Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-33983875

ABSTRACT

Clavibacter michiganensis is a Gram-stain-positive bacterium with eight subspecies, five of which have been redefined as different species on the basis of their genome sequence data. On the basis of the results of phylogenetic analysis of dnaA gene sequences, strains of members of the genus Clavibacter isolated from barley have been grouped in a separate clade from other species and subspecies of the genus Clavibacter. In this study, the biochemical, physiological, fatty acids and genetic characteristics of strains DM1T and DM3, which represented the barley isolates, were examined. On the basis of results from multi-locus sequence typing and other biochemical and physiological features, including colony colour, carbon source utilisation and enzyme activities, DM1T and DM3 are categorically differentiated from the aforementioned eight species and subspecies of the genus Clavibacter. Moreover, the results of genomic analysis reveal that the DNA G+C contents of DM1T and DM3 are 73.7 and 73.5 %, respectively, and the average nucleotide identity (ANI) values between DM1T and DM3 and other species and subspecies range from 90.4 to 92.0 %. The ANI value between DM1T and DM3 is 98.0 %. These results indicate that DM1T and DM3 are distinct from other known species and subspecies of the genus Clavibacter. Therefore, we propose a novel species, C. zhangzhiyongii, with DM1T (=CFCC 16553 T=LMG 31970T) as the type strain.


Subject(s)
Clavibacter/classification , Hordeum/microbiology , Phylogeny , Plant Diseases/microbiology , Seeds/microbiology , Australia , Bacterial Typing Techniques , Base Composition , China , Clavibacter/isolation & purification , DNA, Bacterial/genetics , Fatty Acids/chemistry , Multilocus Sequence Typing , Pigmentation , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
2.
J Appl Microbiol ; 131(3): 1405-1416, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33484618

ABSTRACT

AIM: Clavibacter michiganensis (Cm) is a seed-borne plant pathogen that significantly reduces tomato production worldwide. Due to repeated outbreaks and rapid spread of the disease, seeds/transplants need to be certified free of the pathogen before planting. To this end, we developed a multiplex TaqMan qPCR assay that can accurately detect Cm in infected samples. METHODS AND RESULTS: A specific region of Cm (clvG gene) was selected for primer design using comparative genomics approach. A fully synthetic universal internal control (UIC) was also designed to detect PCR inhibitors and false-negative results in qPCRs. The Cm primers can be used alone or in a triplex TaqMan qPCR assay with UIC and previously described Clavibacter primers. The assay was specific for Cm and detected up to 10 fg of Cm DNA in sensitivity and spiked assays. Addition of the UIC did not change the specificity or sensitivity of the multiplex TaqMan qPCR assay. CONCLUSION: The triplex TaqMan qPCR provides a specific and sensitive diagnostic assay for Cm. SIGNIFICANCE AND IMPACT OF THE STUDY: This assay can be used for biosecurity surveillance, routine diagnostics, estimating bacterial titres in infected material and for epidemiological studies. The UIC is fully synthetic, efficiently amplified and multiplex compatible with any other qPCR assay.


Subject(s)
Clavibacter/isolation & purification , Multiplex Polymerase Chain Reaction/methods , Genomics , Solanum lycopersicum/microbiology , Plant Diseases/microbiology
3.
PLoS One ; 16(1): e0245333, 2021.
Article in English | MEDLINE | ID: mdl-33481876

ABSTRACT

The Goss's bacterial wilt pathogen, Clavibacter nebraskensis, of corn is a candidate A1 quarantine organism; and its recent re-emergence and spread in the USA and Canada is a potential biothreat to the crop. We developed and tested an amplicon-based Nanopore detection system for C. nebraskensis (Cn), targeting a purine permease gene. The sensitivity (1 pg) of this system in mock bacterial communities (MBCs) spiked with serially diluted DNA of C. nebraskensis NCPPB 2581T is comparable to that of real-time PCR. Average Nanopore reads increased exponentially from 125 (1pg) to about 6000 reads (1000 pg) after a 3-hr run-time, with 99.0% of the reads accurately assigned to C. nebraskensis. Three run-times were used to process control MBCs, Cn-spiked MBCs, diseased and healthy leaf samples. The mean Nanopore reads doubled as the run-time is increased from 3 to 6 hrs while from 6 to 12 hrs, a 20% increment was recorded in all treatments. Cn-spiked MBCs and diseased corn leaf samples averaged read counts of 5,100, 11,000 and 14,000 for the respective run-times, with 99.8% of the reads taxonomically identified as C. nebraskensis. The control MBCs and healthy leaf samples had 47 and 14 Nanopore reads, respectively. 16S rRNA bacteriomic profiles showed that Sphingomonas (22.7%) and Clavibacter (21.2%) were dominant in diseased samples while Pseudomonas had only 3.5% relative abundance. In non-symptomatic leaf samples, however, Pseudomonas (20.0%) was dominant with Clavibacter at 0.08% relative abundance. This discrepancy in Pseudomonas abundance in the samples was corroborated by qPCR using EvaGreen chemistry. Our work outlines a new useful tool for diagnosis of the Goss's bacterial wilt disease; and provides the first insight on Pseudomonas community dynamics in necrotic leaf lesions.


Subject(s)
Clavibacter/genetics , Nanopore Sequencing/methods , Plant Diseases/microbiology , Zea mays/microbiology , Bacterial Proteins/genetics , Clavibacter/isolation & purification , DNA, Bacterial/genetics , Genes, Bacterial , High-Throughput Nucleotide Sequencing , Nucleobase Transport Proteins/genetics , Plant Leaves/microbiology , RNA, Ribosomal, 16S/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...