Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.074
Filter
1.
Anal Chim Acta ; 1312: 342721, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38834258

ABSTRACT

This study reports a fast and visual detection method of antidepressant sertraline (SRT) drug by the core-shell AuNPs@CDs as the nanoprobes. The CDs has been eco-friendly synthesized from sweet lemon wastes to directly reduce Au+ to AuNPs without any external photoirradiation process or additional reductants. Optimizing key variables that impact the sensing process has been done using the central composite design (CCD) approach to simulate the assay condition before the analysis. Adding SRT with different concentrations to the nanoprobes under mildly acidic conditions presents an absorbance peak at 560 nm with purple color tonalities that differ from the behavior of alone nanoprobes (530 nm, pink color). The obtained absorption change is linearly proportional to the increase of SRT concentration from 1 µM to 35 µM with a limit of detection (LOD) value of 100 nM. The color changes with a vivid tonality from pink and purple to violet as the colorful fingerprint patterns are readily traceable by the naked eye, allowing the visual assay of SRT. The greenness of the developed approach is well evaluated by some international indexes including the complimentary green analytical procedure (ComplexGAPI) and also, the analytical greenness (AGREE) indexes. The proposed waste-derived nanoprobes based on the eco-friendly procedure not only conduct quantitative and qualitative non-invasive analysis of SRT by the naked eye but also, may widen for other applications in various fields.


Subject(s)
Cadmium Compounds , Gold , Metal Nanoparticles , Sertraline , Sulfides , Gold/chemistry , Metal Nanoparticles/chemistry , Sertraline/analysis , Sertraline/chemistry , Sulfides/chemistry , Cadmium Compounds/chemistry , Citrus/chemistry , Colorimetry/methods , Limit of Detection , Antidepressive Agents/analysis
2.
J Oleo Sci ; 73(5): 773-786, 2024.
Article in English | MEDLINE | ID: mdl-38692899

ABSTRACT

To overcome the defects of Citrus aurantium L. var. amara Engl. essential oil (CAEO), such as high volatility and poor stability, supercritical fluid-extracted CAEO nanoemulsion (SFE-CAEO-NE) was prepared by the microemulsification method. Emulsifiers comprising Tween 80, polyoxyethylenated castor oil (EL-40), and 1,2-hexanediol, and an oil phase containing SFE-CAEO were used for microemulsification. We examined the physicochemical properties of SFE-CAEO-NE and steam distillation-extracted CAEO nanoemulsion (SDE-CAEO-NE), which were prepared using different concentrations of the emulsifiers. The mean particle size and zeta potential were 21.52 nm and -9.82 mV, respectively, for SFE-CAEO-NE, and 30.58 nm and -6.28 mV, respectively, for SDE-CAEO-NE, at an emulsifier concentration of 15% (w/w). SFE-CAEO-NE displayed better physicochemical properties compared with SDE-CAEO-NE. Moreover, its physicochemical properties were generally stable at different temperatures (-20-60℃), pH (3-8), and ionic strengths (0-400 mM). No obvious variations in particle size, zeta potential, and Ke were observed after storing this nanoemulsion for 30 days at 4℃, 25℃, and 40℃, suggesting that it had good stability. The sleep-promoting effect of SFE-CAEO-NE was evaluated using a mouse model of insomnia. The results of behavioral tests indicated that SFE-CAEO-NE ameliorated insomnia-like behavior. Moreover, SFE-CAEO- NE administration increased the serum concentrations of neurotransmitters such as 5-hydroxytryptamine and γ-aminobutyric acid, and decreased that of noradrenaline in mice. It also exerted a reparative effect on the function of damaged neurons. Overall, SFE-CAEO-NE displayed a good sleep-promoting effect.


Subject(s)
Citrus , Emulsions , Oils, Volatile , Sleep , Animals , Citrus/chemistry , Oils, Volatile/isolation & purification , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Mice , Sleep/drug effects , Male , Particle Size , Nanoparticles , Emulsifying Agents/isolation & purification
3.
Toxicon ; 243: 107745, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38718841

ABSTRACT

A method for simultaneous determination of 12 mycotoxins in Pericarpium Citri Reticulataeby HPLC-MS/MS was established to analyze the residues of mycotoxins, inwhich from Three Gorges Reservoir area of China, including AFB1, AFB2, AFG1, AFG2, T-2, FB1, FB2, FB3, ZEN, OTA, OTB and DON.In addition, a probabilistic assessment model based on Monte Carlo simulation method was established in combination with pollution data, and the health risk assessment was carried out by the exposure limit method (MOE).The results showed that the method with strong specificity, good linearity and accurate recovery was established and could be used for the determination of 12 mycotoxins in Pericarpium Citri Reticulatae.In general, the total pollution rate of different degrees of pollution in the 36 batches of Pericarpium Citri Reticulatae sampleswas 75 %. It should be noted thatthe proportion of positive samplescontaminated by one toxin was the highest (59.26 %), and the detection rate of FB3 in Pericarpium Citri Reticulataewas the highest (66.67%), followed by AFG1 (44.44 %), indicating that the medicinal material polluted by AFG1 and AFB3 alone or simultaneously was more serious. Specifically, the detection rate of mycotoxins in Chongqing was the highest (92.31%) on account of the high temperature and humidity in Chongqing, followed by Southeast of Sichuan (83.33%) and West of Hubei (45.45%).On the other hand, the MOE of AFB1 and AFB2 calculated were both greater than 10000, indicating that the health risk of AFB1 and AFB2 exposure caused by taking Pericarpium Citri Reticulatae was low, but the risk of high intake population was higher than that of conventional intake population, which needed to be paid attention to. This study can provide a reference for the safety assessment of clinical medication of Pericarpium Citri Reticulatae inThree Gorges Reservoir area.


Subject(s)
Citrus , Food Contamination , Mycotoxins , China , Risk Assessment , Mycotoxins/analysis , Citrus/chemistry , Food Contamination/analysis , Tandem Mass Spectrometry , Chromatography, High Pressure Liquid , Humans , Dietary Exposure/analysis
4.
Int J Mol Sci ; 25(10)2024 May 10.
Article in English | MEDLINE | ID: mdl-38791260

ABSTRACT

This study aimed to assess the antioxidant capacity of lemon flavonoid extract Eriomin® (LE) and its impact on cholesterol metabolism in the context of healthy aging. We orally treated 24-month-old male Wistar rats with an LE (40 mg/kg) suspended in 0.3 mL of sunflower oil. At the same time, control groups received an equal volume of sunflower oil (CON) or remained untreated (ICON) daily for 4 weeks. We examined LE's effects on superoxide dismutase and catalase- and glutathione-related enzyme activities, the concentration of lipid peroxides and protein carbonyls, total oxidant status (TOS) and antioxidant status (TAS), and oxidative stress index (OSI) in the liver, jejunum, and ileum. We also measured total cholesterol, its biosynthetic precursors (lanosterol, lathosterol, desmosterol), its degradation products (bile acid precursors) in the serum, liver, jejunum, and ileum, and serum phytosterols (intestinal absorption markers). LE reduced TOS, TAS, and OSI (p < 0.05) compared with control values, indicating its consistent antioxidant action in all examined organs. LE lowered hepatic desmosterol (p < 0.05) while also reducing 7α- and 24-hydroxycholesterol levels in the liver and ileum (p < 0.01). Serum cholesterol, hepatic gene expression, and the immunostaining intensity of CYP7A1 were unchanged. In conclusion, LE exerted non-enzymatic antioxidant effects and reduced cholesterol degradation, reducing its biosynthesis products, thereby maintaining serum cholesterol levels.


Subject(s)
Aging , Antioxidants , Cholesterol , Citrus , Flavonoids , Liver , Oxidative Stress , Plant Extracts , Rats, Wistar , Animals , Cholesterol/blood , Cholesterol/metabolism , Antioxidants/metabolism , Male , Rats , Plant Extracts/pharmacology , Flavonoids/metabolism , Flavonoids/pharmacology , Liver/metabolism , Liver/drug effects , Aging/metabolism , Citrus/chemistry , Oxidative Stress/drug effects , Jejunum/metabolism , Jejunum/drug effects , Cholesterol 7-alpha-Hydroxylase/metabolism , Cholesterol 7-alpha-Hydroxylase/genetics
5.
Zhongguo Zhong Yao Za Zhi ; 49(9): 2364-2375, 2024 May.
Article in Chinese | MEDLINE | ID: mdl-38812137

ABSTRACT

To explore the active substances exerting anti-tumour effect in lemon essential oil and the molecular mechanism inhibiting the proliferation of head and neck cancer cells SCC15 and CAL33, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay(MTT) was utilized to identify the active component inhibiting the proliferation of head and neck cancer cells, namely citral. The IC_(50) of citral inhibiting the proliferation of head and neck cancer cells and normal cells were also determined. In addition, a 5-ethynyl-2'-deoxyuridine(EdU) staining assay was used to detect the effect of citral on the proliferation rate of head and neck cancer cells, and a colony formation assay was used to detect the effect of citral on tumor sphere formation of head and neck cancer cells in vitro. The cell cycle arrest and apoptosis induction of head and neck cancer cells by citral were evaluated by flow cytometry, and Western blot was used to detect the effect of citral on the expression levels of cell cycle-and apoptosis-related proteins in head and neck cancer cells. The findings indicated that citral could effectively inhibit the proliferation and growth of head and neck cancer cells, with anti-tumor activity, and its half inhibitory concentrations for CAL33 and SCC15 were 54.78 and 25.23 µg·mL~(-1), respectively. Furthermore, citral arrested cell cycle at G_2/M phase by down-regulating cell cycle-related proteins such as S-phase kinase associated protein 2(SKP2), C-MYC, cyclin dependent kinase 1(CDK1), and cyclin B. Moreover, citral increased the cysteinyl aspartate-specific proteinase-3(caspase-3), cysteinyl aspartate-specific proteinase-9(caspase-9), and cleaved poly ADP-ribose polymerase(PARP). It up-regulated the level of autophagy-related proteins including microtubule associated protein 1 light chain 3B(LC3B), sequestosome 1(P62/SQSTM1), autophagy effector protein Beclin1(Beclin1), and lysosome-associate membrane protein 1(LAMP1), suggesting that citral could effectively trigger cell apoptosis and cell autophagy in head and neck cancer cells. Furthermore, the dual-tagged plasmid system mCherry-GFP-LC3 was used, and it was found that citral impeded the fusion of autophagosomes and lysosomes, leading to autophagic flux blockage. Collectively, our findings reveal that the main active anti-proliferation component of lemon essential oil is citral, and this component has a significant inhibitory effect on head and neck cancer cells. Its underlying molecular mechanism is that citral induces apoptosis and autophagy by cell cycle arrest and ultimately inhibits cell proliferation.


Subject(s)
Acyclic Monoterpenes , Apoptosis , Cell Proliferation , Head and Neck Neoplasms , Monoterpenes , Oils, Volatile , Humans , Cell Proliferation/drug effects , Acyclic Monoterpenes/pharmacology , Acyclic Monoterpenes/chemistry , Head and Neck Neoplasms/drug therapy , Head and Neck Neoplasms/metabolism , Head and Neck Neoplasms/genetics , Apoptosis/drug effects , Cell Line, Tumor , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Monoterpenes/pharmacology , Monoterpenes/chemistry , Cell Cycle Checkpoints/drug effects , Citrus/chemistry , Plant Oils/pharmacology , Plant Oils/chemistry
6.
J Sep Sci ; 47(11): e2400127, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38819762

ABSTRACT

Hua-ju-hong (HJH) is a Chinese medicinal material obtained from Citrus grandis 'Tomentosa' (CGT) and Citrus grandis (L.) Osbeck (CG) with various commercial specifications. It is known for relieving cough and dispelling phlegm. To reveal the quality marker for distinguishing the various HJH, 215 batches of commercial HJH were studied systematically using multidimensional chemical analysis. Ten major components were identified by high-performance liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry and quantified via high-performance liquid chromatography coupled with diode array detection. In this study, a rapid, efficient, and low-cost chromatographic method was established. Total coumarin-hemiterpene and total coumarin-monoterpene were first classified and analyzed in HJH. The result indicated that the main component, naringin, was not the quality marker for differentiating CGT from CG. For reflecting the unique medicinal and food value of HJH, coumarins should be the more potential quality markers. Flavonoids were the possible quality markers for distinguishing two growth stages of fruit-exocarp and young fruit. For the first time, two chemotypes of HJH were identified in CG. This study provides a convenient yet reliant chromatographic method and novel yet systematic strategies for overall quality control of commercial HJH.


Subject(s)
Citrus , Drugs, Chinese Herbal , Chromatography, High Pressure Liquid , Drugs, Chinese Herbal/analysis , Drugs, Chinese Herbal/chemistry , Citrus/chemistry , Coumarins/analysis , Coumarins/chemistry , Mass Spectrometry , Quality Control , Molecular Structure
7.
Sci Total Environ ; 934: 173340, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38763201

ABSTRACT

Arsenic release and reduction in anoxic environments can be mitigated or facilitated by biochar amendment. However, the key fractions in biochars and how they control arsenic transformation remain poorly understood. In this study, a biochar produced from pomelo peel was rich in colloids and was used to evaluate the roles of the colloidal and residual fractions of biochar in arsenic transformation in anoxic paddy soil. Bulk biochar showed a markedly higher maximum adsorption capacity for As(III) at 1732 mg/kg than for As(V) at 75.7 mg/kg, mainly because of the colloidal fraction on the surface. When compared with the control and treatments with the colloidal/residual fraction, the addition of bulk biochar facilitated As(V) reduction and release in the soil during days 0-12, but decreased the dissolved As(III) concentration during days 12-20. The colloidal fraction revealed significantly higher electron donating capacity (8.26 µmole-/g) than that of bulk biochar (0.88 µmole-/g) and residual fraction (0.65 µmole-/g), acting as electron shuttle to promote As(V) reduction. Because the colloidal fraction was rich in aliphatic carbon, fulvic acid-like compounds, potassium, and calcium, it favored As(III) adsorption when more As(III) was released, probably via organic-cation-As(III) complexation. These findings provide deeper insight into the role of the colloidal fraction of biochar in controlling anaerobic arsenic transformation, which will be helpful for the practical application of biochar in arsenic-contaminated environments.


Subject(s)
Arsenic , Charcoal , Soil Pollutants , Soil , Charcoal/chemistry , Arsenic/analysis , Adsorption , Soil/chemistry , Colloids/chemistry , Citrus/chemistry , Environmental Restoration and Remediation/methods
8.
Food Chem ; 453: 139669, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-38781900

ABSTRACT

Green mold is a common postharvest disease infected by Penicillium digitatum that causes citrus fruit decay, and severely affects fruit storage quality. This work aimed to investigate the antifungal activity of Sanxiapeptin against P. digitatum, and elucidate the possible mechanisms involved. Sanxiapeptin was capable of inhibiting spore germination, germ tube length and mycelial growth. The SYTOX green staining assay revealed that Sanxiapeptin targeted the fungal membrane, and changed the membrane permeability, leading to the leakage of cell constituents. Meanwhile, Sanxiapeptin could influence the cell wall permeability and integrity by increasing the activities of chitinase and glucanase, resulting in abnormal chitin consumption and the decrease of glucan. Intriguingly, Sanxiapeptin could effectively control postharvest decay in citrus fruits, and activate the host resistance responses by regulating the phenylpropanoid pathway. In conclusion, Sanxiapeptin exhibits multiphasic antifungal mechanisms of action to control green mold in citrus fruits, shows great potential as novel food preservatives.


Subject(s)
Citrus , Food Preservatives , Fruit , Penicillium , Plant Diseases , Citrus/microbiology , Citrus/chemistry , Penicillium/growth & development , Penicillium/drug effects , Plant Diseases/microbiology , Fruit/microbiology , Fruit/chemistry , Fruit/growth & development , Fruit/drug effects , Food Preservatives/pharmacology , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Food Preservation/methods , Fungicides, Industrial/pharmacology , Fungicides, Industrial/chemistry
9.
Food Chem ; 453: 139605, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-38788641

ABSTRACT

Minerals are reported to dominate the electrical properties of honey and indicate its botanical and geographical origins. In this study, Electrochemical Impedance Spectroscopy (EIS) was used to assess the relation between mineral elements, electrical properties and botanical origin using three honey varieties - Citrus sp., Eucalyptus sp., and Erica sp. These varieties are identified through pollen analysis and market labelling. Flame atomic absorption and emission spectroscopies were used to quantify the concentrations of eight elements (potassium, sodium, calcium, magnesium, manganese, zinc, copper, and iron). Among all the mineral elements, potassium showed a consistent correlation with impedance. The potassium estimation in honey and standard solutions (calibration curve) had similar sensitivities of 153.43 nF/mM and 132.68 nF/mM, respectively. Additionally, the analysis revealed that potassium dominates the mineral composition, with the other species present in minimal quantities. The EIS technique showed high sensitivity to potassium and other ionisable species, making it possible to classify the botanical origin of these three honey types. The EIS technique proved to be both time and cost effective, yielding a classification rate higher than that achieved by analysing mineral composition.


Subject(s)
Dielectric Spectroscopy , Honey , Potassium , Honey/analysis , Honey/classification , Potassium/analysis , Citrus/chemistry , Citrus/classification
10.
Food Chem ; 453: 139697, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-38788652

ABSTRACT

Spiropidion developed by Syngenta shows high insecticidal and acaricidal activity against a wide range of sucking pests. In this study, according to the structure of spiropidion, two haptens were synthesized by introducing carboxyl groups from the ester group. After cell fusion, a monoclonal antibody (mAb 8B5) of spiropidion was obtained. The IC50 of the established heterologous indirect competitive enzyme-linked immunosorbent assay (ic-ELISA) was 7.36 ng/mL, and its working range was 1.75-34.92 ng/mL. The average recoveries were 76.05-124.78% in the Yangtze River and citrus samples. Moreover, the ic-ELISA results of 15 citrus samples agreed well with ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). Overall, the established ic-ELISA could be applied for the spiropidion residue monitor in food and agricultural samples.


Subject(s)
Antibodies, Monoclonal , Enzyme-Linked Immunosorbent Assay , Haptens , Pesticide Residues , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/immunology , Haptens/chemistry , Haptens/immunology , Animals , Pesticide Residues/analysis , Pesticide Residues/chemistry , Tandem Mass Spectrometry , Food Contamination/analysis , Mice, Inbred BALB C , Mice , Citrus/chemistry , Insecticides/chemistry , Insecticides/analysis
11.
Int J Biol Macromol ; 268(Pt 2): 132014, 2024 May.
Article in English | MEDLINE | ID: mdl-38697443

ABSTRACT

Pectin, a natural polysaccharide, holds versatile applications in food and pharmaceuticals. However, there is a need for further exploration into extracting novel functional fractions and characterizing them thoroughly. In this study, a sequential extraction approach was used to obtain three distinct lemon pectin (LP) fractions from lemon peels (Citrus Eureka): LP extracted with sodium acetate (LP-SA), LP extracted with ethylenediaminetetraacetic acid (LP-EDTA), and LP extracted with sodium carbonate and sodium borohydride (LP-SS). Comprehensive analysis revealed low methyl-esterification in all fractions. LP-SA and LP-SS displayed characteristics of rhamnogalacturonan-I type pectin, while LP-EDTA mainly consisted of homogalacturonan pectin. Notably, LP-SA formed self-aggregated particles with rough surfaces, LP-EDTA showed interlocking linear structures with smooth planes, and LP-SS exhibited branch chain structures with smooth surfaces. Bioactivity analysis indicated that LP-SA had significant apparent viscosity and ABTS radical scavenging activity, while both LP-EDTA and LP-SS showed excellent thermal stability according to thermogravimetric analysis (TGA). Furthermore, LP-SS exhibited remarkable gel-forming ability and significant hydroxyl free radicals scavenging activity. In conclusion, this study presents a novel method for extracting various lemon pectin fractions with unique structural and bioactive properties, contributing insights for advanced applications in the food and pharmaceutical sectors.


Subject(s)
Antioxidants , Citrus , Pectins , Pectins/chemistry , Pectins/isolation & purification , Citrus/chemistry , Antioxidants/chemistry , Antioxidants/pharmacology , Antioxidants/isolation & purification , Chemical Phenomena , Viscosity , Fruit/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology
12.
Food Chem ; 452: 139600, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38744138

ABSTRACT

A naringinase complex was chemically aminated prior to its immobilization on glyoxyl-agarose to develop a robust biocatalyst for juice debittering. The effects of amination on the optimal pH and temperature, thermal stability, and debittering performance were analyzed. Concentration of amino groups on catalysts surface increased in 36 %. Amination reduced the ß-glucosidase activity of naringinase complex; however, did not affect optimal pH and temperature of the enzyme and it favored immobilization, obtaining α-l-rhamnosidase and ß-d-glucosidase activities of 1.7 and 4.2 times the values obtained when the unmodified enzymes were immobilized. Amination favored the stability of the immobilized biocatalyst, retaining 100 % of both activities after 190 h at 30 °C and pH 3, while its non-aminated counterpart retained 80 and 52 % of α-rhamnosidase and ß-glucosidase activities, respectively. The immobilized catalyst showed a better performance in grapefruit juice debittering, obtaining a naringin conversion of 7 times the value obtained with the non-aminated catalyst.


Subject(s)
Enzymes, Immobilized , Fruit and Vegetable Juices , Glyoxylates , Sepharose , Fruit and Vegetable Juices/analysis , Enzymes, Immobilized/chemistry , Enzymes, Immobilized/metabolism , Amination , Hydrogen-Ion Concentration , Sepharose/chemistry , Glyoxylates/chemistry , Citrus/chemistry , Citrus/enzymology , Enzyme Stability , Biocatalysis , Multienzyme Complexes/chemistry , Multienzyme Complexes/metabolism , Glycoside Hydrolases/chemistry , Glycoside Hydrolases/metabolism , beta-Glucosidase/chemistry , beta-Glucosidase/metabolism , Temperature , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Flavanones/chemistry , Flavanones/metabolism , Catalysis
13.
Phytomedicine ; 129: 155722, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38733905

ABSTRACT

BACKGROUND: Autoimmune hepatitis (AIH), primarily mediated by T cells, is characterized by liver inflammation. Despite the advancements in understanding its pathogenesis, effective therapeutic options are limited. Naringin, a flavonoid abundant in citrus fruits, is recognized for its anti-inflammatory properties and ability to protect against various inflammatory diseases, including drug-induced liver injury. However, the exact effects of naringin on AIH and the mechanisms involved remain poorly understood. PURPOSE: We aim to determine the role of naringin in AIH, exploring its targets and actions in this disease. METHODS: Network pharmacology, molecular docking, and molecular dynamics simulations were utilized to predict the HUB targets connecting naringin, T cell-mediated autoimmune disorders, and AIH. Cellular thermal shift assays were used to determine the binding abilities of naringin with the HUB targets. An in vivo experiment confirmed the impact of naringin treatment on AIH development and underlying mechanisms. RESULTS: Naringin demonstrated therapeutic effects on ConA-induced AIH. There were 455 shared targets between naringin, T cell-mediated autoimmune diseases, and AIH. Ten HUB genes (AKT1, ALB, IL-6, IL-1ß, CTNNB1, TNF, TP53, MAPK3, VEGFA, and JUN) were identified through the PPI network. Gene ontology analysis revealed involvement in gene expression regulation, lipopolysaccharide-mediated signaling, and I-kappa kinase/NFκB signaling. Pathway analysis suggested TNF, Th1/Th2 cell differentiation, and Toll-like receptor pathways, with favorable naringin-HUB gene binding. Molecular docking confirmed albumin (ALB), IL-1ß, IL-6, and TNF as primary targets for naringin. Molecular dynamics simulations showed stable binding in ALB-naringin, TNF-naringin, and IL-1ß-naringin complexes. Naringin's hepatoprotective effect on AIH was supported by increased serum ALB and decreased hepatic inflammatory cytokines including IL-1ß, IL-6, and TNF-α. CONCLUSION: Our data underscore the potential of naringin as a preventive or therapeutical agent in T cell-mediated autoimmune diseases including AIH.


Subject(s)
Flavanones , Hepatitis, Autoimmune , Molecular Docking Simulation , Flavanones/pharmacology , Flavanones/chemistry , Hepatitis, Autoimmune/drug therapy , Animals , Citrus/chemistry , Molecular Dynamics Simulation , Liver/drug effects , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Male , Network Pharmacology , Concanavalin A , Mice , Humans , T-Lymphocytes/drug effects
14.
Chem Commun (Camb) ; 60(43): 5598-5601, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38712724

ABSTRACT

A simple aqueous host:guest sensing array can selectively discriminate between different types of citrus varietal from peel extract samples. It can also distinguish between identical citrus samples at varying stages of ripening. The discrimination effects stem from detection of changes in the terpenoid composition of the peel extracts by the host:guest array, despite the overwhelming excess of a single component, limonene, in each sample. The hosts are insensitive to limonene but bind other monoterpenes strongly, even though they are similar in structure to the major limonene component. This work demonstrates the capability of host:guest arrays in sensing target molecules in environments with the competing agents present at high abundances in the sample matrix.


Subject(s)
Citrus , Terpenes , Citrus/chemistry , Terpenes/chemistry , Terpenes/analysis , Limonene/chemistry , Limonene/analysis , Fruit/chemistry
15.
J Agric Food Chem ; 72(22): 12596-12606, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38771666

ABSTRACT

Citrus canker, caused by Xanthomonas citri subsp. citri (Xcc), is a severe citrus disease. Currently, copper-containing pesticides are widely used to manage this disease, posing high risks to the environment and human health. This study reports the discovery of naturally occurring anti-Xcc compounds from a deep-sea fungus, Aspergillus terreus SCSIO 41202, and the possible mode of action. The ethyl acetate extract of A. terreus was subjected to bioassay-guided isolation, resulting in the discovery of eight anti-Xcc compounds (1-8) with minimum inhibitory concentrations (MICs) ranging from 0.078 to 0.625 mg/mL. The chemical structures of these eight metabolites were determined by integrative analysis of various spectroscopic data. Among these compounds, Asperporonin A (1) and Asperporonin B (2) were identified as novel compounds with a very unusual structural skeleton. The electronic circular dichroism was used to determine the absolute configurations of 1 and 2 through quantum chemical calculation. A bioconversion pathway involving pinacol rearrangement was proposed to produce the unusual compounds (1-2). Compound 6 exhibited an excellent anti-Xcc effect with a MIC value of 0.078 mg/mL, which was significantly more potent than the positive control CuSO4 (MIC = 0.3125 mg/mL). Compound 6 inhibited cell growth by disrupting biofilm formation, destroying the cell membrane, and inducing the accumulation of reactive oxygen species. In vivo tests indicated that compound 6 is highly effective in controlling citrus canker disease. These results indicate that compounds 1-8, especially 6, have the potential as lead compounds for the development of new, environmentally friendly, and efficient anti-Xcc pesticides.


Subject(s)
Anti-Bacterial Agents , Aspergillus , Microbial Sensitivity Tests , Plant Diseases , Xanthomonas , Xanthomonas/drug effects , Aspergillus/drug effects , Aspergillus/chemistry , Aspergillus/metabolism , Plant Diseases/microbiology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Citrus/chemistry , Citrus/microbiology , Molecular Structure
16.
Biochem Biophys Res Commun ; 719: 150043, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-38735206

ABSTRACT

In this study, a simple green synthesis of vanadium pentoxide nanoparticles (VNPs) was prepared by the extract of Kaffir lime fruit (Citrus hystrix) as a green reducing and stabilizing agent, along with the investigation of calcination temperature was carried out at 450 and 550 °C. It was affirmed that, at higher temperature (550 °C), the VNPs possessed a high degree crystalline following the construction of (001) lattice diffraction within an increase in crystalline size from 47.12 to 53.51 nm, although the band gap of the materials at 450 °C was lower than that of the VNPs-550 (2.53 versus 2.66 eV, respectively). Besides, the materials were assessed for the potential bioactivities toward antibacterial, antifungal, DNA cleavage, anti-inflammatory, and hemolytic performances. As a result, the antibacterial activity, with minimal inhalation concentration (MIC) < 6.25 µg/mL for both strains, and fungicidal one of the materials depicted the dose-dependent effects. Once, both VNPs exhibited the noticeable efficacy of the DNA microbial damage, meanwhile, the outstanding anti-inflammatory agent was involved with the IC50 of 123.636 and 227.706 µg/mL, accounting for VNPs-450 and VNPs-550, respectively. Furthermore, this study also demonstrated the hemolytic potential of the VNPs materials. These consequences declare the prospects of the VNPs as the smart and alternative material from the green procedure in biomedicine.


Subject(s)
Anti-Bacterial Agents , Citrus , Fruit , Plant Extracts , Vanadium Compounds , Citrus/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Vanadium Compounds/chemistry , Vanadium Compounds/pharmacology , Fruit/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Nanoparticles/chemistry , Microbial Sensitivity Tests , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Antifungal Agents/chemical synthesis , Temperature , Hemolysis/drug effects , Green Chemistry Technology , Humans
17.
Int J Biol Macromol ; 267(Pt 1): 131373, 2024 May.
Article in English | MEDLINE | ID: mdl-38583838

ABSTRACT

Fruit spoilage can cause huge economic losses, in which fungal infection is one of the main influencing factors, how to effectively control mould and spoilage of fruits and prolong their shelf-life has become a primary issue in the development of fruit and vegetable industry. In this study, rosin derivative maleopimaric anhydride (MPA) was combined with biodegradable and antifungal chitosan (CS) to enhance its antifungal and preservative properties. The modified compounds were characterized by FTIR, 1H NMR spectra and XRD, and the in vitro antifungal properties of the modified compounds were evaluated by the radial growth assay and the minimal inhibitory concentration assay. The preservation effect on small mandarin oranges and longan was studied. The analysis revealed that the modification product (CSMA) of MPA access to C6-OH of CS had a better antifungal effect. In addition, CSMA was more environmentally friendly and healthier than the commercially available chemical preservative (Imazalil), and had the same antifungal preservative effect in preserving small mandarin orange, and was able to extend the shelf life to >24 d. In the preservation of longan, CSMA was more effective against tissue water loss and was able to maintain the moisture in the longan pulp and extend the shelf life. Therefore, CSMA has good application potentials in longan keeping-fresh.


Subject(s)
Antifungal Agents , Chitosan , Chitosan/chemistry , Chitosan/pharmacology , Chitosan/chemical synthesis , Antifungal Agents/pharmacology , Antifungal Agents/chemical synthesis , Antifungal Agents/chemistry , Microbial Sensitivity Tests , Fruit/chemistry , Food Preservation/methods , Citrus/chemistry
18.
Recent Pat Biotechnol ; 18(4): 344-357, 2024.
Article in English | MEDLINE | ID: mdl-38566382

ABSTRACT

BACKGROUND: There are patents available related to fermented food and beverages which enhance to human health. Citrus limetta (Mosambi) has a high content of flavonoids and exhibits antioxidant activity, which could stimulate the digestive system and be useful for gastroprotective activity. It supports digestion by neutralizing the acidic digestive juices and reducing gastric acidity. OBJECTIVE: This study explored the potential of using waste peel extract from Citrus limetta to prevent ulcers. The study specifically sought to assess the anti-ulcer properties of fermented and non-fermented extracts and compare them. Further, the study looked at the potential benefits of treating or preventing ulcers with Citrus limetta waste peels and whether fermentation affected the efficacy of the treatment. METHODS: Thirty female Wistar albino rats were equally distributed into five different groups. Group 1 received distilled water (20 ml/kg/b.w); Group 2 received indomethacin (mg/kg/b.w); Group 3 received omeprazole (20 mg/kg/b.w); Group 4 received aqueous extract of Mosambi peel (400 mg/kg/b.w) and Group 5 received fermented product of extract of Mosambi peel (400 mg/kg/b.w). RESULTS: Findings explored that, compared to non-fermented citrus fruit juice, biofermented exhibited less gastric volume (1.58 ± 0.10 ml vs. 1.8 ± 0.14 ml), reduced MDA levels (355.23 ± 100.70 µmol/mg protein vs. 454.49 ± 155.88 µmol/mg protein), and low ulcer index (0.49 ± 0.07 vs. 0.72 ± 0.14). CONCLUSION: The results suggest that the bio-fermented product of Citrus limetta peel has better anti-ulcer potential against peptic ulcer induced by indomethacin in Wistar albino rats compared to non-fermented.


Subject(s)
Anti-Ulcer Agents , Citrus , Fermentation , Plant Extracts , Rats, Wistar , Stomach Ulcer , Animals , Citrus/chemistry , Female , Rats , Plant Extracts/pharmacology , Plant Extracts/chemistry , Anti-Ulcer Agents/pharmacology , Anti-Ulcer Agents/chemistry , Stomach Ulcer/drug therapy , Stomach Ulcer/metabolism , Stomach Ulcer/pathology , Patents as Topic , Indomethacin/metabolism , Fruit/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Omeprazole/pharmacology
19.
An Acad Bras Cienc ; 96(1): e20230640, 2024.
Article in English | MEDLINE | ID: mdl-38656056

ABSTRACT

The current research intended to examine the impact of dietary lemon peel powder (LPP) on laying quail performance, egg quality criteria, and the antioxidant capacity of the yolk. A total of 120 female Japanese quails (272.6±9.3 g), aged 21 weeks, were allotted to 6 trial groups, each with 5 replicates of 4 quails. Additions of 0, 1, 2, 3, 4, or 5 g/kg of LPP to the basal diet were used to create the treatment groups. Quails were fed ad libitum for 70 days. Neither performance parameters nor egg production was affected by LPP. However, eggshell-breaking strength improved by adding 2 g/kg LPP to the diet, but worsened at 5 g/kg. Moreover, the relative weight of eggshell and yolk L* value decreased with the treatments. Dietary LPP enhanced oxidative stability, reducing malondialdehyde (MDA) and increasing 1,1-diphenyl-2-picrylhydrazyl (DPPH) yolk values. The current study demonstrated that LPP, a safe and easily accessible agricultural by-product, enhanced eggshell quality when it was included in the diet of laying quails at doses of 2 g/kg. In contrast, improvement of yolk antioxidant capacity required increased amounts of LPP (4 g/kg). LPP could be advantageous to animal nutrition as an adequate substitute to reduce waste by-products.


Subject(s)
Animal Feed , Antioxidants , Citrus , Coturnix , Dietary Supplements , Powders , Animals , Citrus/chemistry , Female , Antioxidants/analysis , Antioxidants/pharmacology , Animal Feed/analysis , Egg Shell/drug effects , Egg Shell/chemistry , Egg Yolk/chemistry
20.
Food Chem ; 448: 139170, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38579558

ABSTRACT

Current nanozyme applications rely heavily on peroxidase-like nanozymes and are limited to a specific temperature range, despite notable advancements in nanozyme development. In this work, we designed novel Mn-based metal organic frameworks (UoZ-4), with excellent oxidase mimic activity towards common substrates. UoZ-4 showed excellent oxidase-like activity (with Km 0.072 mM) in a wide range of temperature, from 10 °C to 100 °C with almost no activity loss, making it a very strong candidate for psychrophilic and thermophilic applications. Ascorbic acid, cysteine, and glutathione could quench the appearance of the blue color of oxTMB, led us to design a visual-based sensing platform for detection of total antioxidant capacity (TAC) in cold, mild and hot conditions. The visual mode successfully assessed TAC in citrus fruits with satisfactory recovery and precisions. Cold/hot adapted and magnetic property will broaden the horizon of nanozyme applications and breaks the notion of the temperature limitation of enzymes.


Subject(s)
Antioxidants , Citrus , Fruit , Manganese , Metal-Organic Frameworks , Oxidoreductases , Temperature , Citrus/chemistry , Citrus/metabolism , Antioxidants/metabolism , Antioxidants/chemistry , Antioxidants/analysis , Fruit/chemistry , Fruit/metabolism , Manganese/metabolism , Manganese/chemistry , Manganese/analysis , Metal-Organic Frameworks/chemistry , Oxidoreductases/metabolism , Oxidoreductases/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...