Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 5415, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38926345

ABSTRACT

The claustrum has been linked to attention and sleep. We hypothesized that this reflects a shared function, determining responsiveness to stimuli, which spans the axis of engagement. To test this hypothesis, we recorded claustrum population dynamics from male mice during both sleep and an attentional task ('ENGAGE'). Heightened activity in claustrum neurons projecting to the anterior cingulate cortex (ACCp) corresponded to reduced sensory responsiveness during sleep. Similarly, in the ENGAGE task, heightened ACCp activity correlated with disengagement and behavioral lapses, while low ACCp activity correlated with hyper-engagement and impulsive errors. Chemogenetic elevation of ACCp activity reduced both awakenings during sleep and impulsive errors in the ENGAGE task. Furthermore, mice employing an exploration strategy in the task showed a stronger correlation between ACCp activity and performance compared to mice employing an exploitation strategy which reduced task complexity. Our results implicate ACCp claustrum neurons in restricting engagement during sleep and goal-directed behavior.


Subject(s)
Claustrum , Gyrus Cinguli , Neurons , Sleep , Animals , Gyrus Cinguli/physiology , Male , Sleep/physiology , Neurons/physiology , Neurons/metabolism , Mice , Claustrum/physiology , Mice, Inbred C57BL , Behavior, Animal/physiology , Attention/physiology , Wakefulness/physiology
2.
Curr Biol ; 34(9): R337-R339, 2024 05 06.
Article in English | MEDLINE | ID: mdl-38714158

ABSTRACT

Nociceptive stimuli are processed by the brain into an unpleasant sensation. Two new studies highlight an important role of the claustrum in the processing of pain-related information.


Subject(s)
Chronic Pain , Claustrum , Chronic Pain/physiopathology , Claustrum/physiology , Humans , Animals
3.
Curr Biol ; 34(9): 1987-1995.e4, 2024 05 06.
Article in English | MEDLINE | ID: mdl-38614081

ABSTRACT

The anterior cingulate cortex (ACC) is critical for the perception and unpleasantness of pain.1,2,3,4,5,6 It receives nociceptive information from regions such as the thalamus and amygdala and projects to several cortical and subcortical regions of the pain neuromatrix.7,8 ACC hyperexcitability is one of many functional changes associated with chronic pain, and experimental activation of ACC pyramidal cells produces hypersensitivity to innocuous stimuli (i.e., allodynia).9,10,11,12,13,14 A less-well-studied projection to the ACC arises from a small forebrain region, the claustrum.15,16,17,18,19,20 Stimulation of excitatory claustrum projection neurons preferentially activates GABAergic interneurons, generating feed-forward inhibition onto excitatory cortical networks.21,22,23,24 Previous work has shown that claustrocingulate projections display altered activity in prolonged pain25,26,27; however, it remains unclear whether and how the claustrum participates in nociceptive processing and high-order pain behaviors. Inhibition of ACC activity reverses mechanical allodynia in animal models of persistent and neuropathic pain,1,9,28 suggesting claustrum inputs may function to attenuate pain processing. In this study, we sought to define claustrum function in acute and chronic pain. We found enhanced claustrum activity after a painful stimulus that was attenuated in chronic inflammatory pain. Selective inhibition of claustrocingulate projection neurons enhanced acute nociception but blocked pain learning. Inversely, chemogenetic activation of claustrocingulate neurons had no effect on basal nociception but rescued inflammation-induced mechanical allodynia. Together, these results suggest that claustrocingulate neurons are a critical component of the pain neuromatrix, and dysregulation of this connection may contribute to chronic pain.


Subject(s)
Claustrum , Gyrus Cinguli , Animals , Gyrus Cinguli/physiology , Gyrus Cinguli/physiopathology , Claustrum/physiology , Mice , Male , Nociception/physiology , Neural Pathways/physiopathology , Neural Pathways/physiology , Mice, Inbred C57BL , Pain/physiopathology
4.
Curr Biol ; 34(9): 1953-1966.e6, 2024 05 06.
Article in English | MEDLINE | ID: mdl-38614082

ABSTRACT

Aberrant cognitive network activity and cognitive deficits are established features of chronic pain. However, the nature of cognitive network alterations associated with chronic pain and their underlying mechanisms require elucidation. Here, we report that the claustrum, a subcortical nucleus implicated in cognitive network modulation, is activated by acute painful stimulation and pain-predictive cues in healthy participants. Moreover, we discover pathological activity of the claustrum and a region near the posterior inferior frontal sulcus of the right dorsolateral prefrontal cortex (piDLPFC) in migraine patients during acute pain and cognitive task performance. Dynamic causal modeling suggests a directional influence of the claustrum on activity in this piDLPFC region, and diffusion weighted imaging verifies their structural connectivity. These findings advance understanding of claustrum function during acute pain and provide evidence of a possible circuit mechanism driving cognitive impairments in chronic pain.


Subject(s)
Chronic Pain , Claustrum , Cognition , Humans , Chronic Pain/physiopathology , Male , Adult , Cognition/physiology , Female , Claustrum/physiology , Claustrum/physiopathology , Young Adult , Migraine Disorders/physiopathology
5.
Eur J Neurosci ; 59(12): 3203-3223, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38637993

ABSTRACT

Social communication draws on several cognitive functions such as perception, emotion recognition and attention. The association of audio-visual information is essential to the processing of species-specific communication signals. In this study, we use functional magnetic resonance imaging in order to identify the subcortical areas involved in the cross-modal association of visual and auditory information based on their common social meaning. We identified three subcortical regions involved in audio-visual processing of species-specific communicative signals: the dorsolateral amygdala, the claustrum and the pulvinar. These regions responded to visual, auditory congruent and audio-visual stimulations. However, none of them was significantly activated when the auditory stimuli were semantically incongruent with the visual context, thus showing an influence of visual context on auditory processing. For example, positive vocalization (coos) activated the three subcortical regions when presented in the context of positive facial expression (lipsmacks) but not when presented in the context of negative facial expression (aggressive faces). In addition, the medial pulvinar and the amygdala presented multisensory integration such that audiovisual stimuli resulted in activations that were significantly higher than those observed for the highest unimodal response. Last, the pulvinar responded in a task-dependent manner, along a specific spatial sensory gradient. We propose that the dorsolateral amygdala, the claustrum and the pulvinar belong to a multisensory network that modulates the perception of visual socioemotional information and vocalizations as a function of the relevance of the stimuli in the social context. SIGNIFICANCE STATEMENT: Understanding and correctly associating socioemotional information across sensory modalities, such that happy faces predict laughter and escape scenes predict screams, is essential when living in complex social groups. With the use of functional magnetic imaging in the awake macaque, we identify three subcortical structures-dorsolateral amygdala, claustrum and pulvinar-that only respond to auditory information that matches the ongoing visual socioemotional context, such as hearing positively valenced coo calls and seeing positively valenced mutual grooming monkeys. We additionally describe task-dependent activations in the pulvinar, organizing along a specific spatial sensory gradient, supporting its role as a network regulator.


Subject(s)
Amygdala , Auditory Perception , Claustrum , Magnetic Resonance Imaging , Pulvinar , Visual Perception , Pulvinar/physiology , Amygdala/physiology , Amygdala/diagnostic imaging , Male , Animals , Auditory Perception/physiology , Claustrum/physiology , Visual Perception/physiology , Female , Facial Expression , Macaca , Photic Stimulation/methods , Brain Mapping , Acoustic Stimulation , Vocalization, Animal/physiology , Social Perception
6.
Brain Struct Funct ; 229(5): 1143-1164, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38615290

ABSTRACT

The claustrum is an ancient telencephalic subcortical structure displaying extensive, reciprocal connections with much of the cortex and receiving projections from thalamus, amygdala, and hippocampus. This structure has a general role in modulating cortical excitability and is considered to be engaged in different cognitive and motor functions, such as sensory integration and perceptual binding, salience-guided attention, top-down executive functions, as well as in the control of brain states, such as sleep and its interhemispheric integration. The present study is the first to describe in detail a projection from the claustrum to the striatum in the macaque brain. Based on tracer injections in different striatal regions and in different cortical areas, we observed a rough topography of the claustral connectivity, thanks to which a claustral zone projects to both a specific striatal territory and to cortical areas involved in a network projecting to the same striatal territory. The present data add new elements of complexity of the basal ganglia information processing mode in motor and non-motor functions and provide evidence for an influence of the claustrum on both cortical functional domains and cortico-basal ganglia circuits.


Subject(s)
Basal Ganglia , Cerebral Cortex , Claustrum , Neural Pathways , Animals , Claustrum/physiology , Cerebral Cortex/physiology , Neural Pathways/physiology , Male , Basal Ganglia/physiology , Corpus Striatum/physiology
7.
Curr Biol ; 33(13): 2761-2773.e8, 2023 07 10.
Article in English | MEDLINE | ID: mdl-37379841

ABSTRACT

The synthetic opioid fentanyl is a major contributor to the current opioid addiction crisis. We report that claustral neurons projecting to the frontal cortex limit oral fentanyl self-administration in mice. We found that fentanyl transcriptionally activates frontal-projecting claustrum neurons. These neurons also exhibit a unique suppression of Ca2+ activity upon initiation of bouts of fentanyl consumption. Optogenetic stimulation of frontal-projecting claustral neurons, intervening in this suppression, decreased bouts of fentanyl consumption. In contrast, constitutive inhibition of frontal-projecting claustral neurons in the context of a novel, group-housed self-administration procedure increased fentanyl bout consumption. This same manipulation also sensitized conditioned-place preference for fentanyl and enhanced the representation of fentanyl experience in the frontal cortex. Together, our results indicate that claustrum neurons exert inhibitory control over frontal cortical neurons to restrict oral fentanyl intake. Upregulation of activity in the claustro-frontal projection may be a promising strategy for reducing human opioid addiction.


Subject(s)
Claustrum , Opioid-Related Disorders , Mice , Humans , Animals , Claustrum/physiology , Analgesics, Opioid/pharmacology , Basal Ganglia/physiology , Frontal Lobe , Neurons/physiology , Fentanyl/pharmacology
8.
Cell Rep ; 42(2): 112118, 2023 02 28.
Article in English | MEDLINE | ID: mdl-36774552

ABSTRACT

The claustrum (CLA) is a conspicuous subcortical structure interconnected with cortical and subcortical regions. Its regional anatomy and cell-type-specific connections in the mouse remain not fully determined. Using multimodal reference datasets, we confirmed the delineation of the mouse CLA as a single group of neurons embedded in the agranular insular cortex. We quantitatively investigated brain-wide inputs and outputs of CLA using bulk anterograde and retrograde viral tracing data and single neuron tracing data. We found that the prefrontal module has more cell types projecting to the CLA than other cortical modules, with layer 5 IT neurons predominating. We found nine morphological types of CLA principal neurons that topographically innervate functionally linked cortical targets, preferentially the midline cortical areas, secondary motor area, and entorhinal area. Together, this study provides a detailed wiring diagram of the cell-type-specific connections of the mouse CLA, laying a foundation for studying its functions at the cellular level.


Subject(s)
Claustrum , Motor Cortex , Mice , Animals , Claustrum/physiology , Neural Pathways/physiology , Entorhinal Cortex/physiology , Neurons
9.
J Neurosci ; 43(5): 693-708, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36631266

ABSTRACT

The claustrum (CLA) is a cluster of neurons located between the insular cortex and striatum. Many studies have shown that the CLA plays an important role in higher brain function. Additionally, growing evidence suggests that CLA dysfunction is associated with neuropsychological symptoms. However, how the CLA is formed during development is not fully understood. In the present study, we analyzed the development of the CLA, especially focusing on the migration profiles of CLA neurons in mice of both sexes. First, we showed that CLA neurons were generated between embryonic day (E) 10.5 and E12.5, but mostly at E11.5. Next, we labeled CLA neurons born at E11.5 using the FlashTag technology and revealed that most neurons reached the brain surface by E13.5 but were distributed deep in the CLA 1 d later at E14.5. Time-lapse imaging of GFP-labeled cells revealed that some CLA neurons first migrated radially outward and then changed their direction inward after reaching the surface. Moreover, we demonstrated that Reelin signal is necessary for the appropriate distribution of CLA neurons. The switch from outward to "reversed" migration of developing CLA neurons is distinct from other migration modes, in which neurons typically migrate in a certain direction, which is simply outward or inward. Future elucidation of the characteristics and precise molecular mechanisms of CLA development may provide insights into the unique cognitive functions of the CLA.SIGNIFICANCE STATEMENT The claustrum (CLA) plays an important role in higher brain function, and its dysfunction is associated with neuropsychological symptoms. Although psychiatric disorders are increasingly being understood as disorders of neurodevelopment, little is known about CLA development, including its neuronal migration profiles and underlying molecular mechanisms. Here, we investigated the migration profiles of CLA neurons during development and found that they migrated radially outward and then inward after reaching the surface. This switch in the migratory direction from outward to inward may be one of the brain's fundamental mechanisms of nuclear formation. Our findings enable us to investigate the relationship between CLA maldevelopment and dysfunction, which may facilitate understanding of the pathogenesis of some psychiatric disorders.


Subject(s)
Claustrum , Female , Male , Mice , Animals , Claustrum/physiology , Neurons/physiology , Cell Movement/physiology , Corpus Striatum , Neurogenesis
10.
Neuron ; 111(2): 275-290.e5, 2023 01 18.
Article in English | MEDLINE | ID: mdl-36368317

ABSTRACT

The claustrum is a small subcortical structure with widespread connections to disparate regions of the cortex. However, the impact of the claustrum on cortical activity is not fully understood, particularly beyond frontal areas. Here, using optogenetics and multi-regional Neuropixels recordings from over 15,000 cortical neurons in awake mice, we demonstrate that the effect of claustrum input to the cortex differs depending on brain area, layer, and cell type. Brief claustrum stimulation, producing approximately 1 spike per claustrum neuron, affects many fast spiking (FS; putative inhibitory) but relatively fewer regular-spiking (RS; putative excitatory) cortical neurons and leads to a modest decrease in population activity in frontal cortical areas. Prolonged claustrum stimulation affects many more cortical neurons and can increase or decrease spiking activity. More excitation occurs in posterior regions and superficial layers, while inhibition predominates in frontal regions and deeper layers. These findings suggest that claustro-cortical circuits are organized into functional modules.


Subject(s)
Claustrum , Mice , Animals , Claustrum/physiology , Basal Ganglia/physiology , Frontal Lobe , Neurons/physiology , Optogenetics
11.
Elife ; 102021 06 25.
Article in English | MEDLINE | ID: mdl-34170817

ABSTRACT

The granular retrosplenial cortex (RSG) is critical for both spatial and non-spatial behaviors, but the underlying neural codes remain poorly understood. Here, we use optogenetic circuit mapping in mice to reveal a double dissociation that allows parallel circuits in superficial RSG to process disparate inputs. The anterior thalamus and dorsal subiculum, sources of spatial information, strongly and selectively recruit small low-rheobase (LR) pyramidal cells in RSG. In contrast, neighboring regular-spiking (RS) cells are preferentially controlled by claustral and anterior cingulate inputs, sources of mostly non-spatial information. Precise sublaminar axonal and dendritic arborization within RSG layer 1, in particular, permits this parallel processing. Observed thalamocortical synaptic dynamics enable computational models of LR neurons to compute the speed of head rotation, despite receiving head direction inputs that do not explicitly encode speed. Thus, parallel input streams identify a distinct principal neuronal subtype ideally positioned to support spatial orientation computations in the RSG.


Sitting in your car, about to drive home after a long day at work, you realize you have no idea which way to go: you recognize where you are right now, and you remember the name of the street your house is on, but you cannot figure out how to get there. This spatial disorientation happens to people with damage to a brain region called the retrosplenial cortex, whose role and inner workings remain poorly understood. Recent evidence has shown that this area contains 'low-rheobase' neurons which are not seen anywhere else in the brain, but what do these neurons do? Brennan, Jedrasiak-Cape, Kailasa et al. decided to explore the role of these neurons, focusing on the brain regions they are connected to. Experiments were conducted in mice using optogenetics, a technique that activates neurons using pulses of light. This revealed that brain areas involved in processing information about direction and position preferentially communicate with low-rheobase neurons rather than with nearby, more standard neurons in the retrosplenial cortex. The way these spatial signals are sent to the low-rheobase neurons allows these cells to 'calculate' how fast a mouse is turning its head using only information about which direction the mouse is facing. Essentially, this neuron can turn directional compass-like signals into a gyroscope signal that can track both direction and speed of head movement. These unique neurons may therefore be ideally suited to combine information about direction and space, suggesting that they may have evolved specifically to support spatial navigation. Individuals with Alzheimer's disease show exactly the same type of spatial disorientation as individuals with direct damage to the retrosplenial cortex. This region is also one of the first to show altered activity in Alzheimer's disease. Exploring whether these unique retrosplenial neurons and their communication patterns are altered in Alzheimer's disease models could help to understand and potentially treat this debilitating condition.


Subject(s)
Claustrum/physiology , Gyrus Cinguli/physiology , Space Perception/physiology , Animals , Anterior Thalamic Nuclei/physiology , Female , Male , Mice , Optogenetics
12.
Cereb Cortex ; 31(10): 4595-4611, 2021 08 26.
Article in English | MEDLINE | ID: mdl-33939798

ABSTRACT

The projections from the claustrum to cortical areas within and adjacent to the superior parietal lobule were studied in 10 macaque monkeys, using retrograde tracers, computerized reconstructions, and quantitative methods. In contrast with the classical view that posterior parietal areas receive afferents primarily from the dorsal and posterior regions of the claustrum, we found that these areas receive more extensive projections, including substantial afferents from the anterior and ventral regions of the claustrum. Moreover, our findings uncover a previously unsuspected variability in the precise regions of the claustrum that originate the projections, according to the target areas. For example, areas dominated by somatosensory inputs for control of body movements tend to receive most afferents from the dorsal-posterior claustrum, whereas those which also receive significant visual inputs tend to receive more afferents from the ventral claustrum. In addition, different areas within these broadly defined groups differ in terms of quantitative emphasis in the origin of projections. Overall, these results argue against a simple model whereby adjacency in the cortex determines adjacency in the sectors of claustral origin of projections and indicate that subnetworks defined by commonality of function may be an important factor in defining claustrocortical topography.


Subject(s)
Claustrum/physiology , Parietal Lobe/physiology , Afferent Pathways/physiology , Animals , Brain Mapping , Macaca fascicularis , Macaca mulatta , Macaca nemestrina , Movement/physiology , Neurons, Afferent/physiology , Photic Stimulation , Somatosensory Cortex/physiology
13.
Biochem Pharmacol ; 191: 114514, 2021 09.
Article in English | MEDLINE | ID: mdl-33713640

ABSTRACT

Michel Jouvet proposed in 1959 that REM sleep is a paradoxical state since it was characterized by the association of a cortical activation similar to wakefulness (W) with muscle atonia. Recently, we showed using cFos as a marker of activity that cortical activation during paradoxical sleep (PS) was limited to a few limbic cortical structures in contrast to W during which all cortices were strongly activated. However, we were not able to demonstrate whether the same neurons are activated during PS and W and to rule out that the activation observed was not linked with stress induced by the flowerpot method of PS deprivation. In the present study, we answered to these two questions by combining tdTomato and cFos immunostaining in the innovative TRAP2 transgenic mice exposed one week apart to two periods of W (W-W mice), PS rebound (PSR-PSR) or a period of W followed by a period of PSR (W-PSR mice). Using such method, we showed that different neurons are activated during W and PSR in the anterior cingulate (ACA) and rostral and caudal retrosplenial (rRSP and cRSP) cortices as well as the claustrum (CLA) previously shown to contain a large number of activated neurons after PSR. Further, the distribution of the neurons during PSR in the rRSP and cRSP was limited to the superficial layers while it was widespread across all layers during W. Our results clearly show at the cellular level that PS and W are two completely different states in term of neocortical activation.


Subject(s)
Claustrum/physiology , Disorders of Excessive Somnolence/physiopathology , Gyrus Cinguli/physiology , Neurons/physiology , Sleep, REM/physiology , Wakefulness/physiology , Animals , Claustrum/cytology , Disorders of Excessive Somnolence/genetics , Disorders of Excessive Somnolence/pathology , Female , Gyrus Cinguli/cytology , Male , Mice , Mice, Transgenic , Polysomnography/methods
15.
Curr Biol ; 30(23): R1401-R1406, 2020 12 07.
Article in English | MEDLINE | ID: mdl-33290700

ABSTRACT

The claustrum is a brain region that has been investigated for over 200 years, yet its precise function remains unknown. In the final posthumously released article of Francis Crick, written with Christof Koch, the claustrum was suggested to be critically linked to consciousness. Though the claustrum remained relatively obscure throughout the last half century, it has enjoyed a renewed interest in the last 15 years since Crick and Koch's article. During this time, the claustrum, like many other brain regions, has been studied with the myriad of modern systems neuroscience tools that have been made available by the intersection of genetic and viral technologies. This has uncovered new information about its anatomical connectivity and physiological properties and begun to reveal aspects of its function. From these studies, one clear consensus has emerged which supports Crick and Koch's primary interest in the claustrum: the claustrum has widespread extensive connectivity with the entire cerebral cortex, suggesting a prominent role in 'higher order processes'.


Subject(s)
Cerebral Cortex/physiology , Claustrum/physiology , Consciousness/physiology , Animals , Claustrum/anatomy & histology , Humans , Mice , Models, Animal , Neural Pathways/physiology
16.
Science ; 370(6514)2020 10 16.
Article in English | MEDLINE | ID: mdl-33060328

ABSTRACT

At the earliest developmental stages, spontaneous activity synchronizes local and large-scale cortical networks. These networks form the functional template for the establishment of global thalamocortical networks and cortical architecture. The earliest connections are established autonomously. However, activity from the sensory periphery reshapes these circuits as soon as afferents reach the cortex. The early-generated, largely transient neurons of the subplate play a key role in integrating spontaneous and sensory-driven activity. Early pathological conditions-such as hypoxia, inflammation, or exposure to pharmacological compounds-alter spontaneous activity patterns, which subsequently induce disturbances in cortical network activity. This cortical dysfunction may lead to local and global miswiring and, at later stages, can be associated with neurological and psychiatric conditions.


Subject(s)
Cerebral Cortex/embryology , Cerebral Cortex/physiology , Neural Pathways/embryology , Neural Pathways/physiology , Animals , Apoptosis , Claustrum/physiology , Humans , Magnetic Resonance Imaging , Mice , Neurogenesis , Neuronal Plasticity , Schizophrenia/physiopathology , Thalamic Nuclei/physiology
17.
Curr Biol ; 30(18): 3522-3532.e6, 2020 09 21.
Article in English | MEDLINE | ID: mdl-32707061

ABSTRACT

The claustrum is a small nucleus, exhibiting vast reciprocal connectivity with cortical, subcortical, and midbrain regions. Recent studies, including ours, implicate the claustrum in salience detection and attention. In the current study, we develop an iterative functional investigation of the claustrum, guided by quantitative spatial transcriptional analysis. Using this approach, we identify a circuit involving dopamine-receptor expressing claustral neurons projecting to frontal cortex necessary for context association of reward. We describe the recruitment of claustral neurons by cocaine and their role in drug sensitization. In order to characterize the circuit within which these neurons are embedded, we apply chemo- and opto-genetic manipulation of increasingly specified claustral subpopulations. This strategy resolves the role of a defined network of claustrum neurons expressing dopamine D1 receptors and projecting to frontal cortex in the acquisition of cocaine conditioned-place preference and real-time optogenetic conditioned-place preference. In sum, our results suggest a role for a claustrum-to-frontal cortex circuit in the attribution of incentive salience, allocating attention to reward-related contextual cues.


Subject(s)
Basal Ganglia/physiology , Claustrum/physiology , Cocaine/pharmacology , Frontal Lobe/physiology , Neurons/physiology , Reward , Animals , Basal Ganglia/drug effects , Claustrum/drug effects , Dopamine Uptake Inhibitors/pharmacology , Frontal Lobe/drug effects , Male , Mice , Mice, Inbred C57BL , Neurons/drug effects , Receptors, Dopamine D1/metabolism
18.
Curr Biol ; 30(14): 2777-2790.e4, 2020 07 20.
Article in English | MEDLINE | ID: mdl-32531275

ABSTRACT

The widespread reciprocal connectivity between the claustrum and the neocortex has stimulated numerous hypotheses regarding its function; all of these suggest that the claustrum acts as a hub that connects multiple cortical regions via dense reciprocal synaptic pathways. Although the connectivity between the anterior cingulate cortex (ACC) and the claustrum has been proposed as an important pathway for top-down cognitive control, little is known about the synaptic inputs that drive claustrum cells projecting to the ACC. Here, we used multi-neuron patch clamp recordings, retrograde and anterograde viral labeling, and optogenetics in mouse claustrum to investigate cortical inputs and outputs of ACC-projecting claustrum (CLA-ACC) neurons. Both ipsilateral and contralateral cortical regions were found to provide synaptic input to CLA-ACC neurons. These cortical regions were predominantly frontal and limbic regions and not primary sensorimotor regions. We show that CLA-ACC neurons receive monosynaptic input from the insular cortex, thereby revealing a potential claustrum substrate mediating the Salience Network. In contrast, sensorimotor cortical regions preferentially targeted non CLA-ACC claustrum neurons. Using dual retrograde labeling of claustrum projection neurons, we show selectivity also in the cortical targets of CLA-ACC neurons: whereas CLA-ACC neurons co-projected mainly to other frontal regions, claustrum neurons projecting to primary sensorimotor cortices selectively targeted other sensorimotor regions. Our results show that both cortical inputs to and projections from CLA-ACC neurons are highly selective, suggesting an organization of cortico-claustral connectivity into functional modules that could be specialized for processing different types of information.


Subject(s)
Claustrum/physiology , Neocortex/physiology , Neural Pathways/pathology , Synaptic Transmission/physiology , Animals , Claustrum/cytology , Gyrus Cinguli/physiology , Mice , Neurons/physiology , Optogenetics , Patch-Clamp Techniques , Sensorimotor Cortex/physiology
19.
Nat Neurosci ; 23(6): 741-753, 2020 06.
Article in English | MEDLINE | ID: mdl-32393895

ABSTRACT

During sleep and awake rest, the neocortex generates large-scale slow-wave (SW) activity. Here, we report that the claustrum coordinates neocortical SW generation. We established a transgenic mouse line that enabled the genetic interrogation of a subpopulation of claustral glutamatergic neurons. These neurons received inputs from and sent outputs to widespread neocortical areas. The claustral neuronal firings mostly correlated with cortical SW activity. In vitro optogenetic stimulation of the claustrum induced excitatory postsynaptic responses in most neocortical neurons, but elicited action potentials primarily in inhibitory interneurons. In vivo optogenetic stimulation induced a synchronized down-state featuring prolonged silencing of neural activity in all layers of many cortical areas, followed by a down-to-up state transition. In contrast, genetic ablation of claustral neurons attenuated SW activity in the frontal cortex. These results demonstrate a crucial role of claustral neurons in synchronizing inhibitory interneurons across wide cortical areas for the spatiotemporal coordination of SW activity.


Subject(s)
Claustrum/physiology , Neocortex/physiology , Sleep, Slow-Wave/physiology , Action Potentials/physiology , Animals , Excitatory Postsynaptic Potentials/physiology , Interneurons/physiology , Mice , Mice, Transgenic , Neural Inhibition/physiology , Neurons/physiology , Optogenetics , T-Box Domain Proteins/genetics
20.
Nature ; 578(7795): 413-418, 2020 02.
Article in English | MEDLINE | ID: mdl-32051589

ABSTRACT

The mammalian claustrum, owing to its widespread connectivity with other forebrain structures, has been hypothesized to mediate functions that range from decision-making to consciousness1. Here we report that a homologue of the claustrum, identified by single-cell transcriptomics and viral tracing of connectivity, also exists in a reptile-the Australian bearded dragon Pogona vitticeps. In Pogona, the claustrum underlies the generation of sharp waves during slow-wave sleep. The sharp waves, together with superimposed high-frequency ripples2, propagate to the entire neighbouring pallial dorsal ventricular ridge (DVR). Unilateral or bilateral lesions of the claustrum suppress the production of sharp-wave ripples during slow-wave sleep in a unilateral or bilateral manner, respectively, but do not affect the regular and rapidly alternating sleep rhythm that is characteristic of sleep in this species3. The claustrum is thus not involved in the generation of the sleep rhythm itself. Tract tracing revealed that the reptilian claustrum projects widely to a variety of forebrain areas, including the cortex, and that it receives converging inputs from, among others, areas of the mid- and hindbrain that are known to be involved in wake-sleep control in mammals4-6. Periodically modulating the concentration of serotonin in the claustrum, for example, caused a matching modulation of sharp-wave production there and in the neighbouring DVR. Using transcriptomic approaches, we also identified a claustrum in the turtle Trachemys scripta, a distant reptilian relative of lizards. The claustrum is therefore an ancient structure that was probably already present in the brain of the common vertebrate ancestor of reptiles and mammals. It may have an important role in the control of brain states owing to the ascending input it receives from the mid- and hindbrain, its widespread projections to the forebrain and its role in sharp-wave generation during slow-wave sleep.


Subject(s)
Claustrum/anatomy & histology , Claustrum/physiology , Lizards/anatomy & histology , Lizards/physiology , Sleep/physiology , Animals , Claustrum/cytology , Claustrum/injuries , Male , Mammals/physiology , Mesencephalon/cytology , Mesencephalon/physiology , Neural Pathways , RNA-Seq , Rhombencephalon/cytology , Rhombencephalon/physiology , Serotonin/metabolism , Single-Cell Analysis , Transcriptome , Turtles/anatomy & histology , Turtles/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...