Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32.092
Filter
1.
Rev. biol. trop ; 72(1): e53860, ene.-dic. 2024. graf
Article in English | LILACS, SaludCR | ID: biblio-1559318

ABSTRACT

Abstract Introduction: Leptodactylus latinasus and Physalaemus cuqui are sympatric anuran species with similar environmental requirements and contrasting reproductive modes. Climatic configuration determines distribution patterns and promotes sympatry of environmental niches, but specificity/selectivity determines the success of reproductive modes. Species distribution models (SDM) are a valuable tool to predict spatio-temporal distributions based on the extrapolation of environmental predictors. Objectives: To determine the spatio-temporal distribution of environmental niches and assess whether the protected areas of the World Database of Protected Areas (WDPA) allow the conservation of these species in the current scenario and future. Methods: We applied different algorithms to predict the distribution and spatio-temporal overlap of environmental niches of L. latinasus and P. cuqui within South America in the last glacial maximum (LGM), middle-Holocene, current and future scenarios. We assess the conservation status of both species with the WDPA conservation units. Results: All applied algorithms showed high performance for both species (TSS = 0.87, AUC = 0.95). The L. latinasus predictions showed wide environmental niches from LGM to the current scenario (49 % stable niches, 37 % gained niches, and 13 % lost niches), suggesting historical fidelity to stable climatic-environmental regions. In the current-future transition, L. latinasus would increase the number of stable (70 %) and lost (20 %) niches, suggesting fidelity to lowland regions and a possible trend toward microendemism. P. cuqui loses environmental niches from the LGM to the current scenario (25 %) and in the current-future transition (63 %), increasing the environmental sympathy between both species; 31 % spatial overlap in the current scenario and 70 % in the future. Conclusion: Extreme drought events and rainfall variations, derived from climate change, suggest the loss of environmental niches for these species that are not currently threatened but are not adequately protected by conservation units. The loss of environmental niches increases spatial sympatry which represents a new challenge for anurans and the conservation of their populations.


Resumen Introducción: Leptodactylus latinasus y Physalaemus cuqui son especies de anuros simpátricos con requerimientos ambientales similares y modos reproductivos contrastantes. La configuración climática determina los patrones de distribución y promueve la simpatría de los nichos ambientales, pero la especificidad/selectividad determina el éxito de los modos reproductivos. Los modelos de distribución de especies (MDE) son una herramienta valiosa para predecir distribuciones espacio-temporales basadas en la extrapolación de predictores ambientales. Objetivos: Determinar la distribución espacio-temporal de los nichos ambientales y evaluar si las áreas protegidas de la base de Datos Mundial de Áreas Protegidas (DMAP) permiten la conservación de estas especies en el escenario actual y futuro. Métodos: Aplicamos diferentes algoritmos para predecir la distribución y superposición espacio-temporal de nichos ambientales de L. latinasus y P. cuqui dentro de América del Sur en el último máximo glacial (UGM), Holoceno medio, actual y futuro. Evaluamos el estado de conservación de ambas especies con las unidades de conservación de la DMAP. Resultados: Todos los algoritmos aplicados mostraron un alto rendimiento para ambas especies (TSS = 0.87, AUC = 0.95). Las predicciones de L. latinasus mostraron amplios nichos ambientales desde LGM hasta el escenario actual (49 % de nichos estables, 37 % de nichos ganados y 13 % de nichos perdidos), sugiriendo fidelidad histórica por regiones climático-ambientales estables. En la transición actual-futura L. latinasus incrementaría la cantidad de nichos estables (70 %) y perdidos (20 %), sugiriendo fidelidad por regiones de tierras bajas y la posible tendencia hacia el microendemismo. P. cuqui pierde nichos ambientales desde el LGM al escenario actual (25 %) y en la transición actual-futura (63 %), incrementando la simpatría ambiental entre ambas especies; 31 % de superposición espacial en el escenario actual y 70 % en el futuro. Conclusión: Los eventos de sequía extrema y las variaciones de precipitaciones, derivados del cambio climático, sugieren la pérdida de nichos ambientales para estas especies, actualmente no se encuentran amenazadas, pero no están adecuadamente protegidas por las unidades de conservación. La pérdida de nichos ambientales aumenta la simpatría espacial que representa un nuevo desafío para estos anuros y la conservación de sus poblaciones.


Subject(s)
Animals , Anura/classification , Spatio-Temporal Analysis , South America , Climate Change
2.
Multimedia | Multimedia Resources, MULTIMEDIA-SMS-SP | ID: multimedia-13355

ABSTRACT

O Programa em Saúde Ambiental relacionado a populações expostas à poluição do ar do Município de São Paulo (VIGIAR) tem por objetivo desenvolver ações de vigilância em saúde ambiental, para populações expostas aos poluentes atmosféricos, de forma a orientar medidas de prevenção, promoção da saúde e de atenção integral, conforme preconizado pelo Sistema Único de Saúde (SUS).


Subject(s)
Air Pollutants , Climate Change
3.
Multimedia | Multimedia Resources, MULTIMEDIA-SMS-SP | ID: multimedia-13354

ABSTRACT

O Programa em Saúde Ambiental relacionado a populações expostas à poluição do ar do Município de São Paulo (VIGIAR) tem por objetivo desenvolver ações de vigilância em saúde ambiental, para populações expostas aos poluentes atmosféricos, de forma a orientar medidas de prevenção, promoção da saúde e de atenção integral, conforme preconizado pelo Sistema Único de Saúde (SUS).


Subject(s)
Air Pollutants/adverse effects , Climate Change/statistics & numerical data
4.
J Environ Manage ; 365: 121670, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38963956

ABSTRACT

In the era of climate change and carbon neutrality, China is actively coping with its carbon lock-in dilemma. In this context, the development of the digital economy is considered a possible path to carbon unlocking. This study contributes to the literature by providing a comprehensive analysis of how the digital economy can be leveraged to address carbon lock-in, highlighting the importance of formal environmental regulation and informal environmental regulation in enhancing this effect. Accordingly, following findings are highlighted. (1) Our primary findings provide strong evidence on the negative effect of the digital economy on carbon lock-in; by implication, improving the digital economy is an efficient measure for eradicating carbon lock-in. (2) The digital economy shows the greatest marginal impact on industrial lock-in, while its inhibiting effect on behavior lock-in is the least pronounced. Moreover, the digital economy plays a prominent role in curbing carbon lock-in in provinces with a higher level of physical, human, and social capital. And the asymmetric impacts of the digital economy on carbon lock-in are significant at most quantiles. (3) Environmental regulation is a significant moderator. Put differently, the synergy of formal environmental regulation and the digital economy, as well as informal environmental regulation and the digital economy, are important means to break carbon lock-in. (4) The carbon lock-in mitigation effect of the digital economy is caused mainly by increasing technical market turnover and the efficiency of energy consumption.


Subject(s)
Carbon , Climate Change , China , Humans , Conservation of Natural Resources
5.
J Environ Manage ; 365: 121657, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38963958

ABSTRACT

Grazing lands play a significant role in global carbon (C) dynamics, holding substantial soil organic carbon (SOC) stocks. However, historical mismanagement (e.g., overgrazing and land-use change) has led to substantial SOC losses. Regenerative practices, such as adaptive multi-paddock (AMP) grazing, offer a promising avenue to improve soil health and help combat climate change by increasing SOC accrual, both in its particulate (POC) and mineral-associated (MAOC) organic C components. Because adaptive grazing patterns emerge from the combination of different levers such as frequency, intensity, and timing of grazing, studying AMP grazing management in experimental trials and representing it in models remains challenging. Existing ecosystem models lack the capacity to predict how different adaptive grazing levers affect SOC storage and its distribution between POC and MAOC and along the soil profile accurately. Therefore, they cannot adequately assist decision-makers in effectively optimizing adaptive practices based on SOC outcomes. Here, we address this critical gap by developing version 2.34 of the MEMS 2 model. This version advances the previous by incorporating perennial grass growth and grazing submodules to simulate grass green-up and dormancy, reserve organ dynamics, the influence of standing dead plant mass on new plant growth, grass and supplemental feed consumption by animals, and their feces and urine input to soil. Using data from grazing experiments in the southeastern United States and experimental SOC data from two conventional and three AMP grazing sites in Mississippi, we tested the capacity of MEMS 2.34 to simulate grass forage production, total SOC, POC, and MAOC dynamics to 1-m depth. Further, we manipulated grazing management levers, i.e., timing, intensity, and frequency, to do a sensitivity analysis of their effects on SOC dynamics in the long term. Our findings indicate that the model can represent bahiagrass forage production (BIAS = 9.51 g C m-2, RRMSE = 0.27, RMSE = 65.57 g C m-2, R2 = 0.72) and accurately captured the dynamics of SOC fractions across sites and depths (0-15 cm: RRMSE = 0.05; 15-100 cm: RRMSE = 1.08-2.07), aligning with patterns observed in the measured data. The model best captured SOC and MAOC stocks across AMP sites in the 0-15 cm layer, while POC was best predicted at-depth. Otherwise, the model tended to overestimate SOC and MAOC below 15 cm, and POC in the topsoil. Our simulations indicate that grazing frequency and intensity were key levers for enhancing SOC stocks compared to the current management baseline, with decreasing grazing intensity yielding the highest SOC after 50 years (63.7-65.9 Mg C ha-1). By enhancing our understanding of the effects of adaptive grazing management on SOC pools in the southeastern U.S., MEMS 2.34 offers a valuable tool for researchers, producers, and policymakers to make AMP grazing management decisions based on potential SOC outcomes.


Subject(s)
Carbon , Soil , Soil/chemistry , Carbon/analysis , Animals , Climate Change , Ecosystem , Agriculture/methods , Poaceae
6.
J Environ Manage ; 365: 121529, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38963961

ABSTRACT

Mangroves in Southeast Asia provide numerous supporting, provisioning, regulating, and cultural services that are crucial to the environment and local livelihoods since they support biodiversity conservation and climate change resilience. However, Southeast Asia mangroves face deforestation threats from the expansion of commercial aquaculture, agriculture, and urban development, along with climate change-related natural processes. Ecotourism has gained prominence as a financial incentive tool to support mangrove conservation and restoration. Through a systematic literature review approach, we examined the relationships between ecotourism and mangrove conservation in Southeast Asia based on scientific papers published from 2010 to 2022. Most of the studies were reported in Indonesia, Malaysia, Philippines, Thailand, and Vietnam, respectively, which were associated with the highest number of vibrant mangrove ecotourism sites and largest mangrove areas compared to the other countries of Southeast Asia. Mangrove-related ecotourism activities in the above countries mainly include boat tours, bird and wildlife watching, mangrove planting, kayaking, eating seafood, and snorkeling. The economic benefits, such as an increase in income associated with mangrove ecotourism, have stimulated infrastructural development in ecotourism destinations. Local communities benefited from increased access to social amenities such as clean water, electricity, transportation networks, schools, and health services that are intended to make destinations more attractive to tourists. Economic benefits from mangrove ecotourism motivated the implementation of several community-based mangrove conservation and restoration initiatives, which attracted international financial incentives and public-private partnerships. Since mangroves are mostly located on the land occupied by indigenous people and local communities, ensuring respect for their land rights and equity in economic benefit sharing may increase their intrinsic motivation and participation in mangrove restoration and conservation initiatives. Remote sensing tools for mangrove monitoring, evaluation, and reporting, and integrated education and awareness campaigns can ensure the long-term conservation of mangroves while sustaining ecotourism's economic infrastructure and social amenities benefits.


Subject(s)
Conservation of Natural Resources , Wetlands , Asia, Southeastern , Climate Change , Biodiversity
7.
Int J Psychoanal ; 105(3): 420-426, 2024 Jun.
Article in English | MEDLINE | ID: mdl-39008045

ABSTRACT

Various challenges faced by the psychoanalyst when moving from "on the couch" work to "off the couch" work are raised and discussed. It is argued that the biggest challenges concern methodology: what now constitutes the analytic setting and field, and what counts as analytic data? The author describes some of the methodological challenges she has faced so far in studying climate change denial at individual, group, cultural and political levels. She raises potential pitfalls with "off the couch" work, that include overgeneralisations and assuming one can directly apply insights gained "on the couch" to wider contexts. In conclusion, she reflects that her training and practice working with individuals on the couch has proved bedrock in working "off the couch".


Subject(s)
Climate Change , Humans , Psychoanalytic Theory , Psychoanalysis , Psychoanalytic Therapy/methods
8.
Theor Appl Genet ; 137(8): 184, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39008128

ABSTRACT

Phytotoxic soil salinity is a global problem, and in the northern Great Plains and western Canada, salt accumulates on the surface of marine sediment soils with high water tables under annual crop cover, particularly near wetlands. Crop production can overcome saline-affected soils using crop species and cultivars with salinity tolerance along with changes in management practices. This research seeks to improve our understanding of sunflower (Helianthus annuus) genetic tolerance to high salinity soils. Genome-wide association was conducted using the Sunflower Association Mapping panel grown for two years in naturally occurring saline soils (2016 and 2017, near Indian Head, Saskatchewan, Canada), and six phenotypes were measured: days to bloom, height, leaf area, leaf mass, oil percentage, and yield. Plot level soil salinity was determined by grid sampling of soil followed by kriging. Three estimates of sunflower performance were calculated: (1) under low soil salinity (< 4 dS/m), (2) under high soil salinity (> 4 dS/m), and (3) plasticity (regression coefficient between phenotype and soil salinity). Fourteen loci were significant, with one instance of co-localization between a leaf area and a leaf mass locus. Some genomic regions identified as significant in this study were also significant in a recent greenhouse salinity experiment using the same panel. Also, some candidate genes underlying significant QTL have been identified in other plant species as having a role in salinity response. This research identifies alleles for cultivar improvement and for genetic studies to further elucidate salinity tolerance pathways.


Subject(s)
Climate Change , Helianthus , Phenotype , Plant Breeding , Salt Tolerance , Helianthus/genetics , Helianthus/growth & development , Helianthus/physiology , Salt Tolerance/genetics , Salinity , Quantitative Trait Loci , Soil/chemistry , Genetic Association Studies , Chromosome Mapping , Polymorphism, Single Nucleotide , Selection, Genetic , Genome-Wide Association Study , Genotype
10.
Nat Commun ; 15(1): 5637, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38965212

ABSTRACT

Climate warming is one of the facets of anthropogenic global change predicted to increase in the future, its magnitude depending on present-day decisions. The north Atlantic and Arctic Oceans are already undergoing community changes, with warmer-water species expanding northwards, and colder-water species retracting. However, the future extent and implications of these shifts remain unclear. Here, we fitted a joint species distribution model to occurrence data of 107, and biomass data of 61 marine fish species from 16,345 fishery independent trawls sampled between 2004 and 2022 in the northeast Atlantic Ocean, including the Barents Sea. We project overall increases in richness and declines in relative dominance in the community, and generalised increases in species' ranges and biomass across three different future scenarios in 2050 and 2100. The projected decline of capelin and the practical extirpation of polar cod from the system, the two most abundant species in the Barents Sea, drove an overall reduction in fish biomass at Arctic latitudes that is not replaced by expanding species. Furthermore, our projections suggest that Arctic demersal fish will be at high risk of extinction by the end of the century if no climate refugia is available at eastern latitudes.


Subject(s)
Biomass , Climate Change , Fishes , Animals , Arctic Regions , Atlantic Ocean , North Sea , Biodiversity , Ecosystem , Oceans and Seas , Global Warming , Population Dynamics
11.
NPJ Biofilms Microbiomes ; 10(1): 55, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38961111

ABSTRACT

Climate changes significantly impact greenhouse gas emissions from wetland soil. Specifically, wetland soil may be exposed to oxygen (O2) during droughts, or to sulfate (SO42-) as a result of sea level rise. How these stressors - separately and together - impact microbial food webs driving carbon cycling in the wetlands is still not understood. To investigate this, we integrated geochemical analysis, proteogenomics, and stoichiometric modeling to characterize the impact of elevated SO42- and O2 levels on microbial methane (CH4) and carbon dioxide (CO2) emissions. The results uncovered the adaptive responses of this community to changes in SO42- and O2 availability and identified altered microbial guilds and metabolic processes driving CH4 and CO2 emissions. Elevated SO42- reduced CH4 emissions, with hydrogenotrophic methanogenesis more suppressed than acetoclastic. Elevated O2 shifted the greenhouse gas emissions from CH4 to CO2. The metabolic effects of combined SO42- and O2 exposures on CH4 and CO2 emissions were similar to those of O2 exposure alone. The reduction in CH4 emission by increased SO42- and O2 was much greater than the concomitant increase in CO2 emission. Thus, greater SO42- and O2 exposure in wetlands is expected to reduce the aggregate warming effect of CH4 and CO2. Metaproteomics and stoichiometric modeling revealed a unique subnetwork involving carbon metabolism that converts lactate and SO42- to produce acetate, H2S, and CO2 when SO42- is elevated under oxic conditions. This study provides greater quantitative resolution of key metabolic processes necessary for the prediction of CH4 and CO2 emissions from wetlands under future climate scenarios.


Subject(s)
Carbon Dioxide , Methane , Oxygen , Proteomics , Sulfates , Wetlands , Sulfates/metabolism , Oxygen/metabolism , Proteomics/methods , Methane/metabolism , Carbon Dioxide/metabolism , Soil Microbiology , Microbiota , Bacteria/metabolism , Bacteria/classification , Bacteria/genetics , Climate Change
12.
Glob Chang Biol ; 30(7): e17416, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38994730

ABSTRACT

Climate change is exposing subarctic ecosystems to higher temperatures, increased nutrient availability, and increasing cloud cover. In this study, we assessed how these factors affect the fluxes of greenhouse gases (GHGs) (i.e., methane (CH4), nitrous oxide (N2O), and carbon dioxide (CO2)), and biogenic volatile organic compounds (BVOCs) in a subarctic mesic heath subjected to 34 years of climate change related manipulations of temperature, nutrient availability, and light. GHGs were sampled from static chambers and gases analyzed with gas chromatograph. BVOCs were measured using the push-pull method and gases analyzed with chromatography-mass spectrometry. The soil temperature and moisture content in the warmed and shaded plots did not differ significantly from that in the controls during GHG and BVOC measurements. Also, the enclosure temperatures during BVOC measurements in the warmed and shaded plots did not differ significantly from temperatures in the controls. Hence, this allowed for assessment of long-term effects of the climate treatment manipulations without interference of temperature and moisture differences at the time of measurements. Warming enhanced CH4 uptake and the emissions of CO2, N2O, and isoprene. Increased nutrient availability increased the emissions of CO2 and N2O but caused no significant changes in the fluxes of CH4 and BVOCs. Shading (simulating increased cloudiness) enhanced CH4 uptake but caused no significant changes in the fluxes of other gases compared to the controls. The results show that climate warming and increased cloudiness will enhance CH4 sink strength of subarctic mesic heath ecosystems, providing negative climate feedback, while climate warming and enhanced nutrient availability will provide positive climate feedback through increased emissions of CO2 and N2O. Climate warming will also indirectly, through vegetation changes, increase the amount of carbon lost as isoprene from subarctic ecosystems.


Subject(s)
Climate Change , Greenhouse Gases , Nutrients , Volatile Organic Compounds , Greenhouse Gases/analysis , Volatile Organic Compounds/analysis , Nutrients/analysis , Tundra , Methane/analysis , Carbon Dioxide/analysis , Global Warming , Temperature , Butadienes , Hemiterpenes
13.
Ecol Lett ; 27(7): e14474, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38994849

ABSTRACT

Spatial synchrony may be tail-dependent, meaning it is stronger for peaks rather than troughs, or vice versa. High interannual variation in seed production in perennial plants, called masting, can be synchronized at subcontinental scales, triggering extensive resource pulses or famines. We used data from 99 populations of European beech (Fagus sylvatica) to examine whether masting synchrony differs between mast peaks and years of seed scarcity. Our results revealed that seed scarcity occurs simultaneously across the majority of the species range, extending to populations separated by distances up to 1800 km. Mast peaks were spatially synchronized at distances up to 1000 km and synchrony was geographically concentrated in northeastern Europe. Extensive synchrony in the masting lower tail means that famines caused by beech seed scarcity are amplified by their extensive spatial synchrony, with diverse consequences for food web functioning and climate change biology.


Subject(s)
Fagus , Seeds , Fagus/physiology , Seeds/physiology , Europe , Climate Change
14.
J Law Med Ethics ; 52(S1): 57-61, 2024.
Article in English | MEDLINE | ID: mdl-38995245

ABSTRACT

Public health laws and policies are uniquely able to mitigate the adverse and inequitable health impacts of climate change. This article summarizes some key considerations in developing such laws and policies and a variety of approaches local public health departments are using to increase climate resilience and health equity.


Subject(s)
Climate Change , Health Equity , Health Policy , Local Government , Public Health , Health Equity/legislation & jurisprudence , Humans , Health Policy/legislation & jurisprudence , Public Health/legislation & jurisprudence , United States , Public Health Administration/legislation & jurisprudence
15.
J Law Med Ethics ; 52(S1): 62-65, 2024.
Article in English | MEDLINE | ID: mdl-38995250

ABSTRACT

Effective climate change resilience in local communities must center each community's unique challenges and essential role in developing climate resilience strategies. This article will discuss recent developments by the federal government that align with a community-centered approach, and how Community Health Workers can influence the outcomes.


Subject(s)
Climate Change , Community Health Workers , Humans , United States
16.
J Law Med Ethics ; 52(S1): 53-56, 2024.
Article in English | MEDLINE | ID: mdl-38995253

ABSTRACT

Reliance upon fossil fuels and limited greenspace contribute to poor indoor and outdoor air quality and adverse health outcomes, particularly in communities of color. This article describes justice-informed public health and legal interventions to increase access to greenspace and accelerate the transitions to renewable energy and away from gas appliances.


Subject(s)
Air Pollution , Climate Change , Fossil Fuels , Public Health , Humans , Public Health/legislation & jurisprudence , Air Pollution/legislation & jurisprudence , Air Pollution/prevention & control , United States , Renewable Energy
17.
Glob Chang Biol ; 30(7): e17408, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38984769

ABSTRACT

The geographic redistributions of species due to a rapidly changing climate are poised to perturb ecological communities and significantly impact ecosystems and human livelihoods. Effectively managing these biological impacts requires a thorough understanding of the patterns and processes of species geographic range shifts. While substantial recent redistributions have been identified and recognized to vary by taxon, region, and range geometry, there are large gaps and biases in the available evidence. Here, we use the largest compilation of geographic range change observations to date, comprised of 33,016 potential redistributions across 12,009 species, to formally assess within- and cross-species coverage and biases and to motivate future data collection. We find that species coverage varies strongly by taxon and underrepresents species at high and low latitudes. Within species, assessments of potential redistributions came from parts of their geographic range that were highly uneven and non-representative. For most species and taxa, studies were strongly biased toward the colder parts of species' distributions and thus significantly underrepresented populations that might get pushed beyond their maximum temperature limits. Coverage of potential leading and trailing geographic range edges under a changing climate was similarly uneven. Only 8% of studied species were assessed at both high and low latitude and elevation range edges, with most only covered at one edge. This suggests that substantial within-species biases exacerbate the considerable geographic and taxonomic among-species unevenness in evidence. Our results open the door for a more quantitative accounting for existing knowledge biases in climate change ecology and a more informed management and conservation. Our findings offer guidance for future data collection that better addresses information gaps and provides a more effective foundation for managing the biological impacts of climate change.


Subject(s)
Climate Change , Animals , Ecosystem , Geography , Biodiversity , Plants
18.
Front Public Health ; 12: 1382505, 2024.
Article in English | MEDLINE | ID: mdl-39015393

ABSTRACT

Background: The eco-climatic crisis has been defined by the World Health Organization as the "single biggest health threat facing humanity," influencing both the emergence of zoonoses and the spread of vector-borne and water-borne diseases. The aim of this survey was to explore knowledge, eco-anxiety and attitudes toward the ecological and climate crisis among young Italian doctors and medical students. Methods: A cross-sectional, multicenter survey was conducted from November 2022 to June 2023, by administering an anonymous questionnaire to Italian doctors and students of medicine. Endpoint of the study was a Knowledge, Attitudes and Practices (KAP) score on ecological and climate crisis (0-20 points). Association between variables and KAP score was assessed by Kruskal-Wallis' or Spearman's test, as appropriate, and significant variables were included into ordinal regression model and reported as adjusted odds ratio (aOR) with their 95% confidence intervals (CI). Results: Both KAP and eco-anxiety scores showed acceptable levels of consistency with Cronbach's alpha. A total of 605 medical doctors and students living in 19 Italian regions were included in the study. Median age [Q1-Q3] was 27.6 [24.1-31.3] and females were 352 (58.2%). Despite showing good attitudes toward climate action, knowledge gap were found, with 42.5% (n = 257) of the respondents not knowing the temperature limits set by the Paris Agreements and 45.5% (n = 275) believing that climate change is caused by sunspots. Fears suggestive for eco-anxiety were common. At multivariable ordinal regression, high levels of eco-anxiety (aOR 1.29, p = 0.001) and low trust in government action (aOR 1.96, p = 0.003) were associated with a higher KAP score. Only one Italian medical school offered an educational module on climate change. Conclusion: Young Italian doctors and medical students are concerned about the climate crisis but show poor knowledge of these topics. The Italian academic system should urgently respond to this need.


Subject(s)
Climate Change , Health Knowledge, Attitudes, Practice , Physicians , Students, Medical , Humans , Italy , Female , Male , Cross-Sectional Studies , Students, Medical/statistics & numerical data , Students, Medical/psychology , Surveys and Questionnaires , Adult , Physicians/statistics & numerical data , Physicians/psychology , Communicable Diseases/epidemiology , Young Adult
19.
Glob Chang Biol ; 30(7): e17428, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39021355

ABSTRACT

Global hydroclimatic variability is increasing with more frequent extreme dry and wet years, severely destabilizing terrestrial ecosystem productivity. However, what regulates the consequence of precipitation extremes on productivity remains unclear. Based on a 9-year field manipulation experiment on the Qinghai-Tibetan Plateau, we found that the responses of gross primary productivity (GPP) to extreme drought and wetness were differentially regulated by nitrogen (N) deposition. Over increasing N deposition, extreme dry events reduced GPP more. Among the 12 biotic and abiotic factors examined, this was mostly explained by the increased plant canopy height and proportion of drought-sensitive species under N deposition, making photosynthesis more sensitive to hydraulic stress. While extreme wet events increased GPP, their effect did not shift over N deposition. These site observations were complemented by a global synthesis derived from the GOSIF GPP dataset, which showed that GPP sensitivity to extreme drought was larger in ecosystems with higher N deposition, but GPP sensitivity to extreme wetness did not change with N deposition. Our findings indicate that intensified hydroclimatic variability would lead to a greater loss of land carbon sinks in the context of increasing N deposition, due to that GPP losses during extreme dry years are more pronounced, yet without a synchronous increase in GPP gains during extreme wet years. The study implies that the conservation and management against climate extremes merit particular attention in ecosystems subject to N deposition.


Subject(s)
Droughts , Nitrogen , Nitrogen/metabolism , Nitrogen/analysis , Ecosystem , Climate Change , Photosynthesis , China , Tibet
20.
Nat Commun ; 15(1): 5836, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39009588

ABSTRACT

Climate change is exposing marine species to unsuitable temperatures while also creating new thermally suitable habitats of varying persistence. However, understanding how these different dynamics will unfold over time remains limited. We use yearly sea surface temperature projections to estimate temporal dynamics of thermal exposure (when temperature exceeds realised species' thermal limits) and opportunity (when temperature at a previously unsuitable site becomes suitable) for 21,696 marine species globally until 2100. Thermal opportunities are projected to arise earlier and accumulate gradually, especially in temperate and polar regions. Thermal exposure increases later and occurs more abruptly, mainly in the tropics. Assemblages tend to show either high exposure or high opportunity, but seldom both. Strong emissions reductions reduce exposure around 100-fold whereas reductions in opportunities are halved. Globally, opportunities are projected to emerge faster than exposure until mid-century when exposure increases more rapidly under a high emissions scenario. Moreover, across emissions and dispersal scenarios, 76%-97% of opportunities are projected to persist until 2100. These results indicate thermal opportunities could be a major source of marine biodiversity change, especially in the near- and mid-term. Our work provides a framework for predicting where and when thermal changes will occur to guide monitoring efforts.


Subject(s)
Aquatic Organisms , Biodiversity , Climate Change , Temperature , Animals , Aquatic Organisms/physiology , Ecosystem , Oceans and Seas
SELECTION OF CITATIONS
SEARCH DETAIL
...