Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 614
Filter
1.
PLoS One ; 19(6): e0304686, 2024.
Article in English | MEDLINE | ID: mdl-38837998

ABSTRACT

Microplastics, which are tiny plastic particles less than 5 mm in diameter, are widely present in the environment, have become a serious threat to aquatic life and human health, potentially causing ecosystem disorders and health problems. The present study aimed to investigate the effects of microplastics, specifically microplastics-polystyrene (MPs-PS), on the structural integrity, gene expression related to tight junctions, and gut microbiota in mice. A total of 24 Kunming mice aged 30 days were randomly assigned into four groups: control male (CM), control female (CF), PS-exposed male (PSM), and PS-exposed female (PSF)(n = 6). There were significant differences in villus height, width, intestinal surface area, and villus height to crypt depth ratio (V/C) between the PS group and the control group(C) (p <0.05). Gene expression analysis demonstrated the downregulation of Claudin-1, Claudin-2, Claudin-15, and Occludin, in both duodenum and jejunum of the PS group (p < 0.05). Analysis of microbial species using 16S rRNA sequencing indicated decreased diversity in the PSF group, as well as reduced diversity in the PSM group at various taxonomic levels. Beta diversity analysis showed a significant difference in gut microbiota distribution between the PS-exposed and C groups (R2 = 0.113, p<0.01), with this difference being more pronounced among females exposed to MPs-PS. KEGG analysis revealed enrichment of differential microbiota mainly involved in seven signaling pathways, such as nucleotide metabolism(p<0.05). The relative abundance ratio of transcriptional pathways was significantly increased for the PSF group (p<0.01), while excretory system pathways were for PSM group(p<0.05). Overall findings suggest that MPs-PS exhibit a notable sex-dependent impact on mouse gut microbiota, with a stronger effect observed among females; reduced expression of tight junction genes may be associated with dysbiosis, particularly elevated levels of Prevotellaceae.


Subject(s)
Gastrointestinal Microbiome , Microplastics , Polystyrenes , Tight Junctions , Animals , Gastrointestinal Microbiome/drug effects , Microplastics/toxicity , Polystyrenes/toxicity , Mice , Male , Female , Tight Junctions/drug effects , Tight Junctions/metabolism , RNA, Ribosomal, 16S/genetics , Intestinal Mucosa/drug effects , Intestinal Mucosa/metabolism , Intestinal Mucosa/microbiology , Occludin/metabolism , Occludin/genetics , Claudins/genetics , Claudins/metabolism , Claudin-1/genetics , Claudin-1/metabolism , Tight Junction Proteins/metabolism , Tight Junction Proteins/genetics
2.
Exp Dermatol ; 33(5): e15084, 2024 May.
Article in English | MEDLINE | ID: mdl-38711223

ABSTRACT

The transmembrane protein claudin-1 is critical for formation of the epidermal barrier structure called tight junctions (TJ) and has been shown to be important in multiple disease states. These include neonatal ichthyosis and sclerosing cholangitis syndrome, atopic dermatitis and various viral infections. To develop a model to investigate the role of claudin-1 in different disease settings, we used CRISPR/Cas9 to generate human immortalized keratinocyte (KC) lines lacking claudin-1 (CLDN1 KO). We then determined whether loss of claudin-1 expression affects epidermal barrier formation/function and KC differentiation/stratification. The absence of claudin-1 resulted in significantly reduced barrier function in both monolayer and organotypic cultures. CLDN1 KO cells demonstrated decreases in gene transcripts encoding the barrier protein filaggrin and the differentiation marker cytokeratin-10. Marked morphological differences were also observed in CLDN1 KO organotypic cultures including diminished stratification and reduced formation of the stratum granulosum. We also detected increased proliferative KC in the basale layer of CLDN1 KO organotypic cultures. These results further support the role of claudin-1 in epidermal barrier and suggest an additional role of this protein in appropriate stratification of the epidermis.


Subject(s)
Cell Differentiation , Claudin-1 , Epidermis , Filaggrin Proteins , Keratinocytes , Keratinocytes/metabolism , Claudin-1/metabolism , Claudin-1/genetics , Humans , Filaggrin Proteins/metabolism , Epidermis/metabolism , Epidermis/pathology , Skin Diseases/genetics , Skin Diseases/metabolism , Tight Junctions/metabolism , Keratin-10/metabolism , Keratin-10/genetics , Gene Knockout Techniques , Cell Proliferation , CRISPR-Cas Systems
3.
Food Res Int ; 187: 114343, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38763636

ABSTRACT

Human breast milk promotes maturation of the infant gastrointestinal barrier, including the promotion of mucus production. In the quest to produce next generation infant milk formula (IMF), we have produced IMF by membrane filtration (MEM-IMF). With a higher quantity of native whey protein, MEM-IMF more closely mimics human breast milk than IMF produced using conventional heat treatment (HT-IMF). After a 4-week dietary intervention in young pigs, animals fed a MEM-IMF diet had a higher number of goblet cells, acidic mucus and mucin-2 in the jejunum compared to pigs fed HT-IMF (P < 0.05). In the duodenum, MEM-IMF fed pigs had increased trypsin activity in the gut lumen, increased mRNA transcript levels of claudin 1 in the mucosal scrapings and increased lactase activity in brush border membrane vesicles than those pigs fed HT-IMF (P < 0.05). In conclusion, MEM-IMF is superior to HT-IMF in the promotion of mucus production in the young gut.


Subject(s)
Filtration , Infant Formula , Mucus , Animals , Infant Formula/chemistry , Mucus/metabolism , Swine , Whey Proteins/metabolism , Intestine, Small/metabolism , Trypsin/metabolism , Humans , Goblet Cells/metabolism , Claudin-1/metabolism , Claudin-1/genetics , Lactase/metabolism , Lactase/genetics , Mucin-2/metabolism , Mucin-2/genetics , Intestinal Mucosa/metabolism , Duodenum/metabolism , Jejunum/metabolism , RNA, Messenger/metabolism , RNA, Messenger/genetics , Milk Proteins/metabolism , Milk Proteins/analysis
4.
Aging (Albany NY) ; 16(10): 8472-8483, 2024 May 26.
Article in English | MEDLINE | ID: mdl-38809424

ABSTRACT

OBJECTIVE: To investigate the role of the EGFR/MAPK signaling pathway in PM2.5 in promoting the MUC5AC hypersecretion in airway and exacerbating airway inflammation. METHODS: By establishing rat model exposed to PM2.5, overexpressing miR-133b-5p and Claudin1, the content of IL-1 and TNF-α in serum were detected by ELISA, the pathology of lung tissue was observed by HE staining, p-EGFR, Claudin1, MUC5AC, p-ERK1/2, p-JNK, p-p38 in rats lung tissue were detected by immunohistochemical and WB, the expression level of miR-133b-5p in rats lung tissue were detected by qPCR. RESULTS: After the rats were exposed to PM2.5, the content of inflammatory factors in serum increased, the inflammatory damage of lung tissues occurred, the expression of miR-133b-5p was down-regulated, and the expression of MUC5AC protein was increased. The ELISA test results showed that the expression of IL-1 and TNF-α in the model group was significantly higher than that in the control group, and the model +AG1478 treatment group was down-regulated compared with the model group, and the +miR-133b-5p agomir treatment group was significantly lower than that in the control group, the model group and the model +Claudin1 overexpression blank load group, and the model +Claudin1 overexpression group was down-regulated compared with the model group and the model +Claudin1 overexpression blank load group. The protein detection results showed that the expression of p-EGFR, MUC5AC, p-ERK1/2, p-JNK and p-p38 proteins was increased and the expression of Claudin1 protein was decreased in the model group compared with the control group. In the model + AG1478 treatment group, model + miR-133b-5p agomir treatment group and model + Claudin1 overexpression group, compared with the model group, p-EGFR, MUC5AC, p-ERK1/2, p-JNK, p-p38 protein expression was down-regulated, and Claudin1 protein expression was up-regulated. CONCLUSIONS: PM2.5 inhibited the expression of miR-133b-5p to activate the EGFR/MAPK signal pathway, induce the hypersecretion of MUC5AC, thus aggravating PM2.5-related airway inflammation in rats.


Subject(s)
Claudin-1 , ErbB Receptors , MicroRNAs , Mucin 5AC , Particulate Matter , Animals , MicroRNAs/metabolism , MicroRNAs/genetics , Mucin 5AC/metabolism , Mucin 5AC/genetics , Rats , ErbB Receptors/metabolism , ErbB Receptors/genetics , Particulate Matter/toxicity , Claudin-1/metabolism , Claudin-1/genetics , Male , Rats, Sprague-Dawley , Lung/metabolism , Lung/pathology , Mucus/metabolism , Signal Transduction , Tumor Necrosis Factor-alpha/metabolism , MAP Kinase Signaling System
5.
Zhen Ci Yan Jiu ; 49(5): 472-479, 2024 May 25.
Article in English, Chinese | MEDLINE | ID: mdl-38764118

ABSTRACT

OBJECTIVES: To investigate the effect of Peitu Yimu(strengthening spleen and soothing liver) acupuncture on intestinal mucosal barrier function and corticotropin-releasing factor (CRF)/CRF receptor 1 (CRFR1) pathway in rats with diarrhea-predominant irritable bowel syndrome (IBS-D), so as to explore its underlying mechanism in alleviating IBS-D. METHODS: Forty female SD rats were randomly divided into blank, model, electroacupuncture (EA), and agonist groups, with 10 rats in each group. Except for the blank group, rats in the other groups were given folium sennae infusion by gavage combined with chronic unpredictable mild stress to establish IBS-D model. Rats in the EA group received acupuncture at "Tianshu"(ST25) and EA at "Zusanli"(ST36) and "Taichong"(LR3) (2 Hz/15 Hz) on one side for 20 min, with the side chosen alternately every other day, for 14 days after modeling. Rats in the agonist group received acupuncture 30 min after intravenous injection of CRFR1 agonist urocortin, with the same manipulation method and time as the EA group. Before and after intervention, visceral pain threshold and stool Bristol scores were measured. Elevated plus maze test and open field test were used to detect anxiety and depression like behavior of rats. ELISA was used to detect the contents of CRF and CRFR1 in rats serum. Immunohistochemistry was used to detect the positive expressions of CRF, CRFR1, zonula occludens protein 1(ZO-1), occlusal protein(Occludin), and closure protein 1 (Claudin-1) in colon tissue. RESULTS: Compared with the blank group, the visceral pain threshold, open arm time percentage (OT%), total distance of movement in the open field test, and positive expression of ZO-1, Occludin, and Claudin-1 in colon were decreased (P<0.01, P<0.05), while Bristol stool scores, serum CRF and CRFR1 contents, and positive expressions of CRF and CRFR1 in colon were increased (P<0.01) in the model group. After intervention and compared with the model group, the visceral pain threshold, OT%, total distance of movement in the open field test, and positive expressions of ZO-1, Occludin, and Claudin-1 in colon were increased (P<0.05, P<0.01), while Bristol stool scores, serum CRF and CRFR1 contents, and positive expressions of CRF and CRFR1 in colon were decreased (P<0.01) in the EA group;the Bristol stool scores, serum CRF content, and CRF positive expression in colon were significantly decreased in the agonist group (P<0.01). CONCLUSIONS: Peitu Yimu acupuncture can significantly improve visceral hypersensitivity and anxiety-depression state in IBS-D rats. Its mechanism may be related to the inhibition of CRF/CRFR1 pathway and restoration of intestinal tight junction protein expressions.


Subject(s)
Acupuncture Therapy , Diarrhea , Intestinal Mucosa , Irritable Bowel Syndrome , Receptors, Corticotropin-Releasing Hormone , Animals , Female , Humans , Rats , Acupuncture Points , Claudin-1/metabolism , Claudin-1/genetics , Corticotropin-Releasing Hormone/metabolism , Corticotropin-Releasing Hormone/genetics , Diarrhea/therapy , Diarrhea/metabolism , Diarrhea/genetics , Disease Models, Animal , Intestinal Mucosa/metabolism , Irritable Bowel Syndrome/therapy , Irritable Bowel Syndrome/metabolism , Irritable Bowel Syndrome/genetics , Rats, Sprague-Dawley , Receptors, Corticotropin-Releasing Hormone/metabolism , Receptors, Corticotropin-Releasing Hormone/genetics , Zonula Occludens-1 Protein/metabolism , Zonula Occludens-1 Protein/genetics
6.
Zhongguo Zhen Jiu ; 44(4): 449-454, 2024 Apr 12.
Article in English, Chinese | MEDLINE | ID: mdl-38621733

ABSTRACT

OBJECTIVES: To observe the effects of moxibustion on intestinal barrier function and Toll-like receptor 4 (TLR4)/nuclear factor-κB p65 (NF-κB p65) signaling pathway in obese rats and explore the mechanism of moxibustion in the intervention of obesity. METHODS: Fifty-five Wistar rats of SPF grade were randomly divided into a normal group (10 rats) and a modeling group (45 rats). In the modeling group, the obesity model was established by feeding high-fat diet. Thirty successfully-modeled rats were randomized into a model group, a moxibustion group, and a placebo-control group, with 10 rats in each one. In the moxibustion group, moxibustion was applied at the site 3 cm to 5 cm far from the surface of "Zhongwan" (CV 12), with the temperature maintained at (46±1 ) ℃. In the placebo-control group, moxibustion was applied at the site 8 cm to 10 cm far from "Zhongwan" (CV 12), with the temperature maintained at (38±1) ℃. The intervention was delivered once daily for 8 weeks in the above two groups. The body mass and food intake of the rats were observed before and after intervention in each group. Using ELISA methool, the levels of serum triacylglycerol (TG), total cholesterol (TC) and lipopolysaccharide (LPS) were detected and the insulin resistance index (HOMA-IR) was calculated. HE staining was used to observe the morphology of colon tissue. The mRNA expression of zonula occludens-1 (ZO-1), Occludin, Claudin-1, TLR4 and NF-κB p65 in the colon tissue was detected by quantitative real-time PCR; and the protein expression of ZO-1, Occludin, Claudin-1, TLR4 and NF-κB p65 was detected by Western blot in the rats of each group. RESULTS: Compared with the normal group, the body mass, food intake, the level of HOMA-IR, and the serum levels of TC, TG and LPS were increased in the rats of the model group (P<0.01); those indexes in the moxibustion group were all reduced when compared with the model group and the placebo-control group respectively (P<0.01, P<0.05). Compared with the normal group, a large number of epithelial cells in the mucosa of colon tissue was damaged, shed, and the inflammatory cells were infiltrated obviously in the interstitium in the rats of the model group. When compared with the model group, in the moxibustion group, the damage of the colon tissue was recovered to various degrees and there were few infiltrated inflammatory cells in the interstitium, while, the epithelial injury of the colon tissue was slightly recovered and the infiltrated inflammatory cells in the interstitium were still seen in the placebo-control group. The mRNA and protein expressions of ZO-1, Occludin and Caudin-1 were decreased in the model group compared with those in the normal group (P<0.01). When compared with the model group and the placebo-control group, the mRNA and protein expressions of these indexes were increased in the moxibustion group (P<0.01, P<0.05). In the model group, the mRNA and protein expressions of TLR4 and NF-κB p65 were increased when compared with those in the normal group (P<0.01), and the mRNA and protein expressions of these indexes were reduced in the moxibustion group when compared with those in the model group and the placebo-control group (P<0.01). CONCLUSIONS: Moxibustion can reduce the body mass and food intake, regulate the blood lipid and improve insulin resistance in the rats of obesity. It may be related to alleviating inflammatory response through improving intestinal barrier function and modulating the intestinal TLR4/NF-κB p65 signaling pathway.


Subject(s)
Insulin Resistance , Moxibustion , Rats , Animals , NF-kappa B/genetics , NF-kappa B/metabolism , Rats, Wistar , Toll-Like Receptor 4/genetics , Lipopolysaccharides/metabolism , Intestinal Barrier Function , Occludin/metabolism , Claudin-1/metabolism , Signal Transduction , Obesity/genetics , Obesity/therapy , RNA, Messenger/metabolism , Tumor Necrosis Factor-alpha/metabolism
7.
Int J Mol Sci ; 25(8)2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38674155

ABSTRACT

Different levels of EspP2 expression are seen in strains of Glaesserella parasuis with high and low pathogenicity. As a potential virulence factor for G. parasuis, the pathogenic mechanism of EspP2 in infection of host cells is not clear. To begin to elucidate the effect of EspP2 on virulence, we used G. parasuis SC1401 in its wild-type form and SC1401, which was made EspP2-deficient. We demonstrated that EspP2 causes up-regulation of claudin-1 and occludin expression, thereby promoting the adhesion of G. parasuis to host cells; EspP2-deficiency resulted in significantly reduced adhesion of G. parasuis to cells. Transcriptome sequencing analysis of EspP2-treated PK15 cells revealed that the Rap1 signaling pathway is stimulated by EspP2. Blocking this pathway diminished occludin expression and adhesion. These results indicated that EspP2 regulates the adhesion of Glaesserella parasuis via Rap1 signaling pathway.


Subject(s)
Haemophilus parasuis , Signal Transduction , rap1 GTP-Binding Proteins , Animals , Haemophilus parasuis/pathogenicity , Haemophilus parasuis/genetics , rap1 GTP-Binding Proteins/metabolism , rap1 GTP-Binding Proteins/genetics , Bacterial Adhesion , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Occludin/metabolism , Occludin/genetics , Claudin-1/metabolism , Claudin-1/genetics , Cell Line , Swine
8.
Chin J Nat Med ; 22(3): 249-264, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38553192

ABSTRACT

Inulin-type fructan CP-A, a predominant polysaccharide in Codonopsis pilosula, demonstrates regulatory effects on immune activity and anti-inflammation. The efficacy of CP-A in treating ulcerative colitis (UC) is, however, not well-established. This study employed an in vitro lipopolysaccharide (LPS)-induced colonic epithelial cell model (NCM460) and an in vivo dextran sulfate sodium (DSS)-induced colitis mouse model to explore CP-A's protective effects against experimental colitis and its underlying mechanisms. We monitored the clinical symptoms in mice using various parameters: body weight, disease activity index (DAI), colon length, spleen weight, and histopathological scores. Additionally, molecular markers were assessed through enzyme-linked immunosorbent assay (ELISA), quantitative real-time polymerase chain reaction (qRT-PCR), immunofluorescence (IF), immunohistochemistry (IHC), and Western blotting assays. Results showed that CP-A significantly reduced reactive oxygen species (ROS), tumor necrosis factor-alpha (TNF-α), and interleukins (IL-6, IL-1ß, IL-18) in LPS-induced cells while increasing IL-4 and IL-10 levels and enhancing the expression of Claudin-1, ZO-1, and occludin proteins in NCM460 cells. Correspondingly, in vivo findings revealed that CP-A administration markedly improved DAI, reduced colon shortening, and decreased the production of myeloperoxidase (MPO), malondialdehyde (MDA), ROS, IL-1ß, IL-18, and NOD-like receptor protein 3 (NLRP3) inflammasome-associated genes/proteins in UC mice. CP-A treatment also elevated glutathione (GSH) and superoxide dismutase (SOD) levels, stimulated autophagy (LC3B, P62, Beclin-1, and ATG5), and reinforced Claudin-1 and ZO-1 expression, thereby aiding in intestinal epithelial barrier repair in colitis mice. Notably, the inhibition of autophagy via chloroquine (CQ) diminished CP-A's protective impact against colitis in vivo. These findings elucidate that CP-A's therapeutic effect on experimental colitis possibly involves mitigating intestinal inflammation through autophagy-mediated NLRP3 inflammasome inactivation. Consequently, inulin-type fructan CP-A emerges as a promising drug candidate for UC treatment.


Subject(s)
Codonopsis , Colitis, Ulcerative , Colitis , Mice , Animals , Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Inulin/metabolism , Inulin/pharmacology , Inulin/therapeutic use , Interleukin-18 , Codonopsis/metabolism , NLR Proteins/metabolism , Fructans/metabolism , Fructans/pharmacology , Fructans/therapeutic use , Reactive Oxygen Species/metabolism , Lipopolysaccharides/pharmacology , Claudin-1/metabolism , Colitis/chemically induced , Colitis/drug therapy , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/pathology , Autophagy , Dextran Sulfate , Mice, Inbred C57BL , Disease Models, Animal , Colon/metabolism , Colon/pathology
9.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(2): 270-279, 2024 Feb 20.
Article in Chinese | MEDLINE | ID: mdl-38501412

ABSTRACT

OBJECTIVE: To investigate the protective effect of resveratrol on intestinal barrier in 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP)-induced Parkinson's disease (PD) mouse models and its mechanism for regulating TLR4/MyD88/NF-κB signaling to protect dopaminergic neurons. METHODS: Fifty-two C57BL/6J mice were randomized into control group (n= 12), MPTP group (n=14), MPTP + resveratrol (30 mg/kg) group (n=13), and MPTP + resveratrol (90 mg/kg) group (n=13), and mouse models were established by intraperitoneal MPTP (30 mg/kg) injection for 7 days in the latter 3 groups. Behavioral tests were conducted to evaluate the effect of resveratrol on motor symptoms of the mice. Western blotting was used to detect the expression of TH, α-syn, ZO-1, Claudin-1, TLR4, MyD88, and NF-κB in the brain tissues of the mice. Immunohistochemistry, immunofluorescence, ELISA and transmission electron microscopy were used to verify the effect of resveratrol for suppressing inflammation and protecting the intestinal barrier. RESULTS: Compared with those in the normal control group, the mice in MPTP group showed significant changes in motor function, number of dopaminergic neurons, neuroinflammation, levels of LPS and LBP, and expressions of tight junction proteins in the intestinal barrier. Resveratrol treatment significantly improved motor function of the PD mice (P < 0.01), increased the number of neurons and TH protein expression (P < 0.05), down-regulated the expressions of GFAP, Iba-1, and TLR4, lowered fecal and plasma levels of LPS and LBP (P < 0.05), restored the expression levels of ZO-1 and Claudin-1 (P < 0.01), and down-regulated the expressions of TLR4, MyD88, and NF-κB in the colon tissue (P < 0.05). The mice with resveratrol treatment at 30 mg/kg showed normal morphology of the tight junction complex with neatly and tightly arranged intestinal villi. CONCLUSION: Resveratrol repairs the intestinal barrier by inhibiting TLR4/MyD88/NF-κB signaling pathway-mediated inflammatory response, thereby improving motor function and neuropathy in mouse models of MPTP-induced PD.


Subject(s)
Parkinson Disease , Animals , Mice , Parkinson Disease/drug therapy , Dopaminergic Neurons/metabolism , Resveratrol/pharmacology , Toll-Like Receptor 4/metabolism , NF-kappa B/metabolism , Brain-Gut Axis , Lipopolysaccharides/pharmacology , Claudin-1/metabolism , Myeloid Differentiation Factor 88/metabolism , Myeloid Differentiation Factor 88/pharmacology , Mice, Inbred C57BL , Signal Transduction , Disease Models, Animal , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/metabolism , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/pharmacology
10.
Int J Mol Sci ; 25(5)2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38474310

ABSTRACT

Obstructive sleep apnea (OSA) is characterized by intermittent repeated episodes of hypoxia-reoxygenation. OSA is associated with cerebrovascular consequences. An enhanced blood-brain barrier (BBB) permeability has been proposed as a marker of those disorders. We studied in mice the effects of 1 day and 15 days intermittent hypoxia (IH) exposure on BBB function. We focused on the dorsal part of the hippocampus and attempted to identify the molecular mechanisms by combining in vivo BBB permeability (Evans blue tests) and mRNA expression of several junction proteins (zona occludens (ZO-1,2,3), VE-cadherin, claudins (1,5,12), cingulin) and of aquaporins (1,4,9) on hippocampal brain tissues. After 15 days of IH exposure we observed an increase in BBB permeability, associated with increased mRNA expressions of claudins 1 and 12, aquaporins 1 and 9. IH seemed to increase early for claudin-1 mRNA expression as it doubled with 1 day of exposure and returned near to its base level after 15 days. Claudin-1 overexpression may represent an immediate response to IH exposure. Then, after 15 days of exposure, an increase in functional BBB permeability was associated with enhanced expression of aquaporin. These BBB alterations are possibly associated with a vasogenic oedema that may affect brain functions and accelerate neurodegenerative processes.


Subject(s)
Aquaporins , Sleep Apnea, Obstructive , Mice , Animals , Blood-Brain Barrier/metabolism , Claudin-1/metabolism , Disease Models, Animal , Hypoxia/metabolism , Claudins/metabolism , Sleep Apnea, Obstructive/metabolism , Permeability , Aquaporins/metabolism , RNA, Messenger/metabolism , Claudin-5/metabolism
11.
Acta Biomater ; 177: 347-360, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38373525

ABSTRACT

Colon mucosal overexpression of reactive oxygen and nitrogen species (RONS) accelerates the development of inflammatory bowel disease (IBD) and destroys the mucosa and its barrier. IBD can be alleviated by removing RONS from the inflamed colon. The preparation of strong and efficient nanoantioxidants remains a challenge despite the development of numerous nanoantioxidants. In this paper, Zn-TA nanoparticles with fine hollow microstructure (HZn-TA) were successfully prepared and could be effectively used to treat IBD. In the first step, ZIF-8 nanoparticles were synthesized by a one-pot method. On this basis, HZn-TA nanoparticles were etched by TA, and a multifunctional nanase was developed for the treatment of IBD. RONS, including reactive oxygen species (ROS) and nitric oxide (NO), can be eliminated to increase cell survival following Hydrogen peroxide (H2O2) stimulation, including reactive oxygen species (ROS) and nitric oxide (NO with hydrogen peroxide (H2O2). In a model for preventing and delaying acute colitis, clearance of RONS has been shown to reduce intestinal inflammation in mice by reducing colon damage, proinflammatory cytokine levels, the spleen index, and body weight. Intestinal mucosal healing can be promoted by HZn-TA nanoparticles, which can upregulate zonula occludens protein 1 (ZO-1) and claudin-1 expression. Based on the results of this study, HZn-TA nanoparticles were able to effectively treat IBD with minimal adverse effects by being biocompatible, multienzyme active, and capable of scavenging RONS. Therefore, we pioneered the application of HZn-TA nanoparticles for the treatment of IBD, which are capable of clearing RONS without significant adverse effects. STATEMENT OF SIGNIFICANCE: ➢ HZn-TA nanoparticles were successfully prepared and could be effectively used to treat IBD. ➢ Intestinal mucosal healing can be promoted by HZn-TA nanoparticles, which can upregulate ZO-1 and claudin-1 expression. ➢ HZn-TA nanoparticles were able to effectively treat IBD with minimal adverse effects by being biocompatible, multienzyme active, and capable of scavenging RONS.


Subject(s)
Hydrogen Peroxide , Inflammatory Bowel Diseases , Polyphenols , Mice , Animals , Reactive Oxygen Species/metabolism , Hydrogen Peroxide/metabolism , Oxygen/metabolism , Zinc/metabolism , Reactive Nitrogen Species/metabolism , Nitric Oxide/metabolism , Claudin-1/metabolism , Inflammatory Bowel Diseases/drug therapy , Inflammatory Bowel Diseases/metabolism , Intestinal Mucosa/metabolism
12.
J Oral Biosci ; 66(1): 126-133, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38336260

ABSTRACT

OBJECTIVE: Disruption of the gingival epithelial barrier is often mediated by aging or the pathogen Porphyromonas gingivalis. This study examined the combined effects of aging and P. gingivalis exposure on gingival epithelial barrier molecules. METHODS: In vitro experiments involved treating young- and senescence-induced primary human gingival epithelial progenitor cells (HGEPp) with P. gingivalis lipopolysaccharide (LPS). Transepithelial electrical resistance (TER) and paracellular permeability were measured. In vivo, male C57BL/6J mice aged 10 (young) and 80 (old) weeks were divided into four groups: young, old, young with P. gingivalis (Pg-Young) inoculation, and old with P. gingivalis (Pg-Old) inoculation. P. gingivalis was inoculated orally thrice a week for 5 weeks. The mice were sacrificed 30 days after the last inoculation, and samples were collected for further procedures. The junctional molecules (Claudin-1, Claudin-2, E-cadherin, and Connexin) were analyzed for mRNA expression using qRT-PCR and protein production using western blotting and immunohistochemistry. The alveolar bone loss and inflammatory cytokine levels in gingival tissues were also assessed. RESULTS: LPS-treated senescent cells exhibited a pronounced reduction in TER, increased permeability to albumin protein, significant upregulation of Claudin-1 and Claudin-2, and significant downregulation of E-cadherin and Connexin. Furthermore, the Pg-Old group showed identical results with aging in addition to an increase in alveolar bone loss, significantly higher than that in the other groups. CONCLUSION: In conclusion, the host susceptibility to periodontal pathogens increases with age through changes in the gingival epithelial barrier molecules.


Subject(s)
Alveolar Bone Loss , Porphyromonas gingivalis , Male , Humans , Animals , Mice , Porphyromonas gingivalis/metabolism , Claudin-1/metabolism , Lipopolysaccharides/pharmacology , Lipopolysaccharides/metabolism , Claudin-2/metabolism , Mice, Inbred C57BL , Cadherins/metabolism , Aging , Connexins/metabolism
13.
Eur J Endocrinol ; 190(3): 201-210, 2024 Mar 02.
Article in English | MEDLINE | ID: mdl-38375549

ABSTRACT

OBJECTIVE: T lymphocytes from visceral and subcutaneous white adipose tissues (vWAT and sWAT, respectively) can have opposing roles in the systemic metabolic changes associated with obesity. However, few studies have focused on this subject. Claudin-1 (CLDN1) is a protein involved canonically in tight junctions and tissue paracellular permeability. We evaluated T-lymphocyte gene expression in vWAT and sWAT and in the whole adipose depots in human samples. METHODS: A Clariom D-based transcriptomic analysis was performed on T lymphocytes magnetically separated from vWAT and sWAT from patients with obesity (Cohort 1; N = 11). Expression of candidate genes resulting from that analysis was determined in whole WAT from individuals with and without obesity (Cohort 2; patients with obesity: N = 13; patients without obesity: N = 14). RESULTS: We observed transcriptional differences between T lymphocytes from sWAT compared with vWAT. Specifically, CLDN1 expression was found to be dramatically induced in vWAT T cells relative to those isolated from sWAT in patients with obesity. CLDN1 was also induced in obesity in vWAT and its expression correlates with genes involved in inflammation, fibrosis, and adipogenesis. CONCLUSION: These results suggest that CLDN1 is a novel marker induced in obesity and differentially expressed in T lymphocytes infiltrated in human vWAT as compared with sWAT. This protein may have a crucial role in the crosstalk between T lymphocytes and other adipose tissue cells and may contribute to inflammation, fibrosis, and alter homeostasis and promote metabolic disease in obesity.


Subject(s)
Adipose Tissue, White , Claudin-1 , Obesity , Humans , Adipose Tissue, White/metabolism , Cell Differentiation , Claudin-1/metabolism , Fibrosis , Inflammation/metabolism , Obesity/complications , T-Lymphocytes/metabolism
14.
Int J Mol Sci ; 25(3)2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38338705

ABSTRACT

This study investigates the intricate composition and spatial distribution of tight junction complex proteins during early mouse neurulation. The analyses focused on the cranial neural tube, which gives rise to all head structures. Neurulation brings about significant changes in the neuronal and non-neuronal ectoderm at a cellular and tissue level. During this process, precise coordination of both epithelial integrity and epithelial dynamics is essential for accurate tissue morphogenesis. Tight junctions are pivotal for epithelial integrity, yet their complex composition in this context remains poorly understood. Our examination of various tight junction proteins in the forebrain region of mouse embryos revealed distinct patterns in the neuronal and non-neuronal ectoderm, as well as mesoderm-derived mesenchymal cells. While claudin-4 exhibited exclusive expression in the non-neuronal ectoderm, we demonstrated a neuronal ectoderm specific localization for claudin-12 in the developing cranial neural tube. Claudin-5 was uniquely present in mesenchymal cells. Regarding the subcellular localization, canonical tight junction localization in the apical junctions was predominant for most tight junction complex proteins. ZO-1 (zona occludens protein-1), claudin-1, claudin-4, claudin-12, and occludin were detected at the apical junction. However, claudin-1 and occludin also appeared in basolateral domains. Intriguingly, claudin-3 displayed a non-canonical localization, overlapping with a nuclear lamina marker. These findings highlight the diverse tissue and subcellular distribution of tight junction proteins and emphasize the need for their precise regulation during the dynamic processes of forebrain development. The study can thereby contribute to a better understanding of the role of tight junction complex proteins in forebrain development.


Subject(s)
Tight Junction Proteins , Tight Junctions , Mice , Animals , Tight Junction Proteins/metabolism , Claudin-4/metabolism , Claudin-1/metabolism , Occludin/metabolism , Claudin-3/metabolism , Tight Junctions/metabolism , Zonula Occludens-1 Protein/metabolism , Claudins/metabolism
15.
Int J Mol Sci ; 25(3)2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38338808

ABSTRACT

Peyer's patches (PPs) are part of the gut-associated lymphatic tissue (GALT) and represent the first line of the intestinal immunological defense. They consist of follicles with lymphocytes and an overlying subepithelial dome with dendritic cells and macrophages, and they are covered by the follicle-associated epithelium (FAE). A sealed paracellular pathway in the FAE is crucial for the controlled uptake of luminal antigens. Quercetin is the most abundant plant flavonoid and has a barrier-strengthening effect on tight junctions (TJs), a protein complex that regulates the paracellular pathway. In this study, we aimed to analyze the effect of quercetin on porcine PPs and the surrounding villus epithelium (VE). We incubated both tissue types for 4 h in Ussing chambers, recorded the transepithelial electrical resistance (TEER), and measured the unidirectional tracer flux of [3H]-mannitol. Subsequently, we analyzed the expression, protein amount, and localization of three TJ proteins, claudin 1, claudin 2, and claudin 4. In the PPs, we could not detect an effect of quercetin after 4 h, neither on TEER nor on the [3H]-mannitol flux. In the VE, quercetin led to a higher TEER value, while the [3H]-mannitol flux was unchanged. The pore-forming claudin 2 was decreased while the barrier-forming claudin 4 was increased and the expression was upregulated. Claudin 1 was unchanged and all claudins could be located in the paracellular membrane by immunofluorescence microscopy. Our study shows the barrier-strengthening effect of quercetin in porcine VE by claudin 4 upregulation and a claudin 2 decrease. Moreover, it underlines the different barrier properties of PPs compared to the VE.


Subject(s)
Peyer's Patches , Quercetin , Animals , Swine , Quercetin/pharmacology , Quercetin/metabolism , Peyer's Patches/metabolism , Claudin-4/metabolism , Claudin-2/metabolism , Claudin-1/metabolism , Intestine, Small/metabolism , Claudins/metabolism , Tight Junctions/metabolism , Mannitol/pharmacology
16.
Sci Rep ; 14(1): 3312, 2024 02 09.
Article in English | MEDLINE | ID: mdl-38332234

ABSTRACT

Tight junctions (TJs) are important factors constituting the physical barriers of the skin, and their suppression has been described in various conditions, such as aged skin and atopic dermatitis lesions. However, the methods for improving skin TJ function remain insufficient. Therefore, to obtain compounds that can improve TJ function, we developed a novel high-throughput screening system termed live-cell immunostaining to evaluate cell surface-localized claudin-1 (CLDN1) with high selectivity using normal human epidermal keratinocytes (NHEKs). Heparinoid and phospho-pyridoxal (p-Pyr), a metabolite of pyridoxine, were identified as hit compounds. In addition, heparinoid was strongly suggested to increase CLDN1 expression by inhibiting epidermal growth factor receptor signaling. By contrast, p-Pyr did not enhance CLDN1 expression, but it accelerated the translocation of CLDN1 to the cell surface. Finally, we confirmed that heparinoid and p-Pyr improved barrier function in NHEKs in a transepithelial electrical resistance assay. In conclusion, heparinoid and p-Pyr could potentially ameliorate skin conditions by improving TJ function.


Subject(s)
Heparinoids , Tight Junctions , Humans , Aged , Claudin-1/metabolism , Tight Junctions/metabolism , Heparinoids/metabolism , High-Throughput Screening Assays , Keratinocytes/metabolism , Claudin-4/metabolism
17.
J Sci Food Agric ; 104(7): 3936-3946, 2024 May.
Article in English | MEDLINE | ID: mdl-38268027

ABSTRACT

BACKGROUND: Food allergies could be regulated via Th1/Th2 balance, intestinal oxidative stress and inflammation, which were considered as food allergy-associated factors. Medicine-food homologous materials (MFHM) were considered as a significant factor with respect to preventing human diseases. To evaluate the associations between MFHM and food allergy-associated factors, two types of MFHM with the remarkable function of anti-oxidation and anti-inflammation, Gardeniae fructus (Gar) and Sophorae glos (Sop), were chosen. RESULTS: By constructing an H2O2-induced oxidative stress model of Caco-2 cells and an intestinal inflammatory cell model of Caco-2 cells with tumor necrosis factor-α and interleukin (IL)-13, the contents of anti-oxidative enzymes (SOD and GSH), inflammatory factor (IL-8) and tight junction proteins (zonula occludens-1, occludin and claudin-1) in Caco-2 cells were determined. Moreover, the anti-allergic effects of digestive Sop and Gar were evaluated by measuring the levels of Th1/Th2/Treg cytokines in the spleen cells of sensitized mice. The results showed that the SOD and GSH were obviously increased and the gene and protein expression of IL-8 and claudin-1 were improved with the incubation of digested Sop. Th2 cytokine was reduced and Th1/Th2 balance was promoted on coincubation with ovalbumin (OVA) and digested Sop in the splenocytes. However, the digested Gar had no effect. CONCLUSION: The digested Sop not only had suppressive effects on intestinal oxidative stress and inflammation, but also had regulative effects on Th1/Th2 balance. This finding demonstrated that not all of the MFHM with anti-oxidant and anti-inflammatory effects have anti-allergic activities. The present study may be contributing toward establishing a screening model to identify the anti-allergic MFHM. © 2024 Society of Chemical Industry.


Subject(s)
Anti-Allergic Agents , Food Hypersensitivity , Mice , Humans , Animals , Th2 Cells , Th1 Cells , Caco-2 Cells , Claudin-1/metabolism , Hydrogen Peroxide/metabolism , Interleukin-8 , Cytokines/metabolism , Interleukin-13 , Ovalbumin , Inflammation/metabolism , Immunity , Oxidative Stress , Superoxide Dismutase/genetics , Superoxide Dismutase/metabolism , Mice, Inbred BALB C , Disease Models, Animal
18.
EMBO Rep ; 25(1): 144-167, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38177906

ABSTRACT

The tight junction (TJ) in epithelial cells is formed by integral membrane proteins and cytoplasmic scaffolding proteins. The former contains the claudin family proteins with four transmembrane segments, while the latter includes Par3, a PDZ domain-containing adaptor that organizes TJ formation. Here we show the single membrane-spanning protein TMEM25 localizes to TJs in epithelial cells and binds to Par3 via a PDZ-mediated interaction with its C-terminal cytoplasmic tail. TJ development during epithelial cell polarization is accelerated by depletion of TMEM25, and delayed by overexpression of TMEM25 but not by that of a C-terminally deleted protein, indicating a regulatory role of TMEM25. TMEM25 associates via its N-terminal extracellular domain with claudin-1 and claudin-2 to suppress their cis- and trans-oligomerizations, both of which participate in TJ strand formation. Furthermore, Par3 attenuates TMEM25-claudin association via binding to TMEM25, implying its ability to affect claudin oligomerization. Thus, the TJ protein TMEM25 appears to negatively regulate claudin assembly in TJ formation, which regulation is modulated by its interaction with Par3.


Subject(s)
Claudins , Tight Junctions , Tight Junctions/metabolism , Claudins/genetics , Claudins/metabolism , Carrier Proteins/metabolism , Epithelial Cells , Claudin-1/genetics , Claudin-1/metabolism
19.
PLoS Negl Trop Dis ; 18(1): e0011872, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38190388

ABSTRACT

BACKGROUND: Gut epithelium is the first natural barrier against Trichinella spiralis larval invasion, but the mechanism by which larval penetration of gut epithelium is not completely elucidated. Previous studies showed that proteases secreted by T. spiralis intestinal infective larvae (IIL) degraded tight junctions (TJs) proteins of gut epithelium and mediated larval invasion. A new T. spiralis serine proteinase (TsSPc) was identified in the IIL surface proteins and ES proteins, rTsSPc bound to the intestinal epithelial cell (IECs) and promoted larval invasion of IECs. The aim of this study was to characterize the interacted proteins of TsSPc and IECs, and to investigate the molecular mechanisms of TsSPc mediating larval invasion of gut mucosa. METHODOLOGY/PRINCIPAL FINDING: IIFT results showed natural TsSPc was detected in infected murine intestine at 6, 12 hours post infection (hpi) and 3 dpi. The results of GST pull-down, mass spectrometry (MS) and Co-IP indicated that rTsSPc bound and interacted specifically with receptor for activated protein C kinase 1 (RACK1) in Caco-2 cells. rTsSPc did not directly hydrolyze the TJs proteins. qPCR and Western blot showed that rTsSPc up-regulated RACK1 expression, activated MAPK/ERK1/2 pathway, reduced the expression levels of gut TJs (occludin and claudin-1) and adherent protein E-cad, increased the paracellular permeability and damaged the integrity of intestinal epithelial barrier. Moreover, the RACK1 inhibitor HO and ERK1/2 pathway inhibitor PD98059 abolished the rTsSPc activating ERK1/2 pathway, they also inhibited and abrogated the rTsSPc down-regulating expression of occludin, claudin-1 and E-cad in Caco-2 monolayer and infected murine intestine, impeded larval invasion and improved intestinal epithelial integrity and barrier function, reduced intestinal worm burdens and alleviated intestinal inflammation. CONCLUSIONS: rTsSPc bound to RACK1 receptor in gut epithelium, activated MAPK/ERK1/2 pathway, decreased the expression of gut epithelial TJs proteins and disrupted the epithelial integrity, consequently mediated T. spiralis larval invasion of gut epithelium. The results are valuable to understand T. spiralis invasion mechanism, and TsSPc might be regarded as a vaccine target against T. spiralis invasion and infection.


Subject(s)
Trichinella spiralis , Trichinellosis , Humans , Animals , Mice , Larva/physiology , Serine Proteases/genetics , Caco-2 Cells , Claudin-1/metabolism , MAP Kinase Signaling System , Occludin/metabolism , Helminth Proteins/metabolism , Epithelial Cells/metabolism , Mice, Inbred BALB C , Intestinal Mucosa/metabolism , Receptors for Activated C Kinase/metabolism , Neoplasm Proteins/genetics
20.
J Anim Sci ; 1022024 Jan 03.
Article in English | MEDLINE | ID: mdl-38219027

ABSTRACT

Six female littermate piglets were used in an experiment to evaluate the mRNA expression in tissues from piglets given one or two 1 mL injections of iron dextran (200 mg Fe/mL). All piglets in the litter were administered the first 1 mL injection < 24 h after birth. On day 7, piglets were paired by weight (mean body weight = 1.72 ±â€…0.13 kg) and one piglet from each pair was randomly selected as control (CON) and the other received a second injection (+Fe). At weaning on day 22, each piglet was anesthetized, and samples of liver and duodenum were taken from the anesthetized piglets and preserved until mRNA extraction. differential gene expression data were analyzed with a fold change cutoff (FC) of |1.2| P < 0.05. Pathway analysis was conducted with Z-score cutoff of P < 0.05. In the duodenum 435 genes were significantly changed with a FC ≥ |1.2| P < 0.05. In the duodenum, Claudin 1 and Claudin 2 were inversely affected by + Fe. Claudin 1 (CLDN1) plays a key role in cell-to-cell adhesion in the epithelial cell sheets and was upregulated (FC = 4.48, P = 0.0423). Claudin 2 (CLDN2) is expressed in cation leaky epithelia, especially during disease or inflammation and was downregulated (FC = -1.41, P = 0.0097). In the liver, 362 genes were expressed with a FC ≥ |1.2| P < 0.05. The gene most affected by a second dose of 200 mg Fe was hepcidin antimicrobial peptide (HAMP) with a FC of 40.8. HAMP is a liver-produced hormone that is the main circulating regulator of Fe absorption and distribution across tissues. It also controls the major flows of Fe into plasma by promoting endocytosis and degradation of ferroportin (SLC4A1). This leads to the retention of Fe in Fe-exporting cells and decreased flow of Fe into plasma. Gene expression related to metabolic pathway changes in the duodenum and liver provides evidence for the improved feed conversion and growth rates in piglets given two iron injections preweaning with contemporary pigs in a companion study. In the duodenum, there is a downregulation of gene clusters associated with gluconeogenesis (P < 0.05). Concurrently, there was a decrease in the mRNA expression of genes for enzymes required for urea production in the liver (P < 0.05). These observations suggest that there may be less need for gluconeogenesis, and possibly less urea production from deaminated amino acids. The genomic and pathway analyses provided empirical evidence linking gene expression with phenotypic observations of piglet health and growth improvements.


Iron deficiency anemia (IDA) in neonatal piglets is a problem that occurs unless there is intervention with exogenous iron. The most common method to prevent IDA is with an iron injection within 48 h of birth. However, the iron from the first injection will only support normal iron status in the piglets for ~4 kg of growth. As a result, with faster-growing piglets and larger litters, many piglets weaned today are iron deficient which results in slower growth and poor immunity. Pigs never fully recover nor grow at the same rate as those that have sufficient iron status. The aim of this study was to evaluate the effects of one or two injections of iron dextran on the differences in gene expression and metabolic pathway changes in the small intestine and liver of nursing piglets. At weaning, samples of liver and duodenum underwent genome-wide RNA sequencing. The data obtained were statistically analyzed to determine which genes and metabolic pathways were affected. There were 362 and 435 genes significantly changed in the liver and duodenum, respectively, due to a second dose of iron dextran on day 7 after birth.


Subject(s)
Dextrans , Iron , Animals , Female , Swine , Iron/metabolism , Weaning , Dextrans/metabolism , Claudin-1/metabolism , Claudin-2/metabolism , Lactation , Iron-Dextran Complex , Liver/metabolism , Duodenum/metabolism , RNA, Messenger/metabolism , Urea/metabolism , Gene Expression
SELECTION OF CITATIONS
SEARCH DETAIL
...