Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.486
Filter
1.
Sci Adv ; 10(23): eadk3081, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38848367

ABSTRACT

Clinical outcomes for total-pancreatectomy followed by intraportal islet autotransplantation (TP-IAT) to treat chronic pancreatitis (CP) are suboptimal due to pancreas inflammation, oxidative stress during islet isolation, and harsh engraftment conditions in the liver's vasculature. We describe a thermoresponsive, antioxidant macromolecule poly(polyethylene glycol citrate-co-N-isopropylacrylamide) (PPCN) to protect islet redox status and function and to enable extrahepatic omentum islet engraftment. PPCN solution transitions from a liquid to a hydrogel at body temperature. Islets entrapped in PPCN and exposed to oxidative stress remain functional and support long-term euglycemia, in contrast to islets entrapped in a plasma-thrombin biologic scaffold. In the nonhuman primate (NHP) omentum, PPCN is well-tolerated and mostly resorbed without fibrosis at 3 months after implantation. In NHPs, autologous omentum islet transplantation using PPCN restores normoglycemia with minimal exogenous insulin requirements for >100 days. This preclinical study supports TP-IAT with PPCN in patients with CP and highlights antioxidant properties as a mechanism for islet function preservation.


Subject(s)
Islets of Langerhans Transplantation , Islets of Langerhans , Omentum , Oxidative Stress , Islets of Langerhans Transplantation/methods , Omentum/metabolism , Animals , Islets of Langerhans/metabolism , Islets of Langerhans/drug effects , Oxidative Stress/drug effects , Citric Acid/pharmacology , Humans , Antioxidants/pharmacology , Pancreatitis, Chronic/metabolism , Pancreatitis, Chronic/surgery , Pancreatitis, Chronic/pathology , Polyethylene Glycols/chemistry , Polyethylene Glycols/pharmacology , Male , Phase Transition
2.
BMC Oral Health ; 24(1): 680, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38867181

ABSTRACT

BACKGROUND: To investigate the effect of a 50% ascorbic acid with 50% citric acid solution on the immediate shear bond strength (SBS) of metallic brackets after tooth bleaching. The enamel etching pattern and the required quantity of these combined acids as antioxidants following 35% hydrogen peroxide (HP) bleaching were also determined. METHODS: The stability of the solution at room temperature was assessed at various time intervals. Fifty teeth were randomly divided into five groups: non-bleached (G1), bleached then acid etched (G2), bleached followed by a 10-minute treatment with 10% sodium ascorbate and acid etched (G3), 5-minute treatment with 50% ascorbic acid (G4), and 5-minute treatment with a combination of 50% ascorbic acid and 50% citric acid (G5). Groups G2, G3, G4 and G5 were bleached by 35% HP gel for a total of 32 min. Acid etching in groups G1, G2, and G3 was performed using 37% phosphoric acid (Ormco®, Orange, CA, USA) for 15 s. In all groups, metal brackets were immediately bonded using Transbond™ XT primer and Transbond™ PLUS adhesive, with light curing for 40 s. The SBS was tested with a universal testing machine, and statistical analysis was conducted using one-way ANOVA followed by Tukey's HSD test. The level of significance was set at p < 0.05 for all statistical tests. RESULTS: Stability tests demonstrated that the combined acids remained effective for up to 21 days. Group G5 significantly increased the SBS of bleached teeth to the level of G1 (p < 0.05), while G3 did not achieve the same increase in SBS (p > 0.05). SEM analysis revealed enamel etching patterns similar to those of both control groups (G1 and G2). Kinetic studies at 6 min indicated that the antioxidation in G5 reacted 0.2 mmole lower than in G3 and G4. CONCLUSION: 5-minute application of the combined acids enhanced the SBS of bleached teeth comparable to unbleached teeth. The combined acids remain stable over two weeks, presenting a time-efficient, single-step solution for antioxidant application and enamel etching in orthodontic bracket bonding.


Subject(s)
Ascorbic Acid , Citric Acid , Dental Bonding , Dental Enamel , Orthodontic Brackets , Shear Strength , Tooth Bleaching , Ascorbic Acid/pharmacology , Citric Acid/pharmacology , Citric Acid/chemistry , Tooth Bleaching/methods , Humans , Pilot Projects , Dental Enamel/drug effects , Dental Bonding/methods , Acid Etching, Dental , Antioxidants/pharmacology , Surface Properties , Time Factors , Hydrogen Peroxide/chemistry , Tooth Bleaching Agents/chemistry , Phosphoric Acids , Dental Stress Analysis
3.
Biotechnol J ; 19(5): e2400156, 2024 May.
Article in English | MEDLINE | ID: mdl-38804136

ABSTRACT

In spite of tremendous efforts dedicated to addressing bacterial infections and biofilm formation, the post-antibiotic ear continues to witness a gap between the established materials and an easily accessible yet biocompatible antibacterial reagent. Here we show carbon dots (CDs) synthesized via a single hydrothermal process can afford promising antibacterial activity that can be further enhanced by exposure to light. By using citric acid and polyethyleneimine as the precursors, the photoluminescence CDs can be produced within a one-pot, one-step hydrothermal reaction in only 2 h. The CDs demonstrate robust antibacterial properties against both Gram-positive and Gram-negative bacteria and, notably, a considerable enhancement of antibacterial effect can be observed upon photo-irradiation. Mechanistic insights reveal that the CDs generate singlet oxygen (1O2) when exposed to light, leading to an augmented reactive oxygen species level. The approach for disruption of biofilms and inhibition of biofilm formation by using the CDs has also been established. Our findings present a potential solution to combat antibacterial resistance and offer a path to reduce dependence on traditional antibiotics.


Subject(s)
Anti-Bacterial Agents , Biofilms , Carbon , Quantum Dots , Biofilms/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Carbon/chemistry , Carbon/pharmacology , Quantum Dots/chemistry , Microbial Sensitivity Tests , Reactive Oxygen Species/metabolism , Light , Singlet Oxygen/metabolism , Polyethyleneimine/chemistry , Polyethyleneimine/pharmacology , Citric Acid/chemistry , Citric Acid/pharmacology , Gram-Negative Bacteria/drug effects
4.
Food Chem ; 451: 139464, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38704990

ABSTRACT

Silver-metal organic framework (Ag@MOF) has exhibited outstanding antimicrobial activity in antimicrobial applications, and reducing the biotoxicity associated with silver has become a research priority. In this study, Ag@MOF was initially modified with sodium alginate (SA) to form SA-Ag@MOF. The results showed that SA could control the release of Ag+, reducing the release by about 8% at 24 h, and the biotoxicity was significantly reduced. Finally, SA-Ag@MOF was applied as an antimicrobial agent in citric acid-modified PVA film to develop a novel composite antimicrobial film. When added at 2 MIC, the CA3-M2 film can effectively inhibit the growth of E. coli and S. aureus, and the inhibition rate has reached 98%. For white radish packaging applications, CA3-M2 film inhibited the growth of surface microorganisms, while ensuring moisture and tissue hardness to extend shelf-life up to 7 days. Overall, the strategy conceived here can be a theoretical basis for novel antimicrobial packaging.


Subject(s)
Alginates , Citric Acid , Escherichia coli , Food Packaging , Metal-Organic Frameworks , Silver , Staphylococcus aureus , Alginates/chemistry , Alginates/pharmacology , Food Packaging/instrumentation , Citric Acid/chemistry , Citric Acid/pharmacology , Silver/chemistry , Silver/pharmacology , Escherichia coli/drug effects , Escherichia coli/growth & development , Staphylococcus aureus/drug effects , Staphylococcus aureus/growth & development , Metal-Organic Frameworks/chemistry , Metal-Organic Frameworks/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Microbial Sensitivity Tests , Raphanus/chemistry , Raphanus/growth & development , Raphanus/drug effects , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry
5.
Food Funct ; 15(11): 5813-5824, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38747641

ABSTRACT

Carbohydrates are an important macronutrient whose processing and digestive fate can have numerous beneficial or adverse effects on consumer health. This study investigated the impact of heat-moisture treatments (HMT) and citric acid treatments (CAT) on arrowroot starch (ARS) with a focus on its physicochemical properties, digestibility, and influence on gut microbiota. The results revealed that HMT and CAT did not alter the colloidal characteristics of ARS but significantly affected the balance between amorphous and crystalline regions. Changes in thermal properties, morphology, and particle size were also observed. These can influence ARS shelf life and functional properties in various food applications. Furthermore, certain treatments in both processing methods increased the resistant starch (RS) content of ARS, with HMT for 16 hours at 80 °C and CAT with 0.6 M citric acid, resulting in the most pronounced effects. These changes coincided with reductions in rapidly digestible starch (RDS) levels and improvements in the ratio of slowly digestible starch (SDS) to RDS, which could potentially improve glycemic control. This study also examined the impact of processed ARS on colonic microbiota composition. It found that ARS-derived RS formed under HMT and CAT did not negatively affect the prebiotic potential of the RS fraction. Both treatments were associated with lowering the Firmicutes to Bacteroidetes ratio (F/B), a marker of gut health, and decreasing the relative abundance of Proteobacteria, microbes associated with adverse health effects. Additionally, CAT-derived RS showed a significant increase in the relative abundance of Roseburia, a beneficial gut bacterium. In conclusion, processing ARS through HMT and CAT techniques has the potential for enhancing its RS content, improving its glycemic impact, and positively influencing the gut microbiota composition, potentially contributing to gut health and metabolic well-being.


Subject(s)
Colon , Gastrointestinal Microbiome , Hot Temperature , Prebiotics , Starch , Humans , Gastrointestinal Microbiome/drug effects , Starch/chemistry , Starch/metabolism , Colon/microbiology , Colon/metabolism , Male , Citric Acid/pharmacology , Resistant Starch/pharmacology , Bacteria/classification , Bacteria/metabolism , Digestion , Adult , Female , Food Handling/methods
6.
J Food Sci ; 89(6): 3591-3602, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38685863

ABSTRACT

Lipid oxidation often accompanies the processing and storage of peanuts, which causes a serious waste of peanut resources. To solve the problem of being prone to oxidation in peanut processing, a ternary complex antioxidant based on rosemary extract (RE) was constructed to investigate its effect on the oxidative and thermal stability of peanuts, and the inhibition of peanut oxidation by compound antioxidants was revealed by dynamic Arrhenius formula and complexation theory. The results showed that there was a synergistic effect between RE and Tert-butyl hydroquinone (TBHQ), and the antioxidant effects of RE and TBHQ were 4.86 and 1.45 times higher when used in combination than when used alone, respectively. In addition, RE-TBHQ-CA (citric acid) effectively inhibited primary and secondary oxidation of peanuts with a shelf life 8.7 times longer than that of control peanuts. This study provides a novel antioxidant compounding idea, which has a positive effect on improving the quality of peanut and other nut products, prolonging the shelf life and reducing the waste of resources. PRACTICAL APPLICATION: Compounding a complex antioxidant that permits its use in peanuts. It was found that rosemary and TBHQ might have synergistic antioxidant effects. Meanwhile, this combination of RE-TBHQ-CA effectively inhibited the oxidation of peanut oils and prolonged the shelf life of peanuts. RE-TBHQ-CA is a highly efficient complex antioxidant that can reduce the amounts of antioxidants added while maintaining high antioxidant efficiency, which may be useful for the future preservation and storage of nut products as it positively affects the quality and shelf life of the product.


Subject(s)
Antioxidants , Arachis , Citric Acid , Food Storage , Hydroquinones , Oxidation-Reduction , Plant Extracts , Rosmarinus , Rosmarinus/chemistry , Hydroquinones/chemistry , Food Storage/methods , Antioxidants/pharmacology , Plant Extracts/pharmacology , Plant Extracts/chemistry , Arachis/chemistry , Citric Acid/pharmacology , Citric Acid/chemistry , Food Preservation/methods , Food Preservatives/chemistry , Food Preservatives/pharmacology
7.
Anat Histol Embryol ; 53(3): e13032, 2024 May.
Article in English | MEDLINE | ID: mdl-38525664

ABSTRACT

The objective of this study is to assess the efficacy of a solution including honey, ethyl alcohol, liquid paraffin, distilled water and citric acid (HEFS) as a preservative for rabbit cadavers, serving as a potential substitute for formaldehyde. The cadavers underwent preservation using three distinct solutions: 10% formalin, 35% alcohol and HEFS. The cadavers were subjected to a total of four sampling events, occurring at 4-month intervals, in order to collect specimens for microanatomical, histological, microbiological, mycological, colourimetric, texture and odour analysis. In terms of hardness, suitability for dissection and joint mobility metrics, the cadavers fixed with HEFS had superior qualities to those fixed with formalin. The fixation quality of HEFS for histological analyses was deemed acceptable, except kidney and intestinal tissues. In texture analysis, differences only in the elasticity parameter (p < 0.05) in the same sampling period. A total of 10 (13.9) bacteria isolates were identified among which, Metasolibacillus meyeri 3 (30%) was predominantly followed by Staphylococcus aureus 2 (20%), Bacillus siamensis, Bacillus subtilis, Pseudarthrobacter oxydans, Bacillus licheniformis, Bacillus subtilis subsp. subtilis with a proportion of 1 (10%), respectively, by both microbiological and molecular analysis. However, no anaerobic bacteria and fungi were isolated. A considerable percentage of the students had the perception that HEFS was appropriate for utilization in laboratory settings due to its absence of unpleasant odours and detrimental impact on ocular and respiratory functions. In conclusion, we consider that HEFS may serve as a viable substitute for formalin solution in the preservation of rabbit cadavers.


Subject(s)
Bacillus , Honey , Mineral Oil , Humans , Animals , Rabbits , Ethanol , Citric Acid/pharmacology , Formaldehyde/pharmacology , Cadaver , Water/pharmacology , Fixatives/pharmacology
8.
Scand J Clin Lab Invest ; 84(1): 62-67, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38451167

ABSTRACT

Glucose measurement plays a central role in the diagnosis of gestational diabetes mellitus (GDM). Because of earlier reports of overestimation of glucose in the widely used tubes containing granulated glycolysis inhibitor, the study assessed the performance of fast-clotting serum tubes as an alternative sample for the measurement of glucose. Glucose concentration in fast-clotting serum was compared to lithium-heparin plasma placed in an ice-water slurry after sample collection and glucose stability at room-temperature was studied. Blood samples from 30 volunteers were drawn in four different types of tubes (serum separator tubes, fast-clotting serum tubes, lithium-heparin tubes and sodium fluoride, EDTA and a citrate buffer (NaF-EDTA-citrate) tubes, all from Greiner Bio-One). Lithium-heparin tubes were placed in an ice-water slurry until centrifugation in accordance with international recommendations and centrifuged within 10 min. After centrifugation, glucose was measured in all tubes (timepoint T0) and after 24, 48, 72, 96 and 120 h of storage at 20-22 °C. NaF-EDTA-citrate plasma showed significant overestimation of glucose concentration by 4.7% compared to lithium-heparin plasma; fast-clotting serum showed glucose concentrations clinically equivalent to lithium-heparin plasma. In fast-clotting serum tubes, mean bias between glucose concentration after 24, 48, 72, 96 and 120 h and T0 was less than 2.4%. All individual differences compared to T0 were less than 6.5%. The results fulfill the acceptance criteria for sample stability based on biological variation. Fast-clotting serum tubes can be an alternative for the measurement of glucose in diagnosis and management of GDM and diabetes mellitus, especially when prolonged transportation is necessary.


Subject(s)
Diabetes, Gestational , Heparin , Pregnancy , Female , Humans , Glucose , Citric Acid/pharmacology , Edetic Acid , Lithium , Blood Glucose , Temperature , Ice , Citrates , Blood Specimen Collection/methods , Sodium Fluoride/pharmacology , Diabetes, Gestational/diagnosis , Centrifugation
9.
J Appl Microbiol ; 135(3)2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38449343

ABSTRACT

AIMS: This study aimed to investigate the changes of cell membrane structure and function of Issatchenkia terricola under citric acid by performing physiological analysis. METHODS AND RESULTS: The membrane integrity, surface hydrophobicity, structure, fluidity, apoptosis, and fatty acid methyl esters composition of I. terricola WJL-G4 cells were determined by propidium iodide staining, microbial adhesion to hydrocarbon test, transmission electron microscopy analysis, fluorescence anisotropy, flow cytometry, and gas chromatography-mass, respectively. The results showed that with the increasing of citric acid concentrations, the cell vitality, membrane integrity, and fluidity of I. terricola reduced; meanwhile, apoptosis rate, membrane permeable, hydrophobicity, and ergosterol contents augmented significantly. Compared to control, the activities of Na+, K+-ATPase, and Ca2+, Mg2+-ATPase increased by 3.73-fold and 6.70-fold, respectively, when citric acid concentration increased to 20 g l-1. The cells cracked and their cytoplasm effused when the citric acid concentration reached 80 g l-1. CONCLUSIONS: I. terricola could successfully adjust its membrane structure and function below 60 g l-1 of citric acid. However, for citric acid concentrations above 80 g l-1, its structure and function were dramatically changed, which might result in reduced functionality.


Subject(s)
Cell Membrane Structures , Citric Acid , Pichia , Citric Acid/pharmacology , Fatty Acids/pharmacology , Cell Membrane , Membrane Fluidity
10.
Int J Mol Sci ; 25(5)2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38474146

ABSTRACT

Immune alterations in end-stage renal patients receiving hemodialysis are complex and predispose patients to infections. Anticoagulation may also play an immunomodulatory role in addition to the accumulation of uremic toxins and the effects of the dialysis procedure. Accordingly, it has been recently shown that the infection rate increases in patients under regional citrate anticoagulation (RCA) compared with systemic heparin anticoagulation (SHA). We hypothesized that RCA affects the immune status of hemodialysis patients by targeting monocytes. In a cohort of 38 end-stage renal patients undergoing hemodialysis, we demonstrated that whole blood monocytes of patients receiving RCA-but not SHA-failed to upregulate surface activation markers, like human leukocyte antigen class II (HLA-DR), after stressful insults, indicating a state of deactivation during and immediately after dialysis. Additionally, RNA sequencing (RNA-seq) data and gene set enrichment analysis of pre-dialysis monocytes evidenced a great and complex difference between the groups given that, in the RCA group, monocytes displayed a dramatic transcriptional change with increased expression of genes related to the cell cycle regulation, cellular metabolism, and cytokine signaling, compatible with the reprogramming of the immune response. Transcriptomic changes in pre-dialysis monocytes signalize the lasting nature of the RCA-related effects, suggesting that monocytes are affected even beyond the dialysis session. Furthermore, these findings demonstrate that RCA-but not SHA-impairs the response of monocytes to activation stimuli and alters the immune status of these patients with potential clinical implications.


Subject(s)
Anticoagulants , Citric Acid , Humans , Citric Acid/pharmacology , Anticoagulants/pharmacology , Monocytes , Citrates , Heparin , Renal Dialysis/methods , Immunity
11.
J Food Sci ; 89(5): 2933-2942, 2024 May.
Article in English | MEDLINE | ID: mdl-38534201

ABSTRACT

This study aimed at evaluating the efficacy of a blend of citric acid and hydrochloric acid (CP), peroxyacetic acid (PAA), and sulfuric acid (SA) against Salmonella and mesophilic aerobic plate counts (APC) on chicken hearts and livers. Samples were inoculated with a five-serovar cocktail of Salmonella at ca. 4.8 log CFU/g and treated by immersion with a water control (90 s), CP (5% v/v, 30 s), PAA (0.05% v/v or 500 ppm, 90 s), or SA (2% v/v, 30 s), all at 4°C and with mechanical agitation. Samples were vacuum packed and stored for up to 3 days at 4°C. Three independent replications were performed for each product, treatment, and time combination. The average Salmonella reductions in chicken hearts after 3 days were 1.33 ± 0.25, 1.40 ± 0.04, and 1.32 ± 0.12 log CFU/g for PAA, SA, and CP, respectively. For chicken livers, the values were 1.10 ± 0.12, 1.09 ± 0.19, and 0.96 ± 0.27 for PAA, SA, and CP, respectively. All antimicrobials reduced Salmonella counts in both chicken hearts and livers by more than one log, in contrast to the water control. All treatments effectively minimized the growth of APC for up to 3 days of refrigerated storage, and no differences in objective color values (L, a, or b) were observed. The poultry industry may use these antimicrobials as components of a multifaceted approach to mitigate Salmonella in nonconventional chicken parts.


Subject(s)
Chickens , Citric Acid , Heart , Liver , Peracetic Acid , Salmonella , Sulfuric Acids , Animals , Chickens/microbiology , Peracetic Acid/pharmacology , Liver/microbiology , Liver/drug effects , Citric Acid/pharmacology , Salmonella/drug effects , Salmonella/growth & development , Heart/drug effects , Heart/microbiology , Sulfuric Acids/pharmacology , Colony Count, Microbial , Food Microbiology , Food Preservation/methods , Anti-Bacterial Agents/pharmacology
12.
J Food Sci ; 89(5): 2581-2596, 2024 May.
Article in English | MEDLINE | ID: mdl-38551187

ABSTRACT

The high concentration of citric acid in lemons limits the production of lemon fruit vinegar because it inhibits the metabolism of acetic acid bacteria and reduces the utilization of raw materials. This study aimed to enhance the citric acid tolerance of Acetobacter tropicalis by using complex mutagenesis and adaptive laboratory evolution (ALE) and improving the quality of lemon fruit vinegar. After mutagenesis and ALE, A. tropicalis JY-135 grew well under 40 g/L citric acid, and it showed high physiological activity and excellent fermentation performance under high concentrations of citric acid. The survival rate and ATP content of JY-135 were 15.27 and 9.30 times higher than that of the original strain J-2736. In the fermentation of lemon fruit vinegar, the acid production and the number of aroma-active compounds were 1.61-fold and 2.17-fold than J-2736. In addition, we found that citric acid tolerance of JY-135 is related to the respiratory electron-transport chain and the tricarboxylic acid (TCA) cycle. This work is of great significance for the production of high-quality lemon fruit vinegar and the enrichment of seed resources of acetic acid bacteria.


Subject(s)
Acetic Acid , Acetobacter , Citric Acid , Citrus , Fermentation , Fruit , Mutagenesis , Acetobacter/genetics , Acetobacter/metabolism , Acetobacter/drug effects , Acetic Acid/pharmacology , Acetic Acid/metabolism , Citric Acid/pharmacology , Fruit/microbiology , Fruit/chemistry
13.
Med Princ Pract ; 33(3): 281-290, 2024.
Article in English | MEDLINE | ID: mdl-38359804

ABSTRACT

OBJECTIVE: Acinetobacter baumannii (A. baumannii) is an opportunistic bacterium with multiple virulence factors, including capsule and biofilm, and is known for its high drug resistance. Anti-virulence natural substances have been suggested as novel alternatives to conventional antibiotics. We aimed to evaluate the effect of citric and ascorbic acids as anti-biofilm and anti-capsular agents against multidrug-resistant (MDR) A. baumannii clinical isolates. MATERIALS AND METHODS: Twenty-eight A. baumannii MDR isolates were collected from different clinical sources. The minimum inhibitory concentration (MIC) of each agent was estimated. Biofilm formation and capsule were investigated phenotypically in the absence and presence of both agents at ½ and » MICs. The presence of 14 adhesive and nonadhesive virulence genes was investigated. RESULTS: Phenotypically, all the isolates were biofilm producers and were capsulated. The MIC of citric acid ranged from 1.25 to 2.5 mg/mL, while that of ascorbic acid was 3 mg/mL for all isolates. Both agents showed significant reduction in biofilm and capsular thinning. Ascorbic acid showed a dose-dependent effect in both biofilm reduction and capsule thinning unlike citric acid. Four genes, papG23, sfa1, fyuA, and cvaC, were absent among all isolates, while iutA was present in 100% of isolates. Other genes showed different distributions among the isolates. These virulence genes were not correlated to the anti-biofilm effect of both agents. Ascorbic acid was observed to have a better effect than citric acid. This can provide a clue for a better treatment regimen including ascorbic acid against MDR A. baumannii infections.


Subject(s)
Acinetobacter baumannii , Anti-Bacterial Agents , Ascorbic Acid , Biofilms , Citric Acid , Drug Resistance, Multiple, Bacterial , Microbial Sensitivity Tests , Acinetobacter baumannii/drug effects , Biofilms/drug effects , Ascorbic Acid/pharmacology , Citric Acid/pharmacology , Drug Resistance, Multiple, Bacterial/drug effects , Anti-Bacterial Agents/pharmacology , Humans , Acinetobacter Infections/drug therapy , Acinetobacter Infections/microbiology , Virulence Factors
14.
Chemosphere ; 353: 141534, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38403123

ABSTRACT

This study assessed the phytotoxicity of a mixture of five different trace elements (TEs) frequently found as pollutants in soils: arsenic, cadmium, copper, lead and zinc. On the other hand, the plant response to a magnetite (Fe3O4) nanoparticle amendment on this mixture as well as nanomagnetite remediation potential has been tested. Sunflower (Helianthus annuus) plants were grown for 90 days in soil contaminated with the five mentioned TEs at the limit levels of TEs in soils likely to receive sludge established by French legislation. Depending on the conditions, experimental set-ups were amended or not with 1% dry weight nanomagnetite (NPsMagn), citric acid-coated nanomagnetite (NPsMagn@CA) or micro-sized magnetite (µPs) in order to assess the behavior of nanomagnetites in a TEs-contaminated water-soil-plant system under repeated water-deficiency stress. The mixture of TEs did not induce phytotoxicity as estimated by plant growth, pigment content, maximum quantum yield of photosynthesis, oxidative impact and antioxidant response. Furthermore, both nanomagnetites treatments in a TEs-contaminated soil significantly increased biomass production by 64 % compared to control and antioxidant enzyme activities compared to control and TEs-treated plants. NPsMagn and NPsMagn@CA particularly enhance phytoextraction of Cd and Cu, increasing the amounts of TEs in aerial parts from 1.5 to 4.5 times compared to set-ups without nanomagnetites. Based on Cd, Cu, Pb and Zn contents in soil solutions, both nanomagnetites treatments improved TEs phytoextraction without increasing groundwater contamination. On the contrary, nanomagnetites significantly reduce arsenic uptake by plants and solubilization in dissolved phase. Our results show that modifying surface physicochemical properties of NPsMagn with citric acid coating does not improve their effects compared to bare NPsMagn. NPsMagn and NPsMagn@CA also appear to mitigate the effects of drought stress. This work highlights several positive environmental aspects related to the use of nanomagnetites in phytoremediation.


Subject(s)
Arsenic , Helianthus , Soil Pollutants , Trace Elements , Copper/analysis , Cadmium/analysis , Arsenic/pharmacology , Antioxidants/pharmacology , Ferrosoferric Oxide , Soil Pollutants/analysis , Trace Elements/analysis , Biodegradation, Environmental , Soil/chemistry , Citric Acid/pharmacology , Water/pharmacology , Magnetic Iron Oxide Nanoparticles
15.
CNS Neurosci Ther ; 30(2): e14567, 2024 02.
Article in English | MEDLINE | ID: mdl-38421106

ABSTRACT

AIMS: This study aimed to investigate the relationship between microglial metabolism and neuroinflammation by examining the impact of citrate accumulation in microglia and its potential regulation through Cs K215 hypoacetylation. METHODS: Experimental approaches included assessing Cs enzyme activity through Cs K215Q mutation and investigating the inhibitory effects of hesperidin, a natural flavanone glycoside, on citrate synthase. Microglial phagocytosis and expression of pro-inflammatory cytokines were also examined in relation to Cs K215Q mutation and hesperidin treatment. RESULTS: Cs K215Q mutation and hesperidin exhibited significant inhibitory effects on Cs enzyme activity, microglial citrate accumulation, phagocytosis, and pro-inflammatory cytokine expression. Interestingly, Sirt3 knockdown aggravated microglial pro-inflammatory functions during neuroinflammation, despite its proven role in Cs deacetylation. CONCLUSION: Cs K215Q mutation and hesperidin effectively inhibited microglial pro-inflammatory functions without reversing the metabolic reprogramming. These findings suggest that targeting Cs K215 hypoacetylation and utilizing hesperidin may hold promise for modulating neuroinflammation in microglia.


Subject(s)
Brain Injuries, Traumatic , Hesperidin , Humans , Microglia , Citrate (si)-Synthase/metabolism , Citrate (si)-Synthase/pharmacology , Lysine/metabolism , Citric Acid/metabolism , Citric Acid/pharmacology , Neuroinflammatory Diseases , Hesperidin/metabolism , Hesperidin/pharmacology , Citrates , Brain Injuries, Traumatic/metabolism
16.
Dent Mater ; 40(4): e12-e23, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38368137

ABSTRACT

OBJECTIVE: this study evaluated dentin microtensile bond strength (µTBS) and failure modes (at 24 h and one year), bonding interface regarding hybridization, surface morphology regarding demineralization, in situ metalloproteinase (MMP) activity, and antibacterial effect of three dentin etchants compared to 35% phosphoric acid (PA). MATERIALS AND METHODS: The Adper Single Bond 2 adhesive (3 M Oral Care) was applied on moist dentin etched with PA (control) or on air-dried dentin etched with 3% aluminum nitrate + 2% oxalic acid (AN), 6.8% ferric oxalate + 10% citric acid (FO), or 10% citric acid (CA). The µTBS test used 40 human teeth (n = 10). Failure modes and surface morphology were analyzed by scanning electron microscopy (n = 3), while bonding interface morphology and MMP activity were evaluated by laser scanning confocal microscopy (n = 3). Antibacterial activity was evaluated against S. Mutans biofilm by means of viable cells count (CFU/mL). RESULTS: PA presented the highest bond strengths regardless of aging time. PA, AN, and CA showed stable bond strengths after one year of storage. Adhesive and mixed failures were predominant in all groups. Thin hybrid layers with short resin tags were observed for the experimental etchants. The AN-based etchant was able to inhibit MMP activity. All tested etchants presented antibacterial activity against S. Mutans biofilm. SIGNIFICANCE: This study suggests different dentin etchants capable of inhibiting MMP activity while also acting as cavity disinfectants.


Subject(s)
Composite Resins , Dental Bonding , Ferric Compounds , Humans , Composite Resins/chemistry , Dentin-Bonding Agents/pharmacology , Dentin-Bonding Agents/chemistry , Resin Cements/pharmacology , Resin Cements/chemistry , Microscopy, Electron, Scanning , Dentin/chemistry , Citric Acid/pharmacology , Anti-Bacterial Agents/pharmacology , Tensile Strength , Materials Testing
17.
Chem Senses ; 492024 01 01.
Article in English | MEDLINE | ID: mdl-38175732

ABSTRACT

Although studies have shown that olfaction may contribute to the perception of tastant, literature is scarce or circumstantial, especially in humans. This study aims to (i) explore whether humans can perceive solutions of basic prototypical tastants through orthonasal and retronasal olfaction and (ii) to examine what volatile odor compounds (VOCs) underlie this ability. Solutions of 5 basic tastants (sucrose, sodium chloride, citric acid, monosodium glutamate [MSG], quinine) dissolved in water, and 2 fatty acids (oleic and linoleic acid) dissolved in mineral oil were prepared. Triangle discrimination tests were performed (n = 41 in duplicate) to assess whether the tastant solutions can be distinguished from blanks (solvents) through ortho- and retronasal olfaction. Participants were able to distinguish all tastant solutions from blank through orthonasal olfaction. Only sucrose, sodium chloride, oleic acid, and linoleic acid were distinguished from blank by retronasal olfaction. Ethyl dichloroacetate, methylene chloride, and/or acetone were identified in the headspace of sucrose, MSG, and quinine solutions but not in the headspace of water, sodium chloride, and citric acid solutions. Fat oxidation compounds such as alcohols and aldehydes were detected in the headspace of the oleic and linoleic acid solutions but not the mineral oil. We conclude that prototypical tastant solutions can be discriminated from water and fatty acid solutions from mineral oil through orthonasal olfaction. Differences in the volatile headspace composition between blanks and tastant solutions may have facilitated the olfactory discrimination. These findings can have methodological implications for future studies assessing gustatory perception using these prototypical taste compounds.


Subject(s)
Smell , Sodium Chloride , Humans , Sodium Glutamate , Quinine , Mineral Oil , Taste , Water , Sucrose , Citric Acid/pharmacology , Linoleic Acids
18.
Ecotoxicology ; 33(2): 142-150, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38282122

ABSTRACT

Gallium (Ga) is an emerging chemical pollutant chiefly associated with high-tech industries. Boron (B) alleviates the negative effects of toxic elements on plant growth. Thereby, the effects of B fertilization on Ga toxicity in rice seedlings was studied to clarify the role of iron plaque in the distribution of Ga, Fe, and B in Ga-treated rice seedlings in the presence or absence of B. Gallium exposure significantly reduced the biomass of rice seedlings. Boron deficiency induced a significant change in the distribution of B in Ga-treated rice seedlings compared with "Ga+B" treatments. Accumulation of Ga in roots, dithionite-citrate-bicarbonate (DCB) extracts, and shoots showed a dose-dependent manner from both +B and -B rice seedlings. Boron nutrition levels affect the distribution of Fe in roots, DCB extracts, and shoots, in which DCB-extractable Fe was significantly decreased from "Ga-B" treatments compared with "Ga+B" treatments. Root activity was significantly decreased in both Ga-exposed rice seedlings; however, B-deficient seedlings showed a severe reduction than +B rice seedlings. These results reveal that Fe plaque might be a temporary sink for B accumulation when plants are grown with proper B, wherein the re-utilization of DCB-extractable B stored in Fe plaque is mandatory for plant growth under B deficiency. Correlation analysis revealed that B deficiency decreased the root activity of Ga-exposed rice seedlings by reducing DCB-extractable Fe and increasing DCB-extractable Ga in Fe plaque. This study enhances our understanding of how B nutritional levels affect Ga toxicity in rice plants.


Subject(s)
Gallium , Oryza , Soil Pollutants , Seedlings , Iron , Boron/toxicity , Boron/analysis , Gallium/pharmacology , Plant Roots , Citrates/pharmacology , Citric Acid/pharmacology , Soil Pollutants/toxicity
19.
Toxicol Lett ; 393: 33-46, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38232781

ABSTRACT

Stone wool fiber materials are commonly used for thermal and acoustic insulation, horticulture and filler purposes. Biosolubility of the stone wool fiber (SWF) materials accessed through acellular in vitro dissolution tests can potentially be used in future as an indicator of fiber biopersistence in vivo. To correlate acellular in vitro studies with in vivo and epidemiological investigations, not only a robust dissolution procedure is needed, but fundamental understanding of fiber behavior during sample preparation and dissolution is required. We investigated the influence of heat treatment procedure for binder removal on the SWF iron oxidation state as well as on the SWF dissolution behavior in simulant lung fluids (with and without complexing agents). We used heat treatments at 450 °C for 5 min and 590 °C for 1 h. Both procedures resulted in complete binder removal from the SWF. Changes of iron oxidation state were moderate if binder was removed at 450 °C for 5 min, and there were no substantial changes of SWF's dissolution behavior in all investigated fluids after this heat treatment. In contrast, if binder was removed at 590 °C for 1 h, complete Fe(II) oxidation to Fe(III) was observed and significant increase of dissolution was shown in fluids without complexing agent (citrate). PHREEQC solution speciation modeling showed that in this case, released Fe(III) may form ferrihydrite precipitate in the solution. Precipitation of ferrihydrite solid phase leads to removal of iron cations from the solution, thus shifting reaction towards the dissolution products and increasing total mass loss of fiber samples. This effect is not observed for heat treated fibers if citrate is present in the fluid, because Fe(III) binds with citrate and remains mobile in the solution. Therefore, for developing the most accurate SWF in vitro acellular biosolubility test, SWF heat treatment for binder removal is not recommended in combination with dissolution testing in fluids without citrate as a complexing agent.


Subject(s)
Ferric Compounds , Iron , Animals , Iron/metabolism , Hot Temperature , Wool Fiber , Citrates/metabolism , Citrates/pharmacology , Citric Acid/metabolism , Citric Acid/pharmacology , Lung
20.
Int J Mol Sci ; 25(2)2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38279237

ABSTRACT

Amidst increasing concern about antibiotic resistance resulting from the overuse of antibiotics, there is a growing interest in exploring alternative agents. One such agent is citric acid, an organic compound commonly used for various applications. Our research findings indicate that the inclusion of citric acid can have several beneficial effects on the tight junctions found in the mouse intestine. Firstly, the study suggests that citric acid may contribute to weight gain by stimulating the growth of intestinal epithelial cells (IE-6). Citric acid enhances the small intestinal villus-crypt ratio in mice, thereby promoting intestinal structural morphology. Additionally, citric acid has been found to increase the population of beneficial intestinal microorganisms, including Bifidobacterium and Lactobacillus. It also promotes the expression of important protein genes such as occludin, ZO-1, and claudin-1, which play crucial roles in maintaining the integrity of the tight junction barrier in the intestines. Furthermore, in infected IEC-6 cells with H9N2 avian influenza virus, citric acid augmented the expression of genes closely associated with the influenza virus infection. Moreover, it reduces the inflammatory response caused by the viral infection and thwarted influenza virus replication. These findings suggest that citric acid fortifies the intestinal tight junction barrier, inhibits the replication of influenza viruses targeting the intestinal tract, and boosts intestinal immune function.


Subject(s)
Influenza A Virus, H9N2 Subtype , Influenza, Human , Animals , Mice , Humans , Citric Acid/pharmacology , Citric Acid/metabolism , Influenza, Human/metabolism , Intestines/microbiology , Intestinal Mucosa/metabolism , Tight Junctions/metabolism , Immunity
SELECTION OF CITATIONS
SEARCH DETAIL
...