Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.072
Filter
1.
Front Endocrinol (Lausanne) ; 15: 1264410, 2024.
Article in English | MEDLINE | ID: mdl-38737549

ABSTRACT

Low testosterone levels in men have been linked to decreased physical and mental function, as well as a reduced quality of life. Previous prospective observational studies have suggested an association between testosterone and sleep traits, but the causality of this relationship remains unclear. We aimed to explore the potential causal link between genetically determined sleep traits and testosterone levels in men using Mendelian randomization (MR) analysis from the UK Biobank dataset. Our exposures were genetic variants associated with sleep traits (chronotype and sleep duration), whereas our outcomes were traits of sex steroid hormones (total testosterone, TT; bioavailable testosterone, BAT; and sex hormone-binding globulin, SHBG). We employed inverse variance weighted (IVW) and weighted median (WM) methods to assess the causal associations. The IVW method offers a robust estimate of causality, whereas the WM method provides reliable results even when some genetic variants are invalid instruments. Our main analysis involving sex steroid hormones and chronotype identified 155 chronotype-related variants. The primary findings from the analysis, which used chronotype as the exposure and sex steroid hormones as the outcomes, showed that a genetically predicted chronotype score was significantly associated with an increased levels of TT (association coefficient ß, 0.08; 95% confidence interval [CI], 0.02-0.14; P = 0.008) and BAT (ß, 0.08; 95% CI, 0.02-0.14; P = 0.007), whereas there was no significant association with SHBG (ß, 0.01; 95% CI, -0.02-0.03; P = 0.64). Meanwhile, MR analysis of sex steroid hormones and sleep duration was performed, and 69 variants associated with sleep duration were extracted. There were no significant association between sleep duration and sex steroid hormones (TT, P = 0.91; BAT, P = 0.82; and SHBG, P = 0.95). Our data support a causal association between chronotype and circulating testosterone levels in men. These findings underscore a potential causal relationship between chronotype and testosterone levels in men, suggesting that lifestyle adjustments are crucial for men's health. Recognizing factors that influence testosterone is essential. One limitation of this study is the use of one-sample MR, which can introduce potential bias due to non-independence of genetic associations for exposure and outcome. In conclusion, our findings indicate that a morning preference is correlated with circulating testosterone levels, emphasizing the potential impact of lifestyle habits on testosterone levels in men.


Subject(s)
Mendelian Randomization Analysis , Sleep , Testosterone , Humans , Male , Testosterone/blood , Sleep/genetics , Sleep/physiology , Sex Hormone-Binding Globulin/genetics , Sex Hormone-Binding Globulin/metabolism , Middle Aged , Circadian Rhythm/genetics , Polymorphism, Single Nucleotide , Aged , Chronotype
2.
Plant Mol Biol ; 114(3): 59, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750303

ABSTRACT

The plant-specific homeodomain-leucine zipper I subfamily is involved in the regulation of various biological processes, particularly growth, development and stress response. In the present study, we characterized four BnaHB6 homologues from Brassica napus. All BnaHB6 proteins have transcriptional activation activity. Structural and functional data indicate the complex role of BnaHB6 genes in regulating biological processes, with some functions conserved and others diverged. Transcriptional analyzes revealed that they are induced in a similar manner in different tissues but show different expression patterns in response to stress and circadian rhythm. Only the BnaA09HB6 and BnaC08HB6 genes are expressed under dehydration and salt stress, and in darkness. The partial transcriptional overlap of BnaHB6s with the evolutionarily related genes BnaHB5 and BnaHB16 was also observed. Transgenic Arabidopsis thaliana plants expressing a single proBnaHB6::GUS partially confirmed the expression results. Bioinformatic analysis allowed the identification of TF-binding sites in the BnaHB6 promoters that may control their expression under stress and circadian rhythm. ChIP-qPCR analysis revealed that BnaA09HB6 and BnaC08HB6 bind directly to the promoters of the target genes BnaABF4 and BnaDREB2A. Comparison of their expression patterns in the WT plants and the bnac08hb6 mutant showed that BnaC08HB6 positively regulates the expression of the BnaABF4 and BnaDREB2A genes under dehydration and salt stress. We conclude that four BnaHB6 homologues have distinct functions in response to stress despite high sequence similarity, possibly indicating different binding preferences with BnaABF4 and BnaDREB2A. We hypothesize that BnaC08HB6 and BnaA09HB6 function in a complex regulatory network under stress.


Subject(s)
Brassica napus , Dehydration , Gene Expression Regulation, Plant , Leucine Zippers , Plant Proteins , Salt Stress , Transcription Factors , Brassica napus/genetics , Brassica napus/metabolism , Brassica napus/physiology , Brassica napus/drug effects , Plant Proteins/genetics , Plant Proteins/metabolism , Salt Stress/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Leucine Zippers/genetics , Plants, Genetically Modified , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Arabidopsis/genetics , Arabidopsis/physiology , Arabidopsis/metabolism , Promoter Regions, Genetic/genetics , Phylogeny , Circadian Rhythm/genetics , Stress, Physiological/genetics
3.
Biomolecules ; 14(5)2024 May 06.
Article in English | MEDLINE | ID: mdl-38785965

ABSTRACT

Circadian rhythms integrate a finely tuned network of biological processes recurring every 24 h, intricately coordinating the machinery of all cells. This self-regulating system plays a pivotal role in synchronizing physiological and behavioral responses, ensuring an adaptive metabolism within the environmental milieu, including dietary and physical activity habits. The systemic integration of circadian homeostasis involves a balance of biological rhythms, each synchronically linked to the central circadian clock. Central to this orchestration is the temporal dimension of nutrient and food intake, an aspect closely interwoven with the neuroendocrine circuit, gut physiology, and resident microbiota. Indeed, the timing of meals exerts a profound influence on cell cycle regulation through genomic and epigenetic processes, particularly those involving gene expression, DNA methylation and repair, and non-coding RNA activity. These (epi)genomic interactions involve a dynamic interface between circadian rhythms, nutrition, and the gut microbiota, shaping the metabolic and immune landscape of the host. This research endeavors to illustrate the intricate (epi)genetic interplay that modulates the synchronization of circadian rhythms, nutritional signaling, and the gut microbiota, unravelling the repercussions on metabolic health while suggesting the potential benefits of feed circadian realignment as a non-invasive therapeutic strategy for systemic metabolic modulation via gut microbiota. This exploration delves into the interconnections that underscore the significance of temporal eating patterns, offering insights regarding circadian rhythms, gut microbiota, and chrono-nutrition interactions with (epi)genomic phenomena, thereby influencing diverse aspects of metabolic, well-being, and quality of life outcomes.


Subject(s)
Circadian Rhythm , Epigenomics , Gastrointestinal Microbiome , Humans , Circadian Rhythm/genetics , Circadian Rhythm/physiology , Animals , Epigenesis, Genetic , Nutritional Status , Circadian Clocks/genetics
4.
Genome Biol ; 25(1): 128, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773499

ABSTRACT

BACKGROUND: Cellular iron homeostasis is regulated by iron regulatory proteins (IRP1 and IRP2) that sense iron levels (and other metabolic cues) and modulate mRNA translation or stability via interaction with iron regulatory elements (IREs). IRP2 is viewed as the primary regulator in the liver, yet our previous datasets showing diurnal rhythms for certain IRE-containing mRNAs suggest a nuanced temporal control mechanism. The purpose of this study is to gain insights into the daily regulatory dynamics across IRE-bearing mRNAs, specific IRP involvement, and underlying systemic and cellular rhythmicity cues in mouse liver. RESULTS: We uncover high-amplitude diurnal oscillations in the regulation of key IRE-containing transcripts in the liver, compatible with maximal IRP activity at the onset of the dark phase. Although IRP2 protein levels also exhibit some diurnal variations and peak at the light-dark transition, ribosome profiling in IRP2-deficient mice reveals that maximal repression of target mRNAs at this timepoint still occurs. We further find that diurnal regulation of IRE-containing mRNAs can continue in the absence of a functional circadian clock as long as feeding is rhythmic. CONCLUSIONS: Our findings suggest temporally controlled redundancy in IRP activities, with IRP2 mediating regulation of IRE-containing transcripts in the light phase and redundancy, conceivably with IRP1, at dark onset. Moreover, we highlight the significance of feeding-associated signals in driving rhythmicity. Our work highlights the dynamic nature and regulatory complexity in a metabolic pathway that had previously been considered well-understood.


Subject(s)
Circadian Rhythm , Iron Regulatory Protein 1 , Iron Regulatory Protein 2 , Iron , Liver , RNA, Messenger , Animals , Iron Regulatory Protein 1/metabolism , Iron Regulatory Protein 1/genetics , Iron Regulatory Protein 2/metabolism , Iron Regulatory Protein 2/genetics , Circadian Rhythm/genetics , RNA, Messenger/metabolism , RNA, Messenger/genetics , Mice , Liver/metabolism , Iron/metabolism , Gene Expression Regulation , Response Elements , Mice, Inbred C57BL , Male , Feeding Behavior
5.
Proc Natl Acad Sci U S A ; 121(23): e2316858121, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38805270

ABSTRACT

In mammals, CLOCK and BMAL1 proteins form a heterodimer that binds to E-box sequences and activates transcription of target genes, including Period (Per). Translated PER proteins then bind to the CLOCK-BMAL1 complex to inhibit its transcriptional activity. However, the molecular mechanism and the impact of this PER-dependent inhibition on the circadian clock oscillation remain elusive. We previously identified Ser38 and Ser42 in a DNA-binding domain of CLOCK as phosphorylation sites at the PER-dependent inhibition phase. In this study, knockout rescue experiments showed that nonphosphorylatable (Ala) mutations at these sites shortened circadian period, whereas their constitutive-phospho-mimetic (Asp) mutations completely abolished the circadian rhythms. Similarly, we found that nonphosphorylatable (Ala) and constitutive-phospho-mimetic (Glu) mutations at Ser78 in a DNA-binding domain of BMAL1 also shortened the circadian period and abolished the rhythms, respectively. The mathematical modeling predicted that these constitutive-phospho-mimetic mutations weaken the DNA binding of the CLOCK-BMAL1 complex and that the nonphosphorylatable mutations inhibit the PER-dependent displacement (reduction of DNA-binding ability) of the CLOCK-BMAL1 complex from DNA. Biochemical experiments supported the importance of these phosphorylation sites for displacement of the complex in the PER2-dependent inhibition. Our results provide direct evidence that phosphorylation of CLOCK-Ser38/Ser42 and BMAL1-Ser78 plays a crucial role in the PER-dependent inhibition and the determination of the circadian period.


Subject(s)
ARNTL Transcription Factors , CLOCK Proteins , Circadian Clocks , Period Circadian Proteins , ARNTL Transcription Factors/metabolism , ARNTL Transcription Factors/genetics , ARNTL Transcription Factors/chemistry , Phosphorylation , CLOCK Proteins/metabolism , CLOCK Proteins/genetics , Animals , Circadian Clocks/genetics , Period Circadian Proteins/metabolism , Period Circadian Proteins/genetics , Mice , Humans , DNA/metabolism , Circadian Rhythm/physiology , Circadian Rhythm/genetics , Mutation , Protein Domains , Protein Binding
6.
JCI Insight ; 9(9)2024 May 08.
Article in English | MEDLINE | ID: mdl-38716727

ABSTRACT

Pancreatic ductal adenocarcinoma (PDA) is a lethal cancer characterized by a poor outcome and an increasing incidence. A significant majority (>80%) of newly diagnosed cases are deemed unresectable, leaving chemotherapy as the sole viable option, though with only moderate success. This necessitates the identification of improved therapeutic options for PDA. We hypothesized that there are temporal variations in cancer-relevant processes within PDA tumors, offering insights into the optimal timing of drug administration - a concept termed chronotherapy. In this study, we explored the presence of the circadian transcriptome in PDA using patient-derived organoids and validated these findings by comparing PDA data from The Cancer Genome Atlas with noncancerous healthy pancreas data from GTEx. Several PDA-associated pathways (cell cycle, stress response, Rho GTPase signaling) and cancer driver hub genes (EGFR and JUN) exhibited a cancer-specific rhythmic pattern intricately linked to the circadian clock. Through the integration of multiple functional measurements for rhythmic cancer driver genes, we identified top chronotherapy targets and validated key findings in molecularly divergent pancreatic cancer cell lines. Testing the chemotherapeutic efficacy of clinically relevant drugs further revealed temporal variations that correlated with drug-target cycling. Collectively, our study unravels the PDA circadian transcriptome and highlights a potential approach for optimizing chrono-chemotherapeutic efficacy.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Transcriptome , Humans , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/pathology , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/pathology , Cell Line, Tumor , Gene Expression Regulation, Neoplastic/drug effects , Circadian Rhythm/genetics , Organoids/drug effects , Circadian Clocks/genetics , Circadian Clocks/drug effects , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacology , Adenocarcinoma/genetics , Adenocarcinoma/drug therapy , Adenocarcinoma/pathology , Chronotherapy/methods
7.
Nat Commun ; 15(1): 3840, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38714698

ABSTRACT

As the circadian clock regulates fundamental biological processes, disrupted clocks are often observed in patients and diseased tissues. Determining the circadian time of the patient or the tissue of focus is essential in circadian medicine and research. Here we present tauFisher, a computational pipeline that accurately predicts circadian time from a single transcriptomic sample by finding correlations between rhythmic genes within the sample. We demonstrate tauFisher's performance in adding timestamps to both bulk and single-cell transcriptomic samples collected from multiple tissue types and experimental settings. Application of tauFisher at a cell-type level in a single-cell RNAseq dataset collected from mouse dermal skin implies that greater circadian phase heterogeneity may explain the dampened rhythm of collective core clock gene expression in dermal immune cells compared to dermal fibroblasts. Given its robustness and generalizability across assay platforms, experimental setups, and tissue types, as well as its potential application in single-cell RNAseq data analysis, tauFisher is a promising tool that facilitates circadian medicine and research.


Subject(s)
Circadian Clocks , Circadian Rhythm , Single-Cell Analysis , Transcriptome , Single-Cell Analysis/methods , Animals , Mice , Circadian Rhythm/genetics , Circadian Clocks/genetics , Humans , Gene Expression Profiling/methods , Computational Biology/methods , Skin/metabolism , Software , Fibroblasts/metabolism , Sequence Analysis, RNA/methods
8.
Chronobiol Int ; 41(5): 757-766, 2024 May.
Article in English | MEDLINE | ID: mdl-38695651

ABSTRACT

Delayed sleep phase disorder and advanced sleep phase disorder cause disruption of the circadian clock and present with extreme morning/evening chronotype with unclear role of the genetic etiology, especially for delayed sleep phase disorder. To assess if genotyping can aid in clinical diagnosis, we examined the presence of genetic variants in circadian clock genes previously linked to both sleep disorders in Slovenian patient cohort. Based on Morning-evening questionnaire, we found 15 patients with extreme chronotypes, 13 evening and 2 morning, and 28 controls. Sanger sequencing was used to determine the presence of carefully selected candidate SNPs in regions of the CSNK1D, PER2/3 and CRY1 genes. In a patient with an extreme morning chronotype and a family history of circadian sleep disorder we identified two heterozygous missense variants in PER3 gene, c.1243C>G (NM_001377275.1 (p.Pro415Ala)) and c.1250A>G (NM_001377275.1 (p.His417Arg)). The variants were significantly linked to Advanced sleep phase disorder and were also found in proband's father with extreme morningness. Additionally, a rare SNP was found in PER2 gene in a patient with clinical picture of Delayed sleep phase disorder. The novel variant in PER2 (NM_022817.3):c.1901-218 G>T was found in proband's parent with eveningness, indicating an autosomal dominant inheritance. We identified a family with autosomal dominant inheritance of two PER3 heterozygous variants that can be linked to Advanced sleep phase disorder. We revealed also a rare hereditary form of Delayed sleep phase disorder with a new PER2 variant with autosomal dominant inheritance, shedding the light into the genetic causality.


Subject(s)
Circadian Clocks , Period Circadian Proteins , Polymorphism, Single Nucleotide , Sleep Disorders, Circadian Rhythm , Humans , Period Circadian Proteins/genetics , Male , Female , Adult , Middle Aged , Sleep Disorders, Circadian Rhythm/genetics , Circadian Clocks/genetics , Circadian Rhythm/genetics , Circadian Rhythm/physiology , Genetic Predisposition to Disease , Slovenia , Pedigree , Sleep/genetics , Sleep/physiology , Young Adult
9.
Transl Psychiatry ; 14(1): 216, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38806495

ABSTRACT

Genetic factors significantly affect the pathogenesis of psychiatric disorders. However, the specific pathogenic mechanisms underlying these effects are not fully understood. Recent extensive genomic studies have implicated the protocadherin-related 15 (PCDH15) gene in the onset of psychiatric disorders, such as bipolar disorder (BD). To further investigate the pathogenesis of these psychiatric disorders, we developed a mouse model lacking Pcdh15. Notably, although PCDH15 is primarily identified as the causative gene of Usher syndrome, which presents with visual and auditory impairments, our mice with Pcdh15 homozygous deletion (Pcdh15-null) did not exhibit observable structural abnormalities in either the retina or the inner ear. The Pcdh15-null mice showed very high levels of spontaneous motor activity which was too disturbed to perform standard behavioral testing. However, the Pcdh15 heterozygous deletion mice (Pcdh15-het) exhibited enhanced spontaneous locomotor activity, reduced prepulse inhibition, and diminished cliff avoidance behavior. These observations agreed with the symptoms observed in patients with various psychiatric disorders and several mouse models of psychiatric diseases. Specifically, the hyperactivity may mirror the manic episodes in BD. To obtain a more physiological, long-term quantification of the hyperactive phenotype, we implanted nano tag® sensor chips in the animals, to enable the continuous monitoring of both activity and body temperature. During the light-off period, Pcdh15-null exhibited elevated activity and body temperature compared with wild-type (WT) mice. However, we observed a decreased body temperature during the light-on period. Comprehensive brain activity was visualized using c-Fos mapping, which was assessed during the activity and temperature peak and trough. There was a stark contrast between the distribution of c-Fos expression in Pcdh15-null and WT brains during both the light-on and light-off periods. These results provide valuable insights into the neural basis of the behavioral and thermal characteristics of Pcdh15-deletion mice. Therefore, Pcdh15-deletion mice can be a novel model for BD with mania and other psychiatric disorders, with a strong genetic component that satisfies both construct and surface validity.


Subject(s)
Bipolar Disorder , Body Temperature , Cadherins , Disease Models, Animal , Locomotion , Mice, Knockout , Animals , Bipolar Disorder/genetics , Bipolar Disorder/physiopathology , Mice , Cadherins/genetics , Locomotion/genetics , Protocadherins , Male , Circadian Rhythm/genetics , Circadian Rhythm/physiology , Behavior, Animal , Proto-Oncogene Proteins c-fos/metabolism , Proto-Oncogene Proteins c-fos/genetics , Mice, Inbred C57BL , Prepulse Inhibition/genetics
10.
Elife ; 122024 May 20.
Article in English | MEDLINE | ID: mdl-38767950

ABSTRACT

Despite over a century of observations, the obligate insect parasites within the order Entomophthorales remain poorly characterized at the genetic level. In this manuscript, we present a genome for a laboratory-tractable Entomophthora muscae isolate that infects fruit flies. Our E. muscae assembly is 1.03 Gb, consists of 7810 contigs and contains 81.3% complete fungal BUSCOs. Using a comparative approach with recent datasets from entomophthoralean fungi, we show that giant genomes are the norm within Entomophthoraceae owing to extensive, but not recent, Ty3 retrotransposon activity. In addition, we find that E. muscae and its closest allies possess genes that are likely homologs to the blue-light sensor white-collar 1, a Neurospora crassa gene that has a well-established role in maintaining circadian rhythms. We uncover evidence that E. muscae diverged from other entomophthoralean fungi by expansion of existing families, rather than loss of particular domains, and possesses a potentially unique suite of secreted catabolic enzymes, consistent with E. muscae's species-specific, biotrophic lifestyle. Finally, we offer a head-to-head comparison of morphological and molecular data for species within the E. muscae species complex that support the need for taxonomic revision within this group. Altogether, we provide a genetic and molecular foundation that we hope will provide a platform for the continued study of the unique biology of entomophthoralean fungi.


Subject(s)
Entomophthora , Genome, Fungal , Animals , Entomophthora/genetics , DNA Transposable Elements/genetics , Phylogeny , Circadian Rhythm/genetics , Entomophthorales/genetics , Entomophthorales/physiology
11.
Commun Biol ; 7(1): 579, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755402

ABSTRACT

As sessile organisms, plants must respond constantly to ever-changing environments to complete their life cycle; this includes the transition from vegetative growth to reproductive development. This process is mediated by photoperiodic response to sensing the length of night or day through circadian regulation of light-signaling molecules, such as phytochromes, to measure the length of night to initiate flowering. Flowering time is the most important trait to optimize crop performance in adaptive regions. In this review, we focus on interplays between circadian and light signaling pathways that allow plants to optimize timing for flowering and seed production in Arabidopsis, rice, soybean, and cotton. Many crops are polyploids and domesticated under natural selection and breeding. In response to adaptation and polyploidization, circadian and flowering pathway genes are epigenetically reprogrammed. Understanding the genetic and epigenetic bases for photoperiodic flowering will help improve crop yield and resilience in response to climate change.


Subject(s)
Circadian Rhythm , Flowers , Photoperiod , Circadian Rhythm/genetics , Flowers/genetics , Flowers/growth & development , Gene Expression Regulation, Plant , Epigenesis, Genetic , Crops, Agricultural/genetics , Crops, Agricultural/growth & development , Reproduction/genetics
12.
Elife ; 122024 May 14.
Article in English | MEDLINE | ID: mdl-38743049

ABSTRACT

The circadian clock enables anticipation of the day/night cycle in animals ranging from cnidarians to mammals. Circadian rhythms are generated through a transcription-translation feedback loop (TTFL or pacemaker) with CLOCK as a conserved positive factor in animals. However, CLOCK's functional evolutionary origin and mechanism of action in basal animals are unknown. In the cnidarian Nematostella vectensis, pacemaker gene transcript levels, including NvClk (the Clock ortholog), appear arrhythmic under constant darkness, questioning the role of NvCLK. Utilizing CRISPR/Cas9, we generated a NvClk allele mutant (NvClkΔ), revealing circadian behavior loss under constant dark (DD) or light (LL), while maintaining a 24 hr rhythm under light-dark condition (LD). Transcriptomics analysis revealed distinct rhythmic genes in wild-type (WT) polypsunder LD compared to DD conditions. In LD, NvClkΔ/Δ polyps exhibited comparable numbers of rhythmic genes, but were reduced in DD. Furthermore, under LD, the NvClkΔ/Δ polyps showed alterations in temporal pacemaker gene expression, impacting their potential interactions. Additionally, differential expression of non-rhythmic genes associated with cell division and neuronal differentiation was observed. These findings revealed that a light-responsive pathway can partially compensate for circadian clock disruption, and that the Clock gene has evolved in cnidarians to synchronize rhythmic physiology and behavior with the diel rhythm of the earth's biosphere.


Subject(s)
Circadian Clocks , Circadian Rhythm , Animals , Circadian Rhythm/genetics , Circadian Clocks/genetics , Sea Anemones/genetics , Sea Anemones/physiology , CLOCK Proteins/genetics , CLOCK Proteins/metabolism , Photoperiod , Cnidaria/physiology , Cnidaria/genetics
13.
Science ; 384(6695): 563-572, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38696572

ABSTRACT

A molecular clock network is crucial for daily physiology and maintaining organismal health. We examined the interactions and importance of intratissue clock networks in muscle tissue maintenance. In arrhythmic mice showing premature aging, we created a basic clock module involving a central and a peripheral (muscle) clock. Reconstituting the brain-muscle clock network is sufficient to preserve fundamental daily homeostatic functions and prevent premature muscle aging. However, achieving whole muscle physiology requires contributions from other peripheral clocks. Mechanistically, the muscle peripheral clock acts as a gatekeeper, selectively suppressing detrimental signals from the central clock while integrating important muscle homeostatic functions. Our research reveals the interplay between the central and peripheral clocks in daily muscle function and underscores the impact of eating patterns on these interactions.


Subject(s)
Aging, Premature , Aging , Brain , Circadian Rhythm , Muscle, Skeletal , Animals , Male , Mice , Aging/genetics , Aging/physiology , Aging, Premature/genetics , Aging, Premature/prevention & control , Brain/physiology , Circadian Clocks/physiology , Circadian Rhythm/genetics , Circadian Rhythm/physiology , Homeostasis , Muscle, Skeletal/physiology , Mice, Knockout , ARNTL Transcription Factors/genetics
14.
Int J Mol Sci ; 25(9)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38731934

ABSTRACT

Adult bones are continuously remodeled by the balance between bone resorption by osteoclasts and subsequent bone formation by osteoblasts. Many studies have provided molecular evidence that bone remodeling is under the control of circadian rhythms. Circadian fluctuations have been reported in the serum and urine levels of bone turnover markers, such as digested collagen fragments and bone alkaline phosphatase. Additionally, the expressions of over a quarter of all transcripts in bones show circadian rhythmicity, including the genes encoding master transcription factors for osteoblastogenesis and osteoclastogenesis, osteogenic cytokines, and signaling pathway proteins. Serum levels of calcium, phosphate, parathyroid hormone, and calcitonin also display circadian rhythmicity. Finally, osteoblast- and osteoclast-specific knockout mice targeting the core circadian regulator gene Bmal1 show disrupted bone remodeling, although the results have not always been consistent. Despite these studies, however, establishing a direct link between circadian rhythms and bone remodeling in vivo remains a major challenge. It is nearly impossible to repeatedly collect bone materials from human subjects while following circadian changes. In addition, the differences in circadian gene regulation between diurnal humans and nocturnal mice, the main model organism, remain unclear. Filling the knowledge gap in the circadian regulation of bone remodeling could reveal novel regulatory mechanisms underlying many bone disorders including osteoporosis, genetic diseases, and fracture healing. This is also an important question for the basic understanding of how cell differentiation progresses under the influence of cyclically fluctuating environments.


Subject(s)
Bone Remodeling , Circadian Rhythm , Bone Remodeling/genetics , Animals , Circadian Rhythm/physiology , Circadian Rhythm/genetics , Humans , Osteoblasts/metabolism , Osteogenesis/genetics , Osteoclasts/metabolism , Gene Expression Regulation , Bone and Bones/metabolism
15.
Proc Natl Acad Sci U S A ; 121(15): e2321338121, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38568969

ABSTRACT

To address the contribution of transcriptional regulation to Drosophila clock gene expression and to behavior, we generated a series of CRISPR-mediated deletions within two regions of the circadian gene timeless (tim), an intronic E-box region and an upstream E-box region that are both recognized by the key transcription factor Clock (Clk) and its heterodimeric partner Cycle. The upstream deletions but not an intronic deletion dramatically impact tim expression in fly heads; the biggest upstream deletion reduces peak RNA levels and tim RNA cycling amplitude to about 15% of normal, and there are similar effects on tim protein (TIM). The cycling amplitude of other clock genes is also strongly reduced, in these cases due to increases in trough levels. These data underscore the important contribution of the upstream E-box enhancer region to tim expression and of TIM to clock gene transcriptional repression in fly heads. Surprisingly, tim expression in clock neurons is only modestly affected by the biggest upstream deletion and is similarly affected by a deletion of the intronic E-box region. This distinction between clock neurons and glia is paralleled by a dramatically enhanced accessibility of the intronic enhancer region within clock neurons. This distinctive feature of tim chromatin was revealed by ATAC-seq (assay for transposase-accessible chromatin with sequencing) assays of purified neurons and glia as well as of fly heads. The enhanced cell type-specific accessibility of the intronic enhancer region explains the resilience of clock neuron tim expression and circadian behavior to deletion of the otherwise more prominent upstream tim E-box region.


Subject(s)
Drosophila Proteins , Drosophila , Animals , Chromatin/metabolism , Circadian Rhythm/genetics , CLOCK Proteins/genetics , DNA/metabolism , Drosophila/metabolism , Drosophila melanogaster/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Gene Expression Regulation , RNA/metabolism
16.
Nat Commun ; 15(1): 3336, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38637528

ABSTRACT

To understand aging impact on the circadian rhythm, we screened for factors influencing circadian changes during aging. Our findings reveal that LKRSDH mutation significantly reduces rhythmicity in aged flies. RNA-seq identifies a significant increase in insulin-like peptides (dilps) in LKRSDH mutants due to the combined effects of H3R17me2 and H3K27me3 on transcription. Genetic evidence suggests that LKRSDH regulates age-related circadian rhythm changes through art4 and dilps. ChIP-seq analyzes whole genome changes in H3R17me2 and H3K27me3 histone modifications in young and old flies with LKRSDH mutation and controls. The results reveal a correlation between H3R17me2 and H3K27me3, underscoring the role of LKRSDH in regulating gene expression and modification levels during aging. Overall, our study demonstrates that LKRSDH-dependent histone modifications at dilps sites contribute to age-related circadian rhythm changes. This data offers insights and a foundational reference for aging research by unveiling the relationship between LKRSDH and H3R17me2/H3K27me3 histone modifications in aging.


Subject(s)
Histone Code , Histones , Histones/genetics , Histones/metabolism , Circadian Rhythm/genetics , Genome
17.
J Cell Mol Med ; 28(9): e18274, 2024 05.
Article in English | MEDLINE | ID: mdl-38676362

ABSTRACT

TRP channels, are non-specific cationic channels that are involved in multiple physiological processes that include salivation, cellular secretions, memory extinction and consolidation, temperature, pain, store-operated calcium entry, thermosensation and functionality of the nervous system. Here we choose to look at the evidence that decisively shows how TRP channels modulate human neuron plasticity as it relates to the molecular neurobiology of sleep/circadian rhythm. There are numerous model organisms of sleep and circadian rhythm that are the results of the absence or genetic manipulation of the non-specific cationic TRP channels. Drosophila and mice that have had their TRP channels genetically ablated or manipulated show strong evidence of changes in sleep duration, sleep activity, circadian rhythm and response to temperature, noxious odours and pattern of activity during both sleep and wakefulness along with cardiovascular and respiratory function during sleep. Indeed the role of TRP channels in regulating sleep and circadian rhythm is very interesting considering the parallel roles of TRP channels in thermoregulation and thermal response with concomitant responses in growth and degradation of neurites, peripheral nerves and neuronal brain networks. TRP channels provide evidence of an ability to create, regulate and modify our sleep and circadian rhythm in a wide array of physiological and pathophysiological conditions. In the current review, we summarize previous results and novel recent advances in the understanding of calcium ion entry via TRP channels in different sleep and circadian rhythm conditions. We discuss the role of TRP channels in sleep and circadian disorders.


Subject(s)
Circadian Rhythm , Sleep , Transient Receptor Potential Channels , Circadian Rhythm/physiology , Circadian Rhythm/genetics , Animals , Humans , Sleep/physiology , Transient Receptor Potential Channels/metabolism , Transient Receptor Potential Channels/genetics
18.
Methods Mol Biol ; 2795: 43-53, 2024.
Article in English | MEDLINE | ID: mdl-38594526

ABSTRACT

The pace of circadian rhythms remains relatively unchanged across a physiologically relevant range of temperatures, a phenomenon known as temperature compensation. Temperature compensation is a defining characteristic of circadian rhythms, ensuring that clock-regulated processes occur at approximately the same time of day across a wide range of conditions. Despite the identification of several genes involved in the regulation of temperature compensation, the molecular mechanisms underlying this process are still not well understood. High-throughput assays of circadian period are essential for the investigation of temperature compensation. In this chapter, we present a luciferase imaging-based method that enables robust and accurate examination of temperature compensation in the plant circadian clock.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Circadian Clocks , Temperature , Circadian Clocks/genetics , Arabidopsis/genetics , Circadian Rhythm/genetics , Luciferases/genetics , Arabidopsis Proteins/genetics
19.
Methods Mol Biol ; 2795: 213-225, 2024.
Article in English | MEDLINE | ID: mdl-38594541

ABSTRACT

Understanding gene expression dynamics in the context of the time of day and temperature response is an important part of understanding plant thermotolerance in a changing climate. Performing "gating" experiments under constant conditions and light-dark cycles allows users to identify and dissect the contribution of the time of day and circadian clock to the dynamic nature of stress-responsive genes. Here, we describe the design of specific laboratory experiments in plants (Arabidopsis thaliana and bread wheat, Triticum aestivum) to investigate temporal responses to heat (1 h at 37 °C) or cold (3 h at 4 °C), and we include known marker genes that have circadian-gated responses to temperature changes.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Circadian Clocks , Temperature , Transcription Factors/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Circadian Clocks/genetics , Circadian Rhythm/genetics , Gene Expression Regulation, Plant
20.
Nat Commun ; 15(1): 3523, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664421

ABSTRACT

Organismal physiology is widely regulated by the molecular circadian clock, a feedback loop composed of protein complexes whose members are enriched in intrinsically disordered regions. These regions can mediate protein-protein interactions via SLiMs, but the contribution of these disordered regions to clock protein interactions had not been elucidated. To determine the functionality of these disordered regions, we applied a synthetic peptide microarray approach to the disordered clock protein FRQ in Neurospora crassa. We identified residues required for FRQ's interaction with its partner protein FRH, the mutation of which demonstrated FRH is necessary for persistent clock oscillations but not repression of transcriptional activity. Additionally, the microarray demonstrated an enrichment of FRH binding to FRQ peptides with a net positive charge. We found that positively charged residues occurred in significant "blocks" within the amino acid sequence of FRQ and that ablation of one of these blocks affected both core clock timing and physiological clock output. Finally, we found positive charge clusters were a commonly shared molecular feature in repressive circadian clock proteins. Overall, our study suggests a mechanistic purpose for positive charge blocks and yielded insights into repressive arm protein roles in clock function.


Subject(s)
Circadian Clocks , Fungal Proteins , Neurospora crassa , Neurospora crassa/genetics , Neurospora crassa/metabolism , Circadian Clocks/genetics , Circadian Clocks/physiology , Fungal Proteins/metabolism , Fungal Proteins/genetics , Fungal Proteins/chemistry , Protein Binding , Circadian Rhythm/physiology , Circadian Rhythm/genetics , CLOCK Proteins/metabolism , CLOCK Proteins/genetics , CLOCK Proteins/chemistry , Mutation , Amino Acid Sequence , Gene Expression Regulation, Fungal , Intrinsically Disordered Proteins/metabolism , Intrinsically Disordered Proteins/chemistry , Intrinsically Disordered Proteins/genetics , Protein Array Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...