Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 738
Filter
1.
PLoS One ; 19(5): e0303598, 2024.
Article in English | MEDLINE | ID: mdl-38768135

ABSTRACT

Circulating miRNA has recently emerged as important biomolecules with potential clinical values as diagnostic markers for several diseases. However, to be used as such, it is critical to accurately quantify miRNAs in the clinic. Yet, preanalytical factors that can affect an error-free quantification of these miRNAs have not been explored. This study aimed at investigating several of these preanalytical factors that may affect the accurate quantification of miRNA-451a, miRNA-423-5p and miRNA-199a-3p in human blood samples. We initially evaluated levels of these three miRNAs in red blood cells (RBCs), white blood cells (WBCs), platelets, and plasma by droplet digital PCR (ddPCR). Next, we monitored miRNA levels in whole blood or platelet rich plasma (PRP) stored at different temperatures for different time periods by ddPCR. We also investigated the effects of hemolysis on miRNA concentrations in platelet-free plasma (PFP). Our results demonstrate that more than 97% of miRNA-451a and miRNA-423-5p in the blood are localized in RBCs, with only trace amounts present in WBCs, platelets, and plasma. Highest amount of the miRNA-199a-3p is present in platelets. Hemolysis had a significant impact on both miRNA-451a and miRNA-423-5p concentrations in plasma, however miRNA-199a levels remain unaffected. Importantly, PRP stored at room temperature (RT) or 4°C showed a statistically significant decrease in miRNA-451a levels, while the other two miRNAs were increased, at days 1, 2, 3 and 7. PFP at RT caused statistically significant steady decline in miRNA-451a and miRNA-423-5p, observed at 12, 24, 36, 48 and 72 hours. Levels of the miRNA-199a-3p in PFP was stable during first 72 hours at RT. PFP stored at -20°C for 7 days showed declining stability of miRNA-451a over time. However, at -80°C miRNA-451a levels were stable up to 7 days. Together, our data indicate that hemolysis and blood storage at RT, 4°C and -20°C may have significant negative effects on the accuracy of circulating miRNA-451a and miRNA-423-5p quantification.


Subject(s)
Erythrocytes , MicroRNAs , Humans , MicroRNAs/blood , MicroRNAs/genetics , Erythrocytes/metabolism , Circulating MicroRNA/blood , Circulating MicroRNA/genetics , Hemolysis , Blood Platelets/metabolism , Leukocytes/metabolism
2.
Sci Adv ; 10(20): eadl6442, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38748787

ABSTRACT

Early and precise diagnosis of α-synucleinopathies is challenging but critical. In this study, we developed a molecular beacon-based assay to evaluate microRNA-containing extracellular vesicles (EVs) in plasma. We recruited 1203 participants including healthy controls (HCs) and patients with isolated REM sleep behavior disorder (iRBD), α-synucleinopathies, or non-α-synucleinopathies from eight centers across China. Plasma miR-44438-containing EV levels were significantly increased in α-synucleinopathies, including those in the prodromal stage (e.g., iRBD), compared to both non-α-synucleinopathy patients and HCs. However, there are no significant differences between Parkinson's disease (PD) and multiple system atrophy. The miR-44438-containing EV levels negatively correlated with age and the Hoehn and Yahr stage of PD patients, suggesting a potential association with disease progression. Furthermore, a longitudinal analysis over 16.3 months demonstrated a significant decline in miR-44438-containing EV levels in patients with PD. These results highlight the potential of plasma miR-44438-containing EV as a biomarker for early detection and progress monitoring of α-synucleinopathies.


Subject(s)
Biomarkers , Circulating MicroRNA , Extracellular Vesicles , Parkinson Disease , Synucleinopathies , Humans , Extracellular Vesicles/metabolism , Male , Biomarkers/blood , Female , Middle Aged , Circulating MicroRNA/blood , Parkinson Disease/blood , Parkinson Disease/diagnosis , Aged , Synucleinopathies/blood , Synucleinopathies/diagnosis , alpha-Synuclein/blood , Case-Control Studies , MicroRNAs/blood , Multiple System Atrophy/blood , Multiple System Atrophy/diagnosis
3.
Diagn Microbiol Infect Dis ; 109(3): 116331, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38692204

ABSTRACT

HCV recurrence after liver transplantation is one of the causal agents for graft rejection. This study aims to profile non-invasive biomarkers in patients with HCC who had liver transplants. One hundred participants were categorized into three groups (20 control, 32 recurrent HCV (RHCV), and 48 non-RHCV). The expression of six miRNAs (hsa-miR-124-3p, hsa-miR-155-5p, hsa-miR-205-5p, hsa-miR-499a-5p, hsa-miR-574-3p, and hsa-miR-103a-3p) and two mRNAs IL-1ß, STAT1 were quantified. RHCV group has higher levels of hsa-miR-574-3p and hsa-miR-155-5p and lesser levels of hsa-miR-499a-5p than control groups (p = 0.024, 0.0001, 0.002; respectively). RHCV and non-RHCV groups revealed a significant reduction in levels of IL-1ß and STAT1 mRNA compared to the control (p = 0.011, 0.014; respectively). According to ROC analysis, miR-155-5p can differentiate among the patients' groups, while miR-574-3p, IL-1ß, and STAT1 mRNA can discriminate between RHCV and control groups. In conclusion, RHCV patients have dysregulated expression of five transcripts compared to non-RHCV and control groups.


Subject(s)
Biomarkers , Liver Transplantation , MicroRNAs , Recurrence , Humans , Liver Transplantation/adverse effects , Male , Female , Middle Aged , Biomarkers/blood , MicroRNAs/blood , MicroRNAs/genetics , Hepatitis C/diagnosis , Interleukin-1beta/blood , Interleukin-1beta/genetics , STAT1 Transcription Factor/genetics , Circulating MicroRNA/blood , Circulating MicroRNA/genetics , Aged , Adult , Hepacivirus/genetics
4.
Article in English | MEDLINE | ID: mdl-38715982

ABSTRACT

Purpose: Investigate the efficacy of blood microRNAs (miRNAs) as diagnostic biomarkers for Chronic Obstructive Pulmonary Disease (COPD). Patients and Methods: We conducted a comprehensive search in English and Chinese databases, selecting studies based on predetermined criteria. Diagnostic parameters like summarized sensitivity (SSEN), summarized specificity (SSPE), summarized positive likelihood ratio (SPLR), summarized negative likelihood ratio (SNLR), and diagnostic odds ratio (DOR), and area under the curve (AUC) of the summary receiver operating characteristic (SROC) curves were analyzed using a bivariate model. Each parameter was accompanied by a 95% confidence interval (CI). Results: Eighteen high-quality studies were included. For diagnosing COPD with blood miRNAs, the SSEN was 0.83 (95% CI 0.76-0.89), SSPE 0.76 (95% CI 0.70-0.82), SPLR 3.50 (95% CI 2.66-4.60), SNLR 0.22 (95% CI 0.15-0.33), DOR 15.72 (95% CI 8.58-28.77), and AUC 0.86 (95% CI 0.82-0.88). In acute exacerbations, SSEN was 0.85 (95% CI 0.76-0.91), SSPE 0.80 (95% CI 0.73-0.86), SPLR 4.26 (95% CI 3.05-5.95), SNLR 0.19 (95% CI 0.12-0.30), DOR 22.29 (95% CI 11.47-43.33), and AUC 0.89 (95% CI 0.86-0.91). Conclusion: Blood miRNAs demonstrate significant accuracy in diagnosing COPD, both in general and during acute exacerbations, suggesting their potential as reliable biomarkers.


Subject(s)
Area Under Curve , Predictive Value of Tests , Pulmonary Disease, Chronic Obstructive , ROC Curve , Pulmonary Disease, Chronic Obstructive/diagnosis , Pulmonary Disease, Chronic Obstructive/blood , Pulmonary Disease, Chronic Obstructive/genetics , Humans , Odds Ratio , MicroRNAs/blood , Biomarkers/blood , Middle Aged , Aged , Genetic Markers , Male , Circulating MicroRNA/blood , Circulating MicroRNA/genetics , Female , Prognosis , Lung/physiopathology
5.
BMC Geriatr ; 24(1): 473, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38816804

ABSTRACT

BACKGROUND: Circulating miRNAs (c-miR) have been shown to be potential biomarkers in sarcopenia, but the miRNAs response to aerobic exercise in older people remains inconclusive. We sought to examine the exercise benefits on physical fitness and miRNAs, and to explore the mediating effect of miRNAs on training-induced fitness changes. METHODS: This controlled trial recruited 58 community-dwelling older adults and randomized them into exercise group (EX) and control group (CON). EX received 8-week supervised moderate intensity cycling training 3x/week. C-miR expression (c-miR-21, c-miR-126, c-miR-146a, c-miR-222), physical fitness (body composition, cardiorespiratory fitness, muscular fitness) and physical activity level (PAL, measured as in daily step counts) were evaluated at baseline, post-training, and post-16-week follow-up. The mediating effect of miRNA expression onto exercise-induced physical fitness change was determined by causal mediation analysis (CMA). RESULTS: Exercise significantly improved body fat and cardiorespiratory fitness in older people while maintaining muscle mass and strength, and augmented expression of c-miR-126, c-miR-146a, and c-miR-222 for up to 16 weeks post-training. Notably, older people in EX had substantially higher daily step counts than CON throughout the study even after the active training period. However, CMA revealed no significant indirect effect but a potential mediating effect of c-miR-21, but not the rest, onto the body composition, cardiorespiratory fitness, and lower limb strength. CONCLUSION: An eight-week supervised MICT program promoted a higher level of physical activity up to 16 weeks post-training, which induces better cardiorespiratory fitness and resists decline in muscular measures. C-miRNA, especially c-miR-21, potentially mediates the training effect upon fitness.


Subject(s)
Circulating MicroRNA , Exercise , Independent Living , Physical Fitness , Humans , Aged , Male , Physical Fitness/physiology , Female , Exercise/physiology , Follow-Up Studies , Circulating MicroRNA/blood , Aged, 80 and over
6.
PLoS One ; 19(5): e0303035, 2024.
Article in English | MEDLINE | ID: mdl-38820355

ABSTRACT

Fracture non-unions affect many patients worldwide, however, known risk factors alone do not predict individual risk. The identification of novel biomarkers is crucial for early diagnosis and timely patient treatment. This study focused on the identification of microRNA (miRNA) related to the process of fracture healing. Serum of fracture patients and healthy volunteers was screened by RNA sequencing to identify differentially expressed miRNA at various times after injury. The results were correlated to miRNA in the conditioned medium of human bone marrow mesenchymal stromal cells (BMSCs) during in vitro osteogenic differentiation. hsa-miR-1246, hsa-miR-335-5p, and miR-193a-5p were identified both in vitro and in fracture patients and their functional role in direct BMSC osteogenic differentiation was assessed. The results showed no influence of the downregulation of the three miRNAs during in vitro osteogenesis. However, miR-1246 may be involved in cell proliferation and recruitment of progenitor cells. Further studies should be performed to assess the role of these miRNA in other processes relevant to fracture healing.


Subject(s)
Biomarkers , Cell Differentiation , Circulating MicroRNA , Mesenchymal Stem Cells , MicroRNAs , Osteogenesis , Humans , Osteogenesis/genetics , MicroRNAs/blood , MicroRNAs/genetics , Mesenchymal Stem Cells/metabolism , Biomarkers/blood , Male , Circulating MicroRNA/blood , Circulating MicroRNA/genetics , Female , Fracture Healing/genetics , Adult , Fractures, Bone/blood , Fractures, Bone/genetics , Middle Aged , Cells, Cultured , Cell Proliferation
7.
Scand J Clin Lab Invest ; 84(2): 133-137, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38597780

ABSTRACT

MicroRNA-33b (miR-33b) affected various biological pathways in regulating cholesterol homeostasis which may link to the pathogenesis of atherosclerotic lesions. However, whether this marker is associated with the presence and severity of coronary heart disease (CHD) is undetermined. We aim to explore the diagnostic value of circulating miR-33b level in the presence and severity of CHD. Altogether 320 patients were enrolled, including 240 patients diagnosed with CHD while 80 were classified as controls after CAG examination. Circulating miR-33b level was analyzed in all subjects, the Gensini score was calculated to assess the severity of stenotic lesions. The association between miR-33b and the presence and severity of CHD was analyzed, and the diagnostic potential of miR-33b of CHD was performed by the receiver operating characteristic (ROC) analysis. The CHD group had higher miR-33b levels (p < 0.001), and the miR-33b content significantly elevated following an increasing Gensini score (p for trend < 0.001). After adjustments for potential risk factors, such as several blood lipid markers, miR-33b remained a significant determinant for CHD (p < 0.001). ROC analysis disclosed that the AUC was 0.931. The optimal cutoff value of miR-33b was with a sensitivity of 81.3% and a specificity of 98.7% in differentiating CHD. It can prognosticate that the higher level of miR-33b was linked to increased severity of disease in CHD patients. Thus, the application of this marker might assist in the diagnosis and classification of CHD patients. Nevertheless, additional studies with larger sample sizes will be required to verify these results.


Subject(s)
Biomarkers , Coronary Disease , MicroRNAs , ROC Curve , Severity of Illness Index , Aged , Female , Humans , Male , Middle Aged , Biomarkers/blood , Case-Control Studies , Circulating MicroRNA/blood , Circulating MicroRNA/genetics , Coronary Disease/blood , Coronary Disease/genetics , Coronary Disease/diagnosis , MicroRNAs/blood , Risk Factors
8.
Int J Mol Sci ; 25(8)2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38673876

ABSTRACT

Schizophrenia is a complex and heterogenous psychiatric disorder. This study aimed to demonstrate the potential of circulating microRNAs (miRNAs) as a clinical biomarker to stratify schizophrenia patients and to enhance understandings of their heterogenous pathophysiology. We measured levels of 179 miRNA and 378 proteins in plasma samples of schizophrenia patients experiencing acute psychosis and obtained their Positive and Negative Syndrome Scale (PANSS) scores. The plasma miRNA profile revealed three subgroups of schizophrenia patients, where one subgroup tended to have higher scores of all the PANSS subscales compared to the other subgroups. The subgroup with high PANSS scores had four distinctively downregulated miRNAs, which enriched 'Immune Response' according to miRNA set enrichment analysis and were reported to negatively regulate IL-1ß, IL-6, and TNFα. The same subgroup had 22 distinctively upregulated proteins, which enriched 'Cytokine-cytokine receptor interaction' according to protein set enrichment analysis, and all the mapped proteins were pro-inflammatory cytokines. Hence, the subgroup is inferred to have comparatively high inflammation within schizophrenia. In conclusion, miRNAs are a potential biomarker that reflects both disease symptoms and molecular pathophysiology, and identify a patient subgroup with high inflammation. These findings provide insights for the precision medicinal strategies for anti-inflammatory treatments in the high-inflammation subgroup of schizophrenia.


Subject(s)
Biomarkers , Circulating MicroRNA , Inflammation , Psychotic Disorders , Schizophrenia , Humans , Schizophrenia/blood , Schizophrenia/genetics , Male , Inflammation/blood , Inflammation/genetics , Female , Biomarkers/blood , Adult , Psychotic Disorders/blood , Circulating MicroRNA/blood , Circulating MicroRNA/genetics , Cytokines/blood , Middle Aged , Gene Expression Profiling , MicroRNAs/blood , MicroRNAs/genetics
9.
Int J Biol Macromol ; 269(Pt 2): 131926, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38688344

ABSTRACT

Circulating cell-free microRNAs (miRNAs) are promising biomarkers for medical decision-making. Suitable endogenous controls are essential to ensure reproducibility. We aimed to identify and validate endogenous reference miRNAs for qPCR data normalization in samples from SARS-CoV-2-infected hospitalized patients. We used plasma samples (n = 170) from COVID-19 patients collected at hospital admission (COVID-Ponent project, www.clinicaltrials.gov/NCT04824677). First, 179 miRNAs were profiled using RT-qPCR. After stability assessment, candidates were validated using the same methodology. miRNA stability was analyzed using the geNorm, NormFinder and BestKeeper algorithms. Stability was further evaluated using an RNA-seq dataset derived from COVID-19 hospitalized patients, along with plasma samples from patients with critical COVID-19 profiled using RT-qPCR. In the screening phase, after strict control of expression levels, stability assessment selected eleven candidates (miR-17-5p, miR-20a-5p, miR-30e-5p, miR-106a-5p, miR-151a-5p, miR-185-5p, miR-191-5p, miR-423-3p, miR-425-5p, miR-484 and miR-625-5p). In the validation phase, all algorithms identified miR-106a-5p and miR-484 as top endogenous controls. No association was observed between these miRNAs and clinical or sociodemographic characteristics. Both miRNAs were stably detected and showed low variability in the additional analyses. In conclusion, a 2-miRNA panel composed of miR-106a-5p and miR-484 constitutes a first-line normalizer for miRNA-based biomarker development using qPCR in hospitalized patients infected with SARS-CoV-2.


Subject(s)
Biomarkers , COVID-19 , MicroRNAs , SARS-CoV-2 , Humans , COVID-19/genetics , COVID-19/diagnosis , Biomarkers/blood , SARS-CoV-2/genetics , MicroRNAs/blood , MicroRNAs/genetics , Male , Female , Middle Aged , Severity of Illness Index , Aged , Circulating MicroRNA/blood , Circulating MicroRNA/genetics , Adult , Reproducibility of Results
10.
Atherosclerosis ; 392: 117502, 2024 May.
Article in English | MEDLINE | ID: mdl-38513437

ABSTRACT

BACKGROUND AND AIMS: Premature atherosclerotic cardiovascular disease (CVD) is a clinic characteristic of familial hypercholesterolemia (FH). Coronary calcium score (CCS) is a highly used imaging modality to evidence atherosclerotic plaque burden. microRNAs (miRNAs) are non-coding RNAs that epigenetically regulate gene expression. Here, we investigated whether CCS associates with a specific miRNA-signature in FH-patients. METHODS: Patients with genetic diagnosis of FH (N = 86) from the nationwide SAFEHEART-cohort were investigated by computed tomography angiography imaging and classified depending on the presence of coronary calcification in FH-CCS (+) and FH-CCS (-) groups by the Agatston score. Differential miRNA profiling was performed in two stages: first by Affymetrix microarray technology (high-throughput differential profiling-studies) and second by RT-PCR using TaqMan-technology (analytical RT-qPCR study) in plasma of the two patient groups. RESULTS: miR-193a-5p, miR-30e-5p and miR-6821-5p levels were significantly higher in FH-CCS (+) compared to FH-CCS (-). miR-6821-5p was the best miRNA to discriminate FH-patients CCS(+), according to receiver operating characteristic (ROC) analysis (AUC: 0.70 ± 0.06, p = 0.006). High miR-6821-5p levels were associated with older age (p = 0.03) and high LDL-burden (p = 0.014) using a ROC-derived cut-off value. However, miR-6821-5p did not correlate with age in either the CCS- or CCS + group. Genes involved in calcification processes were identified by in silico analysis. The relation of cell-calcification and expression levels of miR-6821-5p, BMP2 and SPP1 was validated experimentally in human vascular smooth muscle cell cultures. CONCLUSIONS: Up-regulated levels of miR-6821-5p are found in the plasma of asymptomatic FH-patients with coronary calcified atherosclerotic plaques, as well as in isolated human vascular smooth muscle cells expressing the pro-calcification genes BMP2 and SPP1. These findings highlight the impact of epigenetic regulation on the development of subclinical atherosclerosis.


Subject(s)
Coronary Artery Disease , Hyperlipoproteinemia Type II , MicroRNAs , Vascular Calcification , Humans , Hyperlipoproteinemia Type II/blood , Hyperlipoproteinemia Type II/genetics , Hyperlipoproteinemia Type II/complications , Male , Female , Middle Aged , Coronary Artery Disease/blood , Coronary Artery Disease/genetics , Coronary Artery Disease/diagnostic imaging , Vascular Calcification/blood , Vascular Calcification/genetics , Vascular Calcification/diagnostic imaging , MicroRNAs/blood , MicroRNAs/genetics , Adult , Asymptomatic Diseases , Computed Tomography Angiography , Circulating MicroRNA/blood , Circulating MicroRNA/genetics , Coronary Angiography , Cells, Cultured , Plaque, Atherosclerotic/blood , Biomarkers/blood , Gene Expression Profiling , Aged , Myocytes, Smooth Muscle/metabolism , Coronary Vessels/diagnostic imaging , Coronary Vessels/pathology , ROC Curve
11.
Cancer Prev Res (Phila) ; 17(6): 243-254, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38551987

ABSTRACT

Lynch syndrome (LS) is the most common autosomal dominant cancer syndrome and is characterized by high genetic cancer risk modified by lifestyle factors. This study explored whether a circulating miRNA (c-miR) signature predicts LS cancer incidence within a 4-year prospective surveillance period. To gain insight how lifestyle behavior could affect LS cancer risk, we investigated whether the cancer-predicting c-miR signature correlates with known risk-reducing factors such as physical activity, body mass index (BMI), dietary fiber, or NSAID usage. The study included 110 c-miR samples from LS carriers, 18 of whom were diagnosed with cancer during a 4-year prospective surveillance period. Lasso regression was utilized to find c-miRs associated with cancer risk. Individual risk sum derived from the chosen c-miRs was used to develop a model to predict LS cancer incidence. This model was validated using 5-fold cross-validation. Correlation and pathway analyses were applied to inspect biological functions of c-miRs. Pearson correlation was used to examine the associations of c-miR risk sum and lifestyle factors. hsa-miR-10b-5p, hsa-miR-125b-5p, hsa-miR-200a-3p, hsa-miR-3613-5p, and hsa-miR-3615 were identified as cancer predictors by Lasso, and their risk sum score associated with higher likelihood of cancer incidence (HR 2.72, 95% confidence interval: 1.64-4.52, C-index = 0.72). In cross-validation, the model indicated good concordance with the average C-index of 0.75 (0.6-1.0). Coregulated hsa-miR-10b-5p, hsa-miR-125b-5p, and hsa-miR-200a-3p targeted genes involved in cancer-associated biological pathways. The c-miR risk sum score correlated with BMI (r = 0.23, P < 0.01). In summary, BMI-associated c-miRs predict LS cancer incidence within 4 years, although further validation is required. PREVENTION RELEVANCE: The development of cancer risk prediction models is key to improving the survival of patients with LS. This pilot study describes a serum miRNA signature-based risk prediction model that predicts LS cancer incidence within 4 years, although further validation is required.


Subject(s)
Biomarkers, Tumor , Circulating MicroRNA , Colorectal Neoplasms, Hereditary Nonpolyposis , Humans , Pilot Projects , Female , Incidence , Male , Colorectal Neoplasms, Hereditary Nonpolyposis/genetics , Colorectal Neoplasms, Hereditary Nonpolyposis/blood , Colorectal Neoplasms, Hereditary Nonpolyposis/epidemiology , Middle Aged , Prospective Studies , Biomarkers, Tumor/genetics , Biomarkers, Tumor/blood , Circulating MicroRNA/blood , Adult , Aged , MicroRNAs/blood , MicroRNAs/genetics , Prognosis , Risk Factors , Life Style , Follow-Up Studies
12.
Arch Gerontol Geriatr ; 106: 104870, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36442406

ABSTRACT

BACKGROUND: Frailty and ST-Elevation Myocardial Infarction (STEMI) share similar molecular pathways. Specific biomarkers, such as microRNAs (miRNAs), may provide insights into the molecular mechanisms that cause the relationship between frailty and STEMI. OBJECTIVE: Our aim was to identify and compare circulating miRNA levels between frail and non-frail older adults following STEMI and comprehend the regulatory miRNA-gene networks and pathways involved in this condition. METHODS: This exploratory study is a subanalysis of a larger observational study. In this study, we selected patients ≥ 65 years old, following STEMI, with pre-frail/frail (n=5) and non-frail (n=4) phenotype evaluated using the Clinical Frailty Scale and serum circulating miRNA levels were analyzed. RESULTS: Pre-frail/frail patients had greater serum levels of 53 miRNAs, compared with non-frail patients. Notably, miR-103a-3p, miR-598-3p, and miR-130a-3p were the top three significantly deregulated miRNAs predicted to modulate gene expression associated with aging. Additional computational analyses showed 7,420 predicted miRNA gene targets, which were regulated by at least two of the 53 identified miRNAs. Pathway enrichment analysis showed that axon guidance and MAPK signaling were among pathways regulated by miRNA target genes. CONCLUSIONS: These novel findings suggest a correlation between the identified miRNAs, target genes, and pathways in pre-frail and frail patients with myocardial infarction.


Subject(s)
Circulating MicroRNA , Frailty , ST Elevation Myocardial Infarction , Humans , Circulating MicroRNA/blood , Circulating MicroRNA/metabolism , Frailty/blood , Frailty/diagnosis , Frailty/metabolism , ST Elevation Myocardial Infarction/blood , ST Elevation Myocardial Infarction/diagnosis , ST Elevation Myocardial Infarction/metabolism , Metabolic Networks and Pathways
13.
J Pharmacol Exp Ther ; 384(1): 35-51, 2023 01.
Article in English | MEDLINE | ID: mdl-35809898

ABSTRACT

MicroRNAs (miRNAs) are involved in the development of human malignancies, and cells have the ability to secrete these molecules into extracellular compartments. Thus, cell-free miRNAs (circulating miRNAs) can potentially be used as biomarkers to evaluate pathophysiological changes. Although circulating miRNAs have been proposed as potential noninvasive tumor biomarkers for diagnosis, prognosis, and response to therapy, their routine application in the clinic is far from being achieved. This review focuses on the recent progress regarding the value of circulating miRNAs as noninvasive biomarkers, with specific consideration of their relevant clinical applications. In addition, we provide an in-depth analysis of the technical challenges that impact the assessment of circulating miRNAs. We also highlight the significance of integrating circulating miRNAs with the standard laboratory biomarkers to boost sensitivity and specificity. The current status of circulating miRNAs in clinical trials as tumor biomarkers is also covered. These insights and general guidelines will assist researchers in experimental practice to ensure quality standards and repeatability, thus improving future studies on circulating miRNAs. SIGNIFICANCE STATEMENT: Our review will boost the knowledge behind the inconsistencies and contradictory results observed among studies investigating circulating miRNAs. It will also provide a solid platform for better-planned strategies and standardized techniques to optimize the assessment of circulating cell-free miRNAs.


Subject(s)
Biomarkers, Tumor , Circulating MicroRNA , Neoplasms , Humans , Biomarkers, Tumor/blood , Circulating MicroRNA/blood , Neoplasms/blood , Neoplasms/diagnosis , Prognosis
14.
Arch Physiol Biochem ; 129(2): 489-496, 2023 Apr.
Article in English | MEDLINE | ID: mdl-33113334

ABSTRACT

Type 2 diabetes is the most prevalent metabolic disease worldwide. The disease is characterised by high blood glucose levels and recently it has been shown that changes in the plasma levels of several miRNAs (miRNA) are associated with the disease. Interestingly, alterations in circulating miRNAs occur years before the onset of the disease and demonstrate predictive power. In this study, we carried out RT-qPCR to examine the plasma levels of two type 2 diabetes specific miRNAs, miR-30d-5p and miR-126-3p in an Iranian population of non-diabetic control individuals, subjects with intermediate hyperglycaemia and type 2 diabetic individuals with hyperglycaemia. We found that the plasma levels of miR-30d and miR-126 increase by 3.1 and 11.16 times, respectively, in individuals with intermediate hyperglycaemia compared to non-diabetic controls. However, no significant changes in the expression of these two miRNAs have been observed between type 2 diabetic individuals and non-diabetic subjects. Our results confirm that alterations in the plasma levels of miR-30d-5p and miR-126-3p could be used as diagnostic markers of type 2 diabetes in the Iranian population as well.


Subject(s)
Circulating MicroRNA , Diabetes Mellitus, Type 2 , Hyperglycemia , MicroRNAs , Humans , Circulating MicroRNA/blood , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/diagnosis , Diabetes Mellitus, Type 2/genetics , Iran/epidemiology , MicroRNAs/blood , Male , Female , Middle Aged , Biomarkers/blood
15.
Microrna ; 12(1): 29-44, 2023.
Article in English | MEDLINE | ID: mdl-36121076

ABSTRACT

BACKGROUND AND AIM: Nasopharyngeal Carcinoma (NPC) is an upper respiratory tract cancer prevalent in Southeast Asia and related to chronic EBV infection. microRNAs (miRNAs) regulate gene expression implicated in NPC's carcinogenesis. However, this circulating RNA molecule's role and clinical utility remain unknown. Therefore, this study examined the circulation of miRNAs and their association with clinical data. METHODS: 160 plasma samples of NPC and 80 non-tumor samples were extracted to evaluate and validate the gene expressions. Quantification expression was performed using relative quantification of qPCR analysis level expression methods. The intrinsic cellular roles involving biological signaling in NPC's oncogenesis using Ingenuity Pathways Analysis (IPA) were also used. RESULTS: The results of the quantification significance profiling of NPC samples revealed decreased miR- 29c-3p (fold change 1.16; p<0.05) and increased 195-5p expression (fold change 1.157; p<0.05). Furthermore, the validation of hsa-miR-29c-3p expression on plasma NPC with known tumor vs. non-tumor and significant changes was also performed using a fold change of 4.45 (medians of 31.45 ± 1.868 and 24.96 ± 1.872, respectively; p<0.0005). miR-29c had a 2.14 fold change correlated with T primary status with a median of 31.99±1.319 and 31.35±2.412, respectively (p<0.05). Stage status with fold change 1.99 also had median levels of 31.98±1.105 and 31.21 ± 2.355, respectively (p-value <0.05). Furthermore, the node's status for the lower expression of miR-29c with fold change 1.17 had median levels of 32.78 ± 2.221 and 31.33 ± 1.689, respectively (p-value of 0.7). Bioinformatics analysis established the roles and functions of miR-29 in NPC progression, cell death and survival, cellular development, cellular function, and cell maintenance by inhibiting COL4A, PI3K, VEGFA, JUN, and CDK6. CONCLUSION: Overall, we conclude that decreased miR-29c expression is associated with poor clinical status and might inhibit NPC's five target genes.


Subject(s)
Biomarkers, Tumor , Circulating MicroRNA , Gene Expression Regulation, Neoplastic , Nasopharyngeal Carcinoma , Nasopharyngeal Neoplasms , Adolescent , Adult , Aged , Female , Humans , Male , Middle Aged , Young Adult , Biomarkers, Tumor/blood , Biomarkers, Tumor/genetics , Circulating MicroRNA/blood , Disease Progression , Nasopharyngeal Carcinoma/blood , Nasopharyngeal Carcinoma/diagnosis , Nasopharyngeal Carcinoma/genetics , Nasopharyngeal Carcinoma/pathology , Nasopharyngeal Neoplasms/blood , Nasopharyngeal Neoplasms/diagnosis , Nasopharyngeal Neoplasms/genetics , Nasopharyngeal Neoplasms/pathology , Reproducibility of Results , Sensitivity and Specificity , Signal Transduction
16.
Transplant Proc ; 54(9): 2570-2577, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36400592

ABSTRACT

BACKGROUND: One of the most important possible complications determining long-term graft survival after kidney transplant is antibody-mediated rejection (ABMR). The criterion standard approach to recognize ABMR is currently the kidney biopsy with histopathologic analysis. However, this test has limitations because of difficulties in timing of sampling, the evaluability of histology because of the questionable representativeness of specimens, and the limited number of this intervention. Hence, new reliable, noninvasive biomarkers are required to detect the development of ABMR in time. METHODS: In this study, we analyzed the clinical data of 45 kidney transplant patients (mean age of 44.51 years, 20 male and 25 female subjects). These participants were recruited into 5 subcohorts based on their clinical status, histologic findings, and level of donor-specific anti-HLA antibodies. Circulating microRNAs (miR-21, miR-181b, miR-146a, miR-223, miR-155, miR-150) in plasma samples were quantified by quantitative polymerase chain reaction and their levels were correlated with the clinical characteristics in different subgroups. RESULTS: The relative expression of plasma miR-155 (P = .0003), miR-223 (P = .0316), and miR-21 (P = .0147) were significantly higher in patients who had subsequent histology-approved ABMR with donor-specific anti-HLA antibody positivity (n = 10) than in the "triple negative" group (n = 21), and miR-155 showed the highest sensitivity (90%) and specificity (81%) to indicate ABMR development based on receiver operating characteristic analysis. CONCLUSIONS: According to our preliminary data, plasma miR-155, miR-21, and miR-223 can indicate the development of ABMR after kidney transplant in correlation with classic clinical parameters. However, future studies with larger number of participants are necessary to further evaluate the diagnostic properties of blood miRNAs in prediction of this life-threatening condition.


Subject(s)
Circulating MicroRNA , Graft Rejection , Kidney Transplantation , Adult , Female , Humans , Male , Allografts , Antibodies/immunology , Antibodies/metabolism , Circulating MicroRNA/blood , Circulating MicroRNA/chemistry , Graft Rejection/genetics , Graft Rejection/metabolism , Isoantibodies , Kidney Transplantation/adverse effects , MicroRNAs/blood , MicroRNAs/chemistry
17.
J Clin Endocrinol Metab ; 107(8): 2267-2285, 2022 07 14.
Article in English | MEDLINE | ID: mdl-35532548

ABSTRACT

CONTEXT: Measurement of circulating microRNAs (miRNAs) as potential biomarkers of fragility fracture risk has recently become a subject of investigation. OBJECTIVE: Measure by next-generation sequencing (NGS), global miRNA expression in serum samples of osteoporotic subjects vs individuals with normal bone mineral density (BMD). DESIGN: Samples were collected from patients with different bone phenotypes and/or fragility fractures who did not receive any antiresorptive and/or bone-forming drug at the time of blood collection. SETTING: Samples and data were collected at 7 medical centers in Italy. PATIENTS: NGS prescreening: 50 osteoporotic patients vs 30 individuals with normal BMD. Droplet digital polymerase chain reaction (ddPCR) validation: 213 patients with different bone phenotypes, including the NGS-analyzed cohort. RESULTS: NGS identified 5 miRNAs (miR-8085, miR-320a-3p, miR-23a-3p, miR-4497, miR-145-5p) differentially expressed in osteoporosis cases without fractures vs controls. ddPCR validation confirmed lower c-miR-23a-3p expression in osteoporotic patients, with or without fracture, than in osteopenic and normal subjects and increased c-miR-320a-3p expression in osteoporotic patients with fracture and lower expression in osteoporotic patients without fracture. ddPCR analysis showed a significantly increased expression of miR-21-5p in osteoporotic patients, with or without fracture, than in osteopenic and normal subjects, not evidenced by the NGS prescreening. DISCUSSION: Our study confirmed levels of c-miR-23a-3p and c-miR-21-5p as able to distinguish osteoporotic patients and subjects with normal BMD. Increased levels of c-miR-320a-3p specifically associated with fractures, independently by BMD, suggesting c-miR-320a-3p as a prognostic indicator of fracture risk in osteoporotic patients, to be confirmed in prospective studies on incident fractures.


Subject(s)
Circulating MicroRNA , Osteoporosis , Osteoporotic Fractures , Circulating MicroRNA/blood , Circulating MicroRNA/genetics , Genetic Markers , Humans , Osteoporosis/blood , Osteoporosis/genetics , Osteoporotic Fractures/blood , Osteoporotic Fractures/genetics , Prospective Studies
18.
Sci Rep ; 12(1): 3388, 2022 03 01.
Article in English | MEDLINE | ID: mdl-35232961

ABSTRACT

COPD is the fourth leading cause of mortality, and is predicted to be the third leading cause of death worldwide by 2020. But few studies on Tibetan COPD of China. This study identifies distinctive miRNA signatures in Tibetan COPD patients from Tibetan healthy subjects that could serve as diagnostic biomarkers or describe differential molecular mechanisms with potential therapeutic implications. In this study, a total of 210 differentially expressed miRNAs were screened. Analysis of the functions of target genes of differentially expressed miRNAs via GO enrichment analysis revealed that they mainly influenced guanyl-nucleotide exchange factor activity, cell morphogenesis and the positive regulation of GTPase activity. KEGG pathway enrichment analysis showed that these target genes were mainly enriched in signaling by NGF, Axon guidance, developmental biology, ubiquitin mediated proteolysis, and PDGF signaling pathways. MiR-106-5p and miR-486-5p expression was validated in the complete cohort. Age, plasma miR-106-5p, miR-486-5p, SP-D protein levels, and SP-D mRNA level were also determined to be correlated with FEV1%Pred, and may as the risk factors of Tibetan COPD. The combination of plasma miR-106-5p, miR-486-5p and SP-D mRNA expression may be the best model to assist the diagnosis of Tibetan COPD.


Subject(s)
Circulating MicroRNA , MicroRNAs , Pulmonary Disease, Chronic Obstructive , Pulmonary Surfactant-Associated Protein D , Circulating MicroRNA/blood , Gene Expression Profiling , Humans , MicroRNAs/genetics , Pulmonary Disease, Chronic Obstructive/blood , Pulmonary Disease, Chronic Obstructive/genetics , Pulmonary Surfactant-Associated Protein D/blood , Pulmonary Surfactant-Associated Protein D/genetics , RNA, Messenger , Tibet
19.
Mech Ageing Dev ; 202: 111636, 2022 03.
Article in English | MEDLINE | ID: mdl-35122770

ABSTRACT

The stratification of mortality risk in COVID-19 patients remains extremely challenging for physicians, especially in older patients. Innovative minimally invasive molecular biomarkers are needed to improve the prediction of mortality risk and better customize patient management. In this study, aimed at identifying circulating miRNAs associated with the risk of COVID-19 in-hospital mortality, we analyzed serum samples of 12 COVID-19 patients by small RNA-seq and validated the findings in an independent cohort of 116 COVID-19 patients by qRT-PCR. Thirty-four significantly deregulated miRNAs, 25 downregulated and 9 upregulated in deceased COVID-19 patients compared to survivors, were identified in the discovery cohort. Based on the highest fold-changes and on the highest expression levels, 5 of these 34 miRNAs were selected for the analysis in the validation cohort. MiR-320b and miR-483-5p were confirmed to be significantly hyper-expressed in deceased patients compared to survived ones. Kaplan-Meier and Cox regression models, adjusted for relevant confounders, confirmed that patients with the 20% highest miR-320b and miR-483-5p serum levels had three-fold increased risk to die during in-hospital stay for COVID-19. In conclusion, high levels of circulating miR-320b and miR-483-5p can be useful as minimally invasive biomarkers to stratify older COVID-19 patients with an increased risk of in-hospital mortality.


Subject(s)
COVID-19/blood , COVID-19/mortality , Circulating MicroRNA/blood , Hospital Mortality , Hospitalization , MicroRNAs/blood , Aged , Aged, 80 and over , Biomarkers/blood , COVID-19/diagnosis , COVID-19/genetics , Circulating MicroRNA/genetics , Female , Humans , Male , MicroRNAs/genetics , Predictive Value of Tests , Prognosis , RNA-Seq , Risk Assessment , Risk Factors , Time Factors , Up-Regulation
20.
Int J Mol Sci ; 23(3)2022 Jan 22.
Article in English | MEDLINE | ID: mdl-35163149

ABSTRACT

The plasma levels of tissue-specific microRNAs can be used as diagnostic, disease severity and prognostic biomarkers for chronic and acute diseases and drug-induced injury. Thereby, the combination of diverse microRNAs into biomarker signatures using multivariate statistics seems especially powerful from the perspective of tissue and condition specific microRNA shedding into the plasma. Although next-generation sequencing (NGS) technology enables one to analyse circulating microRNAs on a genome-scale level, it suffers from potential biases (e.g., adapter ligation bias) and lacks absolute transcript quantitation as well as tailor-made quality controls. In order to develop a robust NGS discovery assay for genome-scale quantitation of circulating microRNAs, we first evaluated the sensitivity, repeatability and ligation bias of four commercially available small RNA library preparation protocols. The protocol from RealSeq Biosciences was selected based on its performance and usability and coupled with a novel panel of exogenous small RNA spike-in controls to enable quality control and absolute quantitation, thus ensuring comparability of data across independent NGS experiments. The established microRNA Next-Generation-Sequencing Discovery Assay (miND) was validated for its relative accuracy, precision, analytical measurement range and sequencing bias and was considered fit-for-purpose for microRNA biomarker discovery. Summarized, all these criteria were met, and thus, our analytical platform is considered fit-for-purpose for microRNA biomarker discovery from biofluids in the setting of any diagnostic, prognostic or patient stratification need. The established miND assay was tested on serum, cerebrospinal fluid (CSF), synovial fluid (SF) and extracellular vesicles (EV) extracted from cell culture medium of primary cells and proved its potential to be used across different sample types.


Subject(s)
Biomarkers/analysis , Circulating MicroRNA/analysis , Extracellular Vesicles/metabolism , Genome, Human , High-Throughput Nucleotide Sequencing/methods , Sequence Analysis, RNA/methods , Biomarkers/blood , Biomarkers/cerebrospinal fluid , Circulating MicroRNA/blood , Circulating MicroRNA/cerebrospinal fluid , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...