid (RA) is extensively utilized in herbal medicine in China. The AMP-activated protein kinase (AMPK) signaling can be activated by RA and inhibited by the synthetic, reversible AMP-competitive inhibitor, Compound C (CC). The objective of this study was to investigate the role of AMPK signaling involving the protective effects of RA on concanavalin A (Con A)-induced autoimmune hepatitis (AIH) in mice. BALB/c mice were treated with RA, with or without CC, followed by the pretreatment with Con A. Analysis of serum aminotransferases and cytokines were conducted and liver tissue histology was performed to evaluate hepatic injury. Cytokine levels in serum and hepatic tissue were respectively measured by enzyme-linked immunoassay (ELISA) and used quantitative (q)PCR. Levels of phosphorylated acetyl CoA carboxylase in the liver, representing AMPK activation, were detected by Western blotting. Compared with the Con A group, serum levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in RA group (100 and 150 mg/kg/d) were significantly reduced. RA also reduced hepatocyte swelling, cell death, and infiltration of leukocytes in the liver of Con A-treated mice. Serum levels of cytokines, such as interferon-γ (IFN-γ), interleukin-2 (IL-2) and interleukin-1ß (IL-1ß), were reduced by RA pretreatment, while the levels of serum interleukin-10 (IL-10), an anti-inflammatory cytokine, was elevated. These protective effects were reversed by treatment with CC. RA treatment reduced the hepatic damage via the activation of AMPK in the mice of Con A-induced. So RA acts as a potential part in the therapy of autoimmune hepatitis.


Subject(s)
Cinnamates/administration & dosage , Concanavalin A/immunology , Depsides/administration & dosage , Hepatitis, Autoimmune/prevention & control , Protective Agents/administration & dosage , AMP-Activated Protein Kinases/antagonists & inhibitors , AMP-Activated Protein Kinases/metabolism , Alanine Transaminase/blood , Animals , Aspartate Aminotransferases/blood , Disease Models, Animal , Drug Evaluation, Preclinical , Hepatitis, Autoimmune/blood , Hepatitis, Autoimmune/diagnosis , Hepatitis, Autoimmune/immunology , Humans , Liver/drug effects , Liver/immunology , Liver/pathology , Male , Mice , Mice, Inbred BALB C , Pyrazoles/administration & dosage , Pyrimidines/administration & dosage , Signal Transduction/drug effects , Rosmarinic Acid
19.
Naunyn Schmiedebergs Arch Pharmacol ; 393(12): 2265-2278, 2020 12.
Article in English | MEDLINE | ID: mdl-32642876

ABSTRACT

Rosmarinic acid (RA) is a secondary metabolite present in several plant species that has already demonstrated antioxidant, antiallergic, anticancer, antimicrobial, neuroprotective, and hepatoprotective effects experimentally. Due to the promising pharmacological properties found previously, this study aimed to assess the oral acute toxicity and the gastroprotective effect of RA using animal models. Acute toxicity was assessed according to OECD guide 423. Ethanol, stress, NSAIDs, and pylorus ligature-induced gastric ulcer models were used to investigate antiulcer properties. The related mechanisms of action were also evaluated from ethanol-induced gastric lesions protocol. RA (300 and 2000 mg/kg) showed no changes in behavioral, water and food intake, body and organs weight parameters with LD50 set around 2500 mg/kg. RA presented gastroprotective activity in all assessed doses (25, 50, 100, and 200 mg/kg) using different animal models. Besides, it was observed that this effect is not related to the modulation of gastric juice parameters (pH, volume, and [H+]), the participation of nitric oxide, mucus, and prostaglandins. However, increased sulfhydryl groups, GSH and IL-10 levels as well as reduced of proinflammatory cytokine (TNF-α and IL-1ß) levels were found for RA-treated groups. RA presents low acute toxicity and gastroprotective activity, preventing ulcer formation via cytoprotective, antioxidant, and anti-inflammatory mechanisms. Graphical abstract.


Subject(s)
Anti-Ulcer Agents/administration & dosage , Antioxidants/administration & dosage , Cinnamates/administration & dosage , Depsides/administration & dosage , Immunologic Factors/administration & dosage , Stomach Ulcer/prevention & control , Sulfhydryl Compounds/administration & dosage , Administration, Oral , Animals , Anti-Inflammatory Agents, Non-Steroidal/administration & dosage , Dose-Response Relationship, Drug , Female , Gastric Mucosa/drug effects , Gastric Mucosa/immunology , Gastric Mucosa/metabolism , Male , Mice , Rats , Rats, Wistar , Stomach Ulcer/immunology , Stomach Ulcer/metabolism , Rosmarinic Acid
20.
Eur J Clin Pharmacol ; 76(12): 1659-1665, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32666123

ABSTRACT

PURPOSE: Drug-drug interaction (DDI) potentials of lusutrombopag, a thrombopoietin receptor agonist, on the activity of cytochrome P450 (CYP) 3A and of cyclosporine, which inhibits P-glycoprotein and breast cancer resistance protein, on lusutrombopag pharmacokinetics were assessed via clinical studies and physiologically based pharmacokinetic (PBPK) modeling. METHODS: The effect of lusutrombopag on midazolam (a CYP3A probe substrate) pharmacokinetics was assessed in 15 healthy subjects receiving a single midazolam 5-mg dose with or without coadministration of lusutrombopag 0.75 mg for 6 days (first dose: 1.5-mg dose). The effect of cyclosporine on lusutrombopag pharmacokinetics was assessed in 16 healthy subjects receiving a single lusutrombopag 3-mg dose with or without a single cyclosporine 400- to 600-mg dose. PBPK modeling was employed to extrapolate the effect of lusutrombopag at the clinical dose (3 mg once daily) on midazolam pharmacokinetics. RESULTS: In the clinical study, mean ratios (90% confidence intervals [CIs]) of with/without lusutrombopag for maximum plasma concentration (Cmax) and area under the plasma concentration-time curve (AUC) of midazolam were 1.01 (0.908-1.13) and 1.04 (0.967-1.11), respectively, indicating no effect of lusutrombopag on midazolam pharmacokinetics. PBPK modeling suggested no effect of lusutrombopag at the clinical dose on midazolam pharmacokinetics. Mean ratios (90% CIs) of with/without cyclosporine for lusutrombopag Cmax and AUC were 1.18 (1.11-1.24) and 1.19 (1.13-1.25), respectively, indicating a slight increase in lusutrombopag exposure. CONCLUSIONS: In consideration with in vitro data, the in vivo and in silico results suggested no clinically significant DDI potential of lusutrombopag with other medical products via metabolic enzymes and transporters.


Subject(s)
Cinnamates/pharmacokinetics , Cyclosporine/pharmacokinetics , Midazolam/pharmacokinetics , Thiazoles/pharmacokinetics , ATP Binding Cassette Transporter, Subfamily B/antagonists & inhibitors , ATP Binding Cassette Transporter, Subfamily B/metabolism , Administration, Oral , Adult , Cinnamates/administration & dosage , Cross-Over Studies , Cyclosporine/administration & dosage , Cytochrome P-450 CYP3A/metabolism , Drug Interactions , Female , Healthy Volunteers , Humans , Male , Midazolam/administration & dosage , Middle Aged , Models, Biological , Receptors, Thrombopoietin/agonists , Receptors, Thrombopoietin/metabolism , Thiazoles/administration & dosage , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...