Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 254
Filter
1.
Cell Rep ; 43(5): 114119, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38630589

ABSTRACT

Phosphatidylinositol 3-kinase α (PI3Kα) is a heterodimer of p110α catalytic and p85 adaptor subunits that is activated by agonist-stimulated receptor tyrosine kinases. Although p85α recruits p110α to activated receptors on membranes, p85α loss, which occurs commonly in cancer, paradoxically promotes agonist-stimulated PI3K/Akt signaling. p110α localizes to microtubules via microtubule-associated protein 4 (MAP4), facilitating its interaction with activated receptor kinases on endosomes to initiate PI3K/Akt signaling. Here, we demonstrate that in response to agonist stimulation and p85α knockdown, the residual p110α, coupled predominantly to p85ß, exhibits enhanced recruitment with receptor tyrosine kinases to endosomes. Moreover, the p110α C2 domain binds PI3-phosphate, and this interaction is also required to recruit p110α to endosomes and for PI3K/Akt signaling. Stable knockdown of p85α, which mimics the reduced p85α levels observed in cancer, enhances cell growth and tumorsphere formation, and these effects are abrogated by MAP4 or p85ß knockdown, underscoring their role in the tumor-promoting activity of p85α loss.


Subject(s)
Class Ia Phosphatidylinositol 3-Kinase , Endosomes , Microtubule-Associated Proteins , Phosphatidylinositol Phosphates , Signal Transduction , Endosomes/metabolism , Humans , Phosphatidylinositol Phosphates/metabolism , Class Ia Phosphatidylinositol 3-Kinase/metabolism , Class Ia Phosphatidylinositol 3-Kinase/genetics , Microtubule-Associated Proteins/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Animals , Enzyme Activation , Phosphatidylinositol 3-Kinases/metabolism , Cell Proliferation , Protein Binding
2.
Neoplasia ; 51: 100987, 2024 05.
Article in English | MEDLINE | ID: mdl-38489912

ABSTRACT

Gene fusions are common in high-grade serous ovarian cancer (HGSC). Such genetic lesions may promote tumorigenesis, but the pathogenic mechanisms are currently poorly understood. Here, we investigated the role of a PIK3R1-CCDC178 fusion identified from a patient with advanced HGSC. We show that the fusion induces HGSC cell migration by regulating ERK1/2 and increases resistance to platinum treatment. Platinum resistance was associated with rod and ring-like cellular structure formation. These structures contained, in addition to the fusion protein, CIN85, a key regulator of PI3K-AKT-mTOR signaling. Our data suggest that the fusion-driven structure formation induces a previously unrecognized cell survival and resistance mechanism, which depends on ERK1/2-activation.


Subject(s)
Class Ia Phosphatidylinositol 3-Kinase , Drug Resistance, Neoplasm , MAP Kinase Signaling System , Oncogene Proteins, Fusion , Ovarian Neoplasms , Phosphatidylinositol 3-Kinases , Female , Humans , Class Ia Phosphatidylinositol 3-Kinase/genetics , Class Ia Phosphatidylinositol 3-Kinase/metabolism , Drug Resistance, Neoplasm/genetics , MAP Kinase Signaling System/genetics , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/genetics , Ovarian Neoplasms/metabolism , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Platinum , Oncogene Proteins, Fusion/genetics , Oncogene Proteins, Fusion/metabolism , Cytoskeletal Proteins/genetics , Cytoskeletal Proteins/metabolism
3.
Mol Cancer ; 23(1): 5, 2024 01 06.
Article in English | MEDLINE | ID: mdl-38184597

ABSTRACT

BACKGROUND: Cisplatin (CDDP) is the first-line chemotherapeutic strategy to treat patients with ovarian cancer (OC). The development of CDDP resistance remains an unsurmountable obstacle in OC treatment and frequently induces tumor recurrence. Circular RNAs (circRNAs) are noncoding RNAs with important functions in cancer progression. Whether circRNAs function in CDDP resistance of OC is unclear. METHODS: Platinum-resistant circRNAs were screened via circRNA deep sequencing and examined using in situ hybridization (ISH) in OC. The role of circPLPP4 in CDDP resistance was assessed by clone formation and Annexin V assays in vitro, and by OC patient-derived xenografts and intraperitoneal tumor models in vivo. The mechanism underlying circPLPP4-mediated activation of miR-136/PIK3R1 signaling was examined by luciferase reporter assay, RNA pull-down, RIP, MeRIP and ISH. RESULTS: circPLPP4 was remarkably upregulated in platinum resistant OC. circPLPP4 overexpression significantly enhanced, whereas circPLPP4 silencing reduced, OC cell chemoresistance. Mechanistically, circPLPP4 acts as a microRNA sponge to sequester miR-136, thus competitively upregulating PIK3R1 expression and conferring CDDP resistance. The increased circPLPP4 level in CDDP-resistant cells was caused by increased RNA stability, mediated by increased N6-methyladenosine (m6A) modification of circPLPP4. In vivo delivery of an antisense oligonucleotide targeting circPLPP4 significantly enhanced CDDP efficacy in a tumor model. CONCLUSIONS: Our study reveals a plausible mechanism by which the m6A -induced circPLPP4/ miR-136/ PIK3R1 axis mediated CDDP resistance in OC, suggesting that circPLPP4 may serve as a promising therapeutic target against CDDP resistant OC. A circPLPP4-targeted drug in combination with CDDP might represent a rational regimen in OC.


Subject(s)
MicroRNAs , Ovarian Neoplasms , Humans , Female , Cisplatin/pharmacology , Up-Regulation , RNA, Circular/genetics , Neoplasm Recurrence, Local , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/genetics , MicroRNAs/genetics , Adenosine , Class Ia Phosphatidylinositol 3-Kinase/genetics
4.
Breast Cancer Res Treat ; 204(2): 407-414, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38153569

ABSTRACT

PURPOSE: The PIK3R1 gene encodes the regulatory subunit-p85a-of the PI3K signaling complex. Prior studies have found that pathogenic somatic alterations in PIK3R1 are enriched in human breast cancers but the genomic landscape of breast cancer patients harboring PIK3R1 mutations has not been extensively characterized. METHODS: We retrospectively analyzed 6,009 patient records that underwent next-generation sequencing (NGS) using the Tempus xT solid tumor assay. All patients had breast cancer with known HER2 (+/-) and hormone receptor (HR; +/-) status and were classified according to the presence of PIK3R1 mutations including short variants and copy number alterations. RESULTS: The frequency of PIK3R1 mutations varied according to subtype: 6% in triple negative (TNBC, 89/1,475), 2% in HER2-/HR+ (80/3,893) and 2.3% in HER2+ (15/641) (p < 0.001). Co-mutations in PTEN, TP53 and NF1 were significantly enriched, co-mutations in PIK3CA were significantly less prevalent, and tumor mutational burden was significantly higher in PIK3R1-mutated HER2- samples relative to PIK3R1 wild-type. At the transcriptional-level, PIK3R1 RNA expression in HER2- disease was significantly higher in PIK3R1-mutated (excluding copy number loss) samples, regardless of subtype. CONCLUSION: This is the largest investigation of the PIK3R1 mutational landscape in breast cancer patients (n = 6,009). PIK3R1 mutations were more common in triple-negative breast cancer (~ 6%) than in HER2 + or HER2-/HR + disease (approximately 2%). While alterations in the PI3K/AKT pathway are often actionable in HER2-/HR + breast cancer, our study suggests that PIK3R1 could be an important target in TNBC as well.


Subject(s)
Breast Neoplasms , Triple Negative Breast Neoplasms , Humans , Female , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/pathology , Retrospective Studies , Phosphatidylinositol 3-Kinases/genetics , Mutation , Transcription Factors/genetics , Class I Phosphatidylinositol 3-Kinases/genetics , Genomics , Class Ia Phosphatidylinositol 3-Kinase/genetics
5.
Cell Mol Biol (Noisy-le-grand) ; 69(12): 210-217, 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-38063094

ABSTRACT

Here, we explored a possible mechanism of microRNA-126-3p (miR-126-3p) on neonatal rats with hypoxia-reoxygenation injury (HI). After administering HI to newborn Sprague-Dawley rats, the expression of miR-126-3p in the brain injury was assessed by RT-PCR. A miR-126-3p mimic and inhibitor were treated in the HI neonatal rats. The water maze test, TTC, HE, Nissl and TUNEL staining were separately implemented to test the effects of miR-126-3p on the HI-treated neonatal rats. At the same time, the phosphoinositide-3-kinase regulatory subunit 2 (PIK3R2) expression in the damaged cortex region was analyzed. In vitro, cortical neurons were cultured and treated with oxygen and glucose deprivation (OGD), then transfected miR-126-3p mimic, PIK3R2 overexpression lentivirus vector or silence of PIK3R2. The cell viability was observed by CCK-8. The autophagy of neurons was detected by acridine orange staining. In contrast to the sham-operated rats, the miR-126-3p expression significantly decreased, but PIK3R2 expression markedly rose in the cortex of HI rats. Injection of miR-126-3p mimic raised the learning and memory abilities through down-regulating the cerebral ischemic area, improving pathological damage of the cortex, reducing the neurons apoptosis of the cortex and down-regulating the autophagy-related and apoptosis-related proteins. Overexpression of PIK3R2, a miR-126-3p target, may reduce cell viability and boost autophagy and apoptosis. Silence of PIK3R2 promoted cell viability and inhibited cell apoptosis and autophagy. The consequences of miR-126-3p were comparable to those of PIK3R2 silencing. A new therapeutic target for HI injury in newborn rats is provided by the overexpression of miR-126-3p, which inhibits autophagy and death of cortical neurons by targeting PIK3R2 in HI-treated neonatal rats.


Subject(s)
Cerebral Cortex , Class Ia Phosphatidylinositol 3-Kinase , Hypoxia , MicroRNAs , Animals , Rats , Animals, Newborn , Apoptosis/genetics , Class Ia Phosphatidylinositol 3-Kinase/genetics , Glucose/pharmacology , Hypoxia/genetics , MicroRNAs/metabolism , Rats, Sprague-Dawley , Autophagy/genetics , Cerebral Cortex/metabolism , Cerebral Cortex/pathology
6.
Int J Mol Sci ; 24(16)2023 Aug 11.
Article in English | MEDLINE | ID: mdl-37628845

ABSTRACT

PIK3R1 (also known as p85α) is a regulatory subunit of phosphoinositide 3-kinases (PI3Ks). PI3K, a heterodimer of a regulatory subunit and a catalytic subunit, phosphorylates phosphatidylinositol into secondary signaling molecules involved in regulating metabolic homeostasis. PI3K converts phosphatidylinositol 4,5-bisphosphate (PIP2) to phosphatidylinositol 3,4,5-triphosphate (PIP3), which recruits protein kinase AKT to the inner leaflet of the cell membrane to be activated and to participate in various metabolic functions. PIK3R1 stabilizes and inhibits p110 catalytic activity and serves as an adaptor to interact with insulin receptor substrate (IRS) proteins and growth factor receptors. Thus, mutations in PIK3R1 or altered expression of PIK3R1 could modulate the activity of PI3K and result in significant metabolic outcomes. Interestingly, recent studies also found PI3K-independent functions of PIK3R1. Overall, in this article, we will provide an updated review of the metabolic functions of PIK3R1 that includes studies of PIK3R1 in various metabolic tissues using animal models, the mechanisms modulating PIK3R1 activity, and studies on the mutations of human PIK3R1 gene.


Subject(s)
Insulin Resistance , Animals , Humans , Insulin Resistance/genetics , Genes, Regulator , Transcription Factors , Homeostasis , Catalytic Domain , Insulin Receptor Substrate Proteins , Class Ia Phosphatidylinositol 3-Kinase/genetics
7.
Mol Genet Genomic Med ; 11(12): e2271, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37641480

ABSTRACT

BACKGROUND: The PI3K/AKT pathway, extensively studied in cancer, is vital for regulating cell metabolism, differentiation, and proliferation. Pathogenic variants in the PIK3R1 gene, which encodes three regulatory units of class IA PI3Ks, have been found in affected tissue of individuals with vascular lesions. These variants predominantly occur in the iSH2 domain, disrupting inhibitory contacts with the catalytic unit and leading to PI3K activation. Germline variants in this gene are also linked to an immunological condition called Activated PI3K delta syndrome type 2 (APDS2). METHODS: This is a case report and literature review. Clinical data were retrieved from medical records. RESULTS: A male patient presented with extensive vascular malformation covering over 90% of his body, along with complete 2-3 toe syndactyly, suggesting a vascular malformation syndrome called PROS. Low levels of IgA and IgG were detected. The patient achieved his developmental milestones and had above-average weight, height, and head circumference. Exome sequencing of skin and blood DNA revealed a de novo variant in PIK3R1 (c.1746-2A>G, p.?) in 9% of the patient's blood cells and 25% of cultured fibroblasts. Initially, classified as a variant of uncertain significance, this variant was later confirmed to be the cause. CONCLUSIONS: This is the first intronic SNV in a canonical splice site within iSH2 described, highlighting the importance of iSH2 in the regulation of the PI3K/AKT pathway and its involvement in the development of vascular overgrowth and antibody deficiency.


Subject(s)
Primary Immunodeficiency Diseases , Vascular Malformations , Humans , Male , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Primary Immunodeficiency Diseases/genetics , Transcription Factors , Vascular Malformations/genetics , Immunoglobulins , Class Ia Phosphatidylinositol 3-Kinase/genetics
8.
Sci Rep ; 13(1): 4467, 2023 03 18.
Article in English | MEDLINE | ID: mdl-36934165

ABSTRACT

There is little data concerning the implications of PIK3CA mutations outside of the known hotspots described in ER+/HER2- metastatic breast cancer (mBC). Similarly, PIK3R1 mutations could also lead to activation of PI3K pathway, but are poorly described. We determined the incidence and type of all somatic PIK3CA and PIK3R1 mutations by whole exome sequencing (WES) in a pan-cancer cohort of 1200 patients. Activation of the PI3K pathway was studied using phospho-AKT immunohistochemistry. Associations between PIK3CA/PIK3R1 mutations and response to chemotherapy were studied in mBC cases. We found 141 patients (11.8%) with a PIK3CA and/or PIK3R1 mutation across 20 different cancer types. The main cancer subtype was mBC (45.4%). Eighty-four mutations (62.2%) occurred in the three described hotspots; 51 mutations occurred outside of these hotspots. In total, 78.4% were considered activating or probably activating. Among PIK3R1 mutations, 20% were loss of function mutations, leading to a constitutional activation of the pathway. Phospho-AKT quantification in tumor samples was in favor of activation of the PI3K pathway in the majority of mutated tumors, regardless of mutation type. In ER+/HER2- mBC, first line chemotherapy efficacy was similar for PIK3CA-mutated and PIK3CA-WT tumors, whereas in triple negative mBC, chemotherapy appeared to be more effective in PIK3CA-WT tumors. In this large, real-life pan-cancer patient cohort, our results indicate that PIK3CA/PIK3R1 mutations are widely spread, and plead in favour of evaluating the efficacy of PI3K inhibitors outside of ER+/HER2- mBC and outside of hotspot mutations.


Subject(s)
Breast Neoplasms , Triple Negative Breast Neoplasms , Humans , Female , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Class I Phosphatidylinositol 3-Kinases/genetics , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Treatment Outcome , Transcription Factors/genetics , Mutation , Class Ia Phosphatidylinositol 3-Kinase/genetics
9.
J Exp Med ; 220(6)2023 06 05.
Article in English | MEDLINE | ID: mdl-36943234

ABSTRACT

Heterozygous loss-of-function (LOF) mutations in PIK3R1 (encoding phosphatidylinositol 3-kinase [PI3K] regulatory subunits) cause activated PI3Kδ syndrome 2 (APDS2), which has a similar clinical profile to APDS1, caused by heterozygous gain-of-function (GOF) mutations in PIK3CD (encoding the PI3K p110δ catalytic subunit). While several studies have established how PIK3CD GOF leads to immune dysregulation, less is known about how PIK3R1 LOF mutations alter cellular function. By studying a novel CRISPR/Cas9 mouse model and patients' immune cells, we determined how PIK3R1 LOF alters cellular function. We observed some overlap in cellular defects in APDS1 and APDS2, including decreased intrinsic B cell class switching and defective Tfh cell function. However, we also identified unique APDS2 phenotypes including defective expansion and affinity maturation of Pik3r1 LOF B cells following immunization, and decreased survival of Pik3r1 LOF pups. Further, we observed clear differences in the way Pik3r1 LOF and Pik3cd GOF altered signaling. Together these results demonstrate crucial differences between these two genetic etiologies.


Subject(s)
Immunologic Deficiency Syndromes , Phosphatidylinositol 3-Kinases , Animals , Mice , Humans , Class I Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/genetics , Mutation/genetics , B-Lymphocytes , Syndrome , Cell Differentiation/genetics , Immunologic Deficiency Syndromes/genetics , Class Ia Phosphatidylinositol 3-Kinase/genetics
11.
Front Endocrinol (Lausanne) ; 14: 1152579, 2023.
Article in English | MEDLINE | ID: mdl-38317714

ABSTRACT

The regulatory subunit of phosphatidylinositol 3-kinase (PI3K), known as p85, is a critical component in the insulin signaling pathway. Extensive research has shed light on the diverse roles played by the two isoforms of p85, namely p85α and p85ß. The gene pik3r1 encodes p85α and its variants, p55α and p50α, while pik3r2 encodes p85ß. These isoforms exhibit various activities depending on tissue types, nutrient availability, and cellular stoichiometry. Whole-body or liver-specific deletion of pik3r1 have shown to display increased insulin sensitivity and improved glucose homeostasis; however, skeletal muscle-specific deletion of p85α does not exhibit any significant effects on glucose homeostasis. On the other hand, whole-body deletion of pik3r2 shows improved insulin sensitivity with no significant impact on glucose tolerance. Meanwhile, liver-specific double knockout of pik3r1 and pik3r2 leads to reduced insulin sensitivity and glucose tolerance. In the context of obesity, upregulation of hepatic p85α or p85ß has been shown to improve glucose homeostasis. However, hepatic overexpression of p85α in the absence of p50α and p55α results in increased insulin resistance in obese mice. p85α and p85ß have distinctive roles in cancer development. p85α acts as a tumor suppressor, but p85ß promotes tumor progression. In the immune system, p85α facilitates B cell development, while p85ß regulates T cell differentiation and maturation. This review provides a comprehensive overview of the distinct functions attributed to p85α and p85ß, highlighting their significance in various physiological processes, including insulin signaling, cancer development, and immune system regulation.


Subject(s)
Hyperinsulinism , Insulin Resistance , Neoplasms , Mice , Animals , Insulin Resistance/genetics , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Class Ia Phosphatidylinositol 3-Kinase/genetics , Class Ia Phosphatidylinositol 3-Kinase/metabolism , Mice, Knockout , Insulin/metabolism , Glucose , Protein Isoforms
12.
Allergol Immunopathol (Madr) ; 50(4): 1-9, 2022.
Article in English | MEDLINE | ID: mdl-35789397

ABSTRACT

Monoallelic loss-of-function (LOF) mutations in the phosphatidylinositol 3-kinase (PIK3R1) gene affecting the inter-Src homology 2 domain of the p85α regulatory subunit of phosphoinositide--3-kinase δ (PI3Kδ) cause the activated PI3K δ syndrome (APDS2). APDS2 is defined as a primary antibody deficiency, developmental abnormalities within the B and T lymph cell compartments, and immune dysregulation. The genetic defect of APDS2 is shared with that of the SHORT syndrome, characterized by short stature, joint hyperextensibility, ocular depression, Rieger anomaly, and delayed tooth eruption. LOF variants in an intronic splice site (c.1425+1G.C/A/T) in the PI3KR1 gene have been identified in patients affected with both APDS2 and SHORT syndrome. Herein, we report a novel c.1644-1648del (p.Asp548Glufs*6) variant in a pediatric patient with the APDS2-related immunodeficiency, who presents with mild phenotypic features of the SHORT syndrome, congenital chest wall deformity, and IgE-mediated food allergy. The same variant was also identified in the patient's hitherto asymptomatic mother, implicating an incomplete penetrance. Regular monitoring by a multidisciplinary team under the pediatric clinical immunologist's supervision to implement appropriate diagnostic procedures and treatment modalities is of paramount importance. Further studies are required to better define the genotype-phenotype correlation in patients with the PIK3R1 gene mutations and to better delineate the mutual relationship between APDS2 and the SHORT syndrome.


Subject(s)
Phosphatidylinositol 3-Kinases , Primary Immunodeficiency Diseases , Child , Class I Phosphatidylinositol 3-Kinases , Class Ia Phosphatidylinositol 3-Kinase/genetics , Growth Disorders , Humans , Hypercalcemia , Metabolic Diseases , Mutation/genetics , Nephrocalcinosis , Penetrance , Phenotype , Phosphatidylinositol 3-Kinases/genetics , Primary Immunodeficiency Diseases/diagnosis , Primary Immunodeficiency Diseases/genetics , Transcription Factors/genetics
13.
Clin Cancer Res ; 28(16): 3603-3617, 2022 08 15.
Article in English | MEDLINE | ID: mdl-35670774

ABSTRACT

PURPOSE: Oncogenic alterations of the PI3K/AKT pathway occur in >40% of patients with metastatic castration-resistant prostate cancer, predominantly via PTEN loss. The significance of other PI3K pathway components in prostate cancer is largely unknown. EXPERIMENTAL DESIGN: Patients in this study underwent tumor sequencing using the MSK-IMPACT clinical assay to capture single-nucleotide variants, insertions, and deletions; copy-number alterations; and structural rearrangements, or were profiled through The Cancer Genome Atlas. The association between PIK3R1 alteration/expression and survival was evaluated using univariable and multivariable Cox proportional-hazards regression models. We used the siRNA-based knockdown of PIK3R1 for functional studies. FDG-PET/CT examinations were performed with a hybrid positron emission tomography (PET)/CT scanner for some prostate cancer patients in the MSK-IMPACT cohort. RESULTS: Analyzing 1,417 human prostate cancers, we found a significant enrichment of PIK3R1 alterations in metastatic cancers compared with primary cancers. PIK3R1 alterations or reduced mRNA expression tended to be associated with worse clinical outcomes in prostate cancer, particularly in primary disease, as well as in breast, gastric, and several other cancers. In prostate cancer cell lines, PIK3R1 knockdown resulted in increased cell proliferation and AKT activity, including insulin-stimulated AKT activity. In cell lines and organoids, PIK3R1 loss/mutation was associated with increased sensitivity to AKT inhibitors. PIK3R1-altered patient prostate tumors had increased uptake of the glucose analogue 18F-fluorodeoxyglucose in PET imaging, suggesting increased glycolysis. CONCLUSIONS: Our findings describe a novel genomic feature in metastatic prostate cancer and suggest that PIK3R1 alteration may be a key event for insulin-PI3K-glycolytic pathway regulation in prostate cancer.


Subject(s)
Phosphatidylinositol 3-Kinases , Prostatic Neoplasms , Class Ia Phosphatidylinositol 3-Kinase/genetics , Glycolysis , Humans , Insulin/genetics , Insulin/metabolism , Male , Mutation , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Positron Emission Tomography Computed Tomography , Prostatic Neoplasms/genetics , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism
14.
Sci Rep ; 12(1): 5924, 2022 04 08.
Article in English | MEDLINE | ID: mdl-35395865

ABSTRACT

Phosphoinositide-3-Kinase Regulatory Subunit 1 (PIK3R1) is believed to function as a tumor suppressor, while Phosphoinositide-3-Kinase Regulatory Subunit 2 (PIK3R2) as a tumor driver. However, there is no systematic pan-cancer analysis of them. The pan-cancer study comprehensively investigated the gene expression, genetic alteration, DNA methylation, and prognostic significance of PIK3R1 and PIK3R2 in 33 different tumors based on the TIMER, GEPIA, UALCAN, HPA, cBioPortal, and Kaplan-Meier Plotter database. The results indicated that PIK3R1 is lowly expressed in most tumors while PIK3R2 is highly expressed in most tumors, and abnormal gene expression may be related to promoter methylation. Moreover, not only mutations, downregulation of PIK3R1 and upregulation of PIK3R2 were found to be detrimental to the survival of most cancer patients as well. Furthermore, the expression of both PIK3R1 and PIK3R2 was associated with the level of immune infiltration in multiple tumors, such as breast invasive carcinoma. Our study conducted a comparatively comprehensive analysis of the role of PIK3R1 and PIK3R2 in a variety of cancers, contributing to further study of their potential mechanisms in cancer occurrence and progression. Our findings suggested that PIK3R1 and PIK3R2 could serve as prognostic markers for several cancers.


Subject(s)
Class Ia Phosphatidylinositol 3-Kinase , Genes, Regulator , Neoplasms , Class Ia Phosphatidylinositol 3-Kinase/genetics , Class Ia Phosphatidylinositol 3-Kinase/metabolism , Down-Regulation , Humans , Neoplasms/genetics , Phosphatidylinositol 3-Kinases , Phosphatidylinositols , Prognosis
15.
Neuropathol Appl Neurobiol ; 48(5): e12813, 2022 08.
Article in English | MEDLINE | ID: mdl-35293634

ABSTRACT

AIM: Rosette-forming glioneuronal tumour (RGNT) is a rare central nervous system (CNS) World Health Organization (WHO) grade 1 brain neoplasm. According to the WHO 2021, essential diagnostic criteria are a 'biphasic histomorphology with neurocytic and a glial component, and uniform neurocytes forming rosettes and/or perivascular pseudorosettes associated with synaptophysin expression' and/or DNA methylation profile of RGNT whereas 'FGFR1 mutation with co-occurring PIK3CA and/or NF1 mutation' are desirable criteria. MATERIAL AND METHODS: We report a series of 46 cases fulfilling the essential pathological diagnostic criteria for RGNT. FGFR1 and PIK3CA hotspot mutations were searched for by multiplexed digital PCR in all cases, whereas DNA methylation profiling and/or PIK3R1 and NF1 alterations were analysed in a subset of cases. RESULTS: Three groups were observed. The first one included 21 intracranial midline tumours demonstrating FGFR1 mutation associated with PIK3CA or PIK3R1 (n = 19) or NF1 (n = 1) or PIK3CA and NF1 (n = 1) mutation. By DNA methylation profiling, eight cases were classified as RGNT (they demonstrated FGFR1 and PIK3CA or PIK3R1 mutations). Group 2 comprised 11 cases associated with one single FGFR1 mutation. Group 3 included six cases classified as low-grade glioma (LGG) other than RGNT (one-sixth showed FGFR1 mutation and one a FGFR1 and NF1 mutation) and eight cases without FGFR1 mutation. Groups 2 and 3 were enriched in lateral and spinal cases. CONCLUSIONS: We suggest adding FGFR1 mutation and intracranial midline location as essential diagnostic criteria. When DNA methylation profiling is not available, a RGNT diagnosis remains certain in cases demonstrating characteristic pathological features and FGFR1 mutation associated with either PIK3CA or PIK3R1 mutation.


Subject(s)
Brain Neoplasms , Central Nervous System Neoplasms , Glioma , Neoplasms, Neuroepithelial , Receptor, Fibroblast Growth Factor, Type 1 , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Central Nervous System Neoplasms/genetics , Central Nervous System Neoplasms/pathology , Class I Phosphatidylinositol 3-Kinases/genetics , Class Ia Phosphatidylinositol 3-Kinase/genetics , Glioma/genetics , Glioma/pathology , Humans , Neoplasms, Neuroepithelial/genetics , Neoplasms, Neuroepithelial/pathology , Receptor, Fibroblast Growth Factor, Type 1/genetics
16.
Am J Med Genet A ; 188(5): 1635-1638, 2022 05.
Article in English | MEDLINE | ID: mdl-35080105

ABSTRACT

We report an individual from Brazil with SHORT syndrome. The term SHORT stands for its common characteristics: short stature (S), hyperextensibility of joints, and/or inguinal hernia (H), ocular depression (O), Rieger anomaly (R), and teething delay (T). In addition to most of the clinical signs previously described in SHORT syndrome, the patient presented here also shows microcephaly and intellectual disability. Diagnosis was confirmed by exome sequencing revealing a novel heterozygous variant c.1456G>A (p.Ala486Thr) at PIK3R1. Human recombinant growth hormone (r-hGH) therapy was administered prior to diagnosis; however, the use of r-hGH may have had a role in anticipating and worsening the glucose metabolic profile in the patient, as previously described. This article contributes to providing a better understanding of the SHORT syndrome genotype and its correlation with the phenotype, by comparing with it other reported cases.


Subject(s)
Metabolic Diseases , Nephrocalcinosis , Adult , Brazil , Class Ia Phosphatidylinositol 3-Kinase/genetics , Growth Disorders , Humans , Hypercalcemia , Nephrocalcinosis/diagnosis , Nephrocalcinosis/genetics , Phenotype
17.
Arch Toxicol ; 96(1): 367-375, 2022 01.
Article in English | MEDLINE | ID: mdl-34668023

ABSTRACT

Autophagy plays a critical role in cancer, since it can either suppress tumorigenesis by inhibiting cancer cell survival, or facilitate tumorigenesis by promoting cancer cell proliferation and tumor growth. However, the role of genetic variants of autophagy-regulated key genes for bladder cancer risk remained unclear. Here, we aimed to explore the association of bladder cancer with genetic variants on genes involved in autophagy pathway. Gene-based analysis was performed with multi-marker analysis of genomic annotation (MAGMA) in 580 bladder cancer cases and 1101 controls. The logistic regression model was used to calculate the SNP effects on bladder cancer susceptibility. Expression quantitative trait loci (eQTL) analysis was conducted by the genotype-tissue expression (GTEx) project. Gene expression was evaluated based on the Cancer Genome Atlas (TCGA) database. Three potentially functional SNPs RPS6KB1 rs1292038, PIK3R1 rs34303, and rs56352616 were demonstrated to be associated with risk of bladder cancer (OR = 0.71, 95% CI = 0.61-0.82, P = 7.88 × 10-6 for rs1292038; OR = 1.25, 95% CI = 1.09-1.45, P = 2.11 × 10-3 for rs34303; OR = 0.74, 95% CI = 0.62-0.90, P = 2.47 × 10-3 for rs56352616). An increasing number of risk genotypes of these three SNPs were associated with a higher risk of developing bladder cancer. Besides, rs1292038 exhibited an eQTL effect for RPS6KB1 in whole blood (P = 3.90 × 10-7). Furthermore, the higher expression of RPS6KB1 and lower expression of PIK3R1 were both significantly associated with bladder cancer risk. Our findings indicated that genetic variants in autophagy pathway genes RPS6KB1 and PIK3R1 confer bladder cancer susceptibility.


Subject(s)
Urinary Bladder Neoplasms , Autophagy/genetics , Case-Control Studies , Class Ia Phosphatidylinositol 3-Kinase/genetics , Genetic Predisposition to Disease , Genome-Wide Association Study , Genotype , Humans , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/pathology
18.
Clin Immunol ; 234: 108910, 2022 01.
Article in English | MEDLINE | ID: mdl-34922003

ABSTRACT

Genetic variants in PIK3CD, PIK3R1 and NFKB1 cause the primary immune deficiencies, activated PI3Kδ syndrome (APDS) 1, APDS2 and NFκB1 haploinsufficiency, respectively. We have identified a family with known or potentially pathogenic variants NFKB1, TNFRSF13B and PIK3R1. The study's aim was to describe their associated immune and cellular phenotypes and compare with individuals with monogenic disease. NFκB1 pathway function was measured by immunoblotting and PI3Kδ pathway activity by phospho-flow cytometry. p105/p50 expression was absent in two individuals but elevated pS6 only in the index case. Transfection of primary T cells demonstrated increased basal pS6 signalling due to mutant PIK3R1, but not mutant NFKB1 or their wildtype forms. We report on the presence of pathogenic variant NFKB1, with likely modifying variants in TNFRSF13B and PIK3R1 in a family. We describe immune features of both NFκB1 haploinsufficiency and APDS2, and the inhibition of excessive PI3K signalling by rapamycin in vitro.


Subject(s)
Class Ia Phosphatidylinositol 3-Kinase/genetics , Haploinsufficiency , Immunologic Deficiency Syndromes/genetics , NF-kappa B p50 Subunit/genetics , Transmembrane Activator and CAML Interactor Protein/genetics , Adolescent , Adult , Female , Humans , Immunologic Deficiency Syndromes/etiology , Immunologic Deficiency Syndromes/immunology , Male , Mutation , Young Adult
19.
J Cell Mol Med ; 25(23): 11016-11030, 2021 12.
Article in English | MEDLINE | ID: mdl-34741385

ABSTRACT

Mesenchymal stem cells (MSCs) are a class of pluripotent cells that can release a large number of exosomes which act as paracrine mediators in tumour-associated microenvironment. However, the role of MSC-derived exosomes in pathogenesis and progression of cancer cells especially osteosarcoma has not been thoroughly clarified until now. In this study, we established a co-culture model for human bone marrow-derived MSCs with osteosarcoma cells, then extraction of exosomes from induced MSCs and study the role of MSC-derived exosomes in the progression of osteosarcoma cell. The aim of this study was to address potential cell biological effects between MSCs and osteosarcoma cells. The results showed that MSC-derived exosomes can significantly promote osteosarcoma cells' proliferation and invasion. We also found that miR-21-5p was significantly over-expressed in MSCs and MSC-derived exosomes by quantitative real-time polymerase chain reaction (qRT-PCR), compared with human foetal osteoblastic cells hFOB1.19. MSC-derived exosomes transfected with miR-21-5p could significantly enhance the proliferation and invasion of osteosarcoma cells in vitro and in vivo. Bioinformatics analysis and dual-luciferase reporter gene assays validated the targeted relationship between exosomal miR-21-5p and PIK3R1; we further demonstrated that miR-21-5p-abundant exosomes derived human bone marrow MSCs could activate PI3K/Akt/mTOR pathway by suppressing PIK3R1 expression in osteosarcoma cells. In summary, our study provides new insights into the interaction between human bone marrow MSCs and osteosarcoma cells in tumour-associated microenvironment.


Subject(s)
Class Ia Phosphatidylinositol 3-Kinase/genetics , Exosomes/genetics , Mesenchymal Stem Cells/metabolism , MicroRNAs/genetics , Animals , Cell Movement/genetics , Cell Proliferation/genetics , Cells, Cultured , Coculture Techniques/methods , Humans , Mice , Osteosarcoma/genetics , Transcription Factors/genetics , Tumor Microenvironment/genetics
20.
Comput Math Methods Med ; 2021: 2909454, 2021.
Article in English | MEDLINE | ID: mdl-34691235

ABSTRACT

In an effort to bolster our understanding of regulation of bone formation in the context of osteoporosis, we screened out differentially expressed genes in osteoporosis patients with high and low bone mineral density by bioinformatics analysis. PIK3R1 is increasingly being nominated as a pivotal mediator in the differentiation of osteoblasts and osteoclasts that is closely related to bone formation. However, the specific mechanisms underlying the way that PIK3R1 affects bone metabolism are not fully elucidated. We intended to examine the potential mechanism by which PIK3R1 regulates osteoblast differentiation. Enrichment analysis was therefore carried out for differentially expressed genes. We noted that the estrogen signaling pathway, TNF signaling pathway, and osteoclast differentiation were markedly associated with ossification, and they displayed enrichment in PIK3R1. Based on western blot, qRT-PCR, and differentiation analysis in vitro, we found that upregulation of PIK3R1 enhanced osteoblastic differentiation, as evidenced by increased levels of investigated osteoblast-related genes as well as activities of ALP and ARS, while it notably decreased levels of investigated osteoclast-related genes. On the contrary, downregulation of PIK3R1 decreased levels of osteoblast-related genes and increased levels of osteoclast-related genes. Besides, in vitro experiments revealed that PIK3R1 facilitated proliferation and repressed apoptosis of osteoblasts but had an opposite impact on osteoclasts. In summary, PIK3R1 exhibits an osteoprotective effect via regulating osteoblast differentiation, which can be represented as a promising therapeutic target for osteoporosis.


Subject(s)
Class Ia Phosphatidylinositol 3-Kinase/genetics , Class Ia Phosphatidylinositol 3-Kinase/metabolism , Osteoblasts/enzymology , Osteoclasts/enzymology , Osteogenesis/physiology , 3T3 Cells , Animals , Bone Density/genetics , Bone Density/physiology , Cell Differentiation/genetics , Cell Differentiation/physiology , Computational Biology , Female , Gene Expression Regulation, Enzymologic , Humans , Mice , Osteoblasts/cytology , Osteoclasts/cytology , Osteogenesis/genetics , Osteoporosis/enzymology , Osteoporosis/genetics , RAW 264.7 Cells , Signal Transduction , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL
...