Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31.565
Filter
1.
Glob Chang Biol ; 30(6): e17361, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38822568

ABSTRACT

Our current planetary crisis, including multiple jointly acting factors of global change, moves the need for effective ecosystem restoration center stage and compels us to explore unusual options. We here propose exploring combinatorial approaches to restoration practices: management practices are drawn at random and combined from a locally relevant pool of possible management interventions, thus creating an experimental gradient in the number of interventions. This will move the current degree of interventions to higher dimensionality, opening new opportunities for unlocking unknown synergistic effects. Thus, the high dimensionality of global change (multiple jointly acting factors) would be more effectively countered by similar high-dimensionality in solutions. In this concept, regional restoration hubs play an important role as guardians of locally relevant information and sites of experimental exploration. Data collected from such studies could feed into a global database, which could be used to learn about general principles of combined restoration practices, helping to refine future experiments. Such combinatorial approaches to exploring restoration intervention options may be our best hope yet to achieve decisive progress in ecological restoration at the timescale needed to mitigate and reverse the most severe losses caused by global environmental change.


Subject(s)
Conservation of Natural Resources , Ecosystem , Conservation of Natural Resources/methods , Environmental Restoration and Remediation/methods , Ecology/methods , Climate Change
2.
Glob Chang Biol ; 30(6): e17358, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38822590

ABSTRACT

Human activities and climate change cause abiotic factors to fluctuate through time, sometimes passing thresholds for organismal reproduction and survival. Multiple stressors can independently or interactively impact organisms; however, few studies have examined how they interact when they overlap spatially but occur asynchronously. Fluctuations in salinity have been found in freshwater habitats worldwide. Meanwhile, heatwaves have become more frequent and extreme. High salinity pulses and heatwaves are often decoupled in time but can still collectively impact freshwater zooplankton. The time intervals between them, during which population growth and community recovery could happen, can influence combined effects, but no one has examined these effects. We conducted a mesocosm experiment to examine how different recovery times (0-, 3-, 6-week) between salt treatment and heatwave exposure influence their combined effects. We hypothesized that antagonistic effects would appear when having short recovery time, because previous study found that similar species were affected by the two stressors, but effects would become additive with longer recovery time since fully recovered communities would respond to heatwave similar to undisturbed communities. Our findings showed that, when combined, the two-stressor joint impacts changed from antagonistic to additive with increased recovery time between stressors. Surprisingly, full compositional recovery was not achieved despite a recovery period that was long enough for population growth, suggesting legacy effects from earlier treatment. The recovery was mainly driven by small organisms, such as rotifers and small cladocerans. As a result, communities recovering from previous salt exposure responded differently to heatwaves than undisturbed communities, leading to similar zooplankton communities regardless of the recovery time between stressors. Our research bolsters the understanding and management of multiple-stressor issues by revealing that prior exposure to one stressor has long-lasting impacts on community recovery that can lead to unexpected joint effects of multiple stressors.


Subject(s)
Climate Change , Salinity , Stress, Physiological , Zooplankton , Animals , Zooplankton/physiology , Time Factors , Fresh Water , Hot Temperature/adverse effects , Ecosystem
3.
Glob Chang Biol ; 30(6): e17348, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38822656

ABSTRACT

Global climate change intensifies the water cycle and makes freshest waters become fresher and vice-versa. But how this change impacts phytoplankton in coastal, particularly harmful algal blooms (HABs), remains poorly understood. Here, we monitored a coastal bay for a decade and found a significant correlation between salinity decline and the increase of Karenia mikimotoi blooms. To examine the physiological linkage between salinity decreases and K. mikimotoi blooms, we compare chemical, physiological and multi-omic profiles of this species in laboratory cultures under high (33) and low (25) salinities. Under low salinity, photosynthetic efficiency and capacity as well as growth rate and cellular protein content were significantly higher than that under high salinity. More strikingly, the omics data show that low salinity activated the glyoxylate shunt to bypass the decarboxylation reaction in the tricarboxylic acid cycle, hence redirecting carbon from CO2 release to biosynthesis. Furthermore, the enhanced glyoxylate cycle could promote hydrogen peroxide metabolism, consistent with the detected decrease in reactive oxygen species. These findings suggest that salinity declines can reprogram metabolism to enhance cell proliferation, thus promoting bloom formation in HAB species like K. mikimotoi, which has important ecological implications for future climate-driven salinity declines in the coastal ocean with respect to HAB outbreaks.


Subject(s)
Climate Change , Harmful Algal Bloom , Salinity , Photosynthesis , Phytoplankton/growth & development , Phytoplankton/physiology , Carbon/metabolism , Carbon/analysis
4.
Glob Chang Biol ; 30(6): e17347, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38822663

ABSTRACT

Climate change (CC) necessitates reforestation/afforestation programs to mitigate its impacts and maximize carbon sequestration. But comprehending how tree growth, a proxy for fitness and resilience, responds to CC is critical to maximize these programs' effectiveness. Variability in tree response to CC across populations can notably be influenced by the standing genetic variation encompassing both neutral and adaptive genetic diversity. Here, a framework is proposed to assess tree growth potential at the population scale while accounting for standing genetic variation. We applied this framework to black spruce (BS, Picea mariana [Mill] B.S.P.), with the objectives to (1) determine the key climate variables having impacted BS growth response from 1974 to 2019, (2) examine the relative roles of local adaptation and the phylogeographic structure in this response, and (3) project BS growth under two Shared Socioeconomic Pathways while taking standing genetic variation into account. We modeled growth using a machine learning algorithm trained with dendroecological and genetic data obtained from over 2600 trees (62 populations divided in three genetic clusters) in four 48-year-old common gardens, and simulated growth until year 2100 at the common garden locations. Our study revealed that high summer and autumn temperatures negatively impacted BS growth. As a consequence of warming, this species is projected to experience a decline in growth by the end of the century, suggesting maladaptation to anticipated CC and a potential threat to its carbon sequestration capacity. This being said, we observed a clear difference in response to CC within and among genetic clusters, with the western cluster being more impacted than the central and eastern clusters. Our results show that intraspecific genetic variation, notably associated with the phylogeographic structure, must be considered when estimating the response of widespread species to CC.


Subject(s)
Carbon Sequestration , Climate Change , Genetic Variation , Picea , Trees , Picea/genetics , Picea/growth & development , Trees/genetics , Trees/growth & development , Phylogeography
5.
Glob Chang Biol ; 30(6): e17352, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38822670

ABSTRACT

The Arctic is the fastest-warming region on the planet, and the lengthening ice-free season is opening Arctic waters to sub-Arctic species such as the killer whale (Orcinus orca). As apex predators, killer whales can cause significant ecosystem-scale changes. Setting conservation priorities for killer whales and their Arctic prey species requires knowledge of their evolutionary history and demographic trajectory. Using whole-genome resequencing of 24 killer whales sampled in the northwest Atlantic, we first explored the population structure and demographic history of Arctic killer whales. To better understand the broader geographic relationship of these Arctic killer whales to other populations, we compared them to a globally sampled dataset. Finally, we assessed threats to Arctic killer whales due to anthropogenic harvest by reviewing the peer-reviewed and gray literature. We found that there are two highly genetically distinct, non-interbreeding populations of killer whales using the eastern Canadian Arctic. These populations appear to be as genetically different from each other as are ecotypes described elsewhere in the killer whale range; however, our data cannot speak to ecological differences between these populations. One population is newly identified as globally genetically distinct, and the second is genetically similar to individuals sampled from Greenland. The effective sizes of both populations recently declined, and both appear vulnerable to inbreeding and reduced adaptive potential. Our survey of human-caused mortalities suggests that harvest poses an ongoing threat to both populations. The dynamic Arctic environment complicates conservation and management efforts, with killer whales adding top-down pressure on Arctic food webs crucial to northern communities' social and economic well-being. While killer whales represent a conservation priority, they also complicate decisions surrounding wildlife conservation and resource management in the Arctic amid the effects of climate change.


Subject(s)
Climate Change , Conservation of Natural Resources , Whale, Killer , Animals , Whale, Killer/physiology , Arctic Regions , Endangered Species , Canada
6.
Mar Environ Res ; 198: 106570, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38834375

ABSTRACT

Marine heatwaves (MHWs) have been reported often throughout the world, producing severe effects on marine ecosystems. However, the spatial pattern and trend of MHWs in the Gulf of Thailand (GOT) is still unknown. Based on high-resolution daily satellite data over a 40-year period from 1982 to 2021, changes in annual mean SST and MHW occurrences across the GOT are explored here. The results demonstrate that during a warming hiatus (1998-2009), annual mean SST in the GOT encountered a dropping trend, followed by an increasing trend during a warming reacceleration period (2010-2021). Although a warming hiatus and a warming reacceleration occurred in the annual mean SST after 1998, regional averaged SSTs were still 0.18 °C-0.42 °C higher than that for 1982-1997. Statistical distributions reveal that there was a significant shift in both annual mean SSTs and annual extreme hot SSTs. These changes have the potential to increase the frequency of MHWs. Further analysis reveals that MHW frequency has increased at a rate of 1.11 events per decade from 1982 to 2021, which is 2.5 times the global mean rate. For the period 2010-2021, the frequency and intensity of MHWs in the GOT have never dropped, but have instead been more frequent, longer lasting and extreme than those metrics of MHWs between 1982 and 2009. Furthermore, the findings highlight significant changes in the SST over the GOT that may lead us to change or modify the reference period of the MHW definition. The findings also suggest that heat transport and redistribution mechanisms in the GOT sea are changing. This study contributes to our understanding of MHW features in the GOT and the implications for marine ecosystems.


Subject(s)
Global Warming , Thailand , Environmental Monitoring , Ecosystem , Hot Temperature , Seawater , Climate Change
7.
PLoS One ; 19(6): e0305106, 2024.
Article in English | MEDLINE | ID: mdl-38848391

ABSTRACT

Extreme weather events across coastal environments are expected to increase in frequency under predicted climate change scenarios. These events can impact coastal recreational fisheries and their supporting ecosystems by influencing the productivity of fish stocks or altering behaviours and decision-making among fishers. Using off-site telephone/diary survey data on estuarine and oceanic recreational fishing activity in eastern Australia, we analyse interannual and geographic variability in bream (Acanthopagrus spp) and snapper (Chrysophrys auratus) catch, total effort and total catch per unit effort (CPUE) through a period (2013/2014, 2017/2018 and 2019/2020) that encompassed severe drought, bushfires and flooding. Interacting spatial and temporal differences were detected for bream and may reflect spatial variation in the intensity and extent of some of the extreme weather events. The catch of snapper did not change temporally, providing little evidence that this species' catch may be influenced by the extreme weather events. Independent bioregional and temporal effects on effort were detected, while CPUE only showed significant bioregional differences. Although adverse conditions created by the extreme weather events may have dissuaded fisher participation and impacted effort, we propose that the observed temporal patterns in effort reflect the early influence of socio-economic changes brought on by the COVID-19 pandemic on coastal recreational fishing, over and above the impacts of extreme weather events. This study demonstrates how interrelated ecological, social and economic factors can shape coastal recreational fisheries and facilitates development of management strategies to address future threats to the sector.


Subject(s)
COVID-19 , Extreme Weather , Fisheries , Animals , COVID-19/epidemiology , Australia , Recreation , Ecosystem , Spatio-Temporal Analysis , Climate Change , Fishes/physiology , Humans , SARS-CoV-2/isolation & purification
8.
Sci Data ; 11(1): 604, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849375

ABSTRACT

Transpiration (T) is pivotal in the global water cycle, responding to soil moisture, atmospheric stress, climate changes, and human impacts. Therefore, establishing a reliable global transpiration dataset is essential. Collocation analysis methods have been proven effective for assessing the errors in these products, which can subsequently be used for multisource fusion. However, previous results did not consider error cross-correlation, rendering the results less reliable. In this study, we employ collocation analysis, taking error cross-correlation into account, to effectively analyze the errors in multiple transpiration products and merge them to obtain a more reliable dataset. The results demonstrate its superior reliability. The outcome is a long-term daily global transpiration dataset at 0.1°from 2000 to 2020. Using the transpiration after partitioning at FLUXNET sites as a reference, we compare the performance of the merged product with inputs. The merged dataset performs well across various vegetation types and is validated against in-situ observations. Incorporating non-zero ECC considerations represents a significant theoretical and proven enhancement over previous methodologies that neglected such conditions, highlighting its reliability in enhancing our understanding of transpiration dynamics in a changing world.


Subject(s)
Plant Transpiration , Climate Change , Soil
11.
Environ Monit Assess ; 196(7): 597, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38842642

ABSTRACT

Photosynthesis in vegetation is one of the key processes in maintaining regional ecological balance and climate stability, and it is of significant importance for understanding the health of regional ecosystems and addressing climate change. Based on 2001-2021 Global OCO-2 Solar-Induced Fluorescence (GOSIF) dataset, this study analyzed spatiotemporal variations in Asian vegetation photosynthesis and its response to climate and human activities. Results show the following: (1) From 2001 to 2021, the overall photosynthetic activity of vegetation in the Asian region has shown an upward trend, exhibiting a stable distribution pattern with higher values in the eastern and southern regions and lower values in the central, western, and northern regions. In specific regions such as the Turgen Plateau in northwestern Kazakhstan, Cambodia, Laos, and northeastern Syria, photosynthesis significantly declined. (2) Meteorological factors influencing photosynthesis exhibit differences based on latitude and vertical zones. In low-latitude regions, temperature is the primary driver, while in mid-latitude areas, solar radiation and precipitation are crucial. High-latitude regions are primarily influenced by temperature, and high-altitude areas depend on precipitation and solar radiation. (3) Human activities (56.44%) have a slightly greater impact on the dynamics of Asian vegetation photosynthesis compared to climate change (43.56%). This research deepens our comprehension of the mechanisms behind the fluctuations in Asian vegetation photosynthesis, offering valuable perspectives for initiatives in environmental conservation, sustainability, and climate research.


Subject(s)
Climate Change , Environmental Monitoring , Photosynthesis , Satellite Imagery , Environmental Monitoring/methods , Asia , Ecosystem , Plants
12.
Psychodyn Psychiatry ; 52(2): 132-135, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38829231

ABSTRACT

Climate change caused by human activities is a serious threat to the survival of our species, and one that we have not yet mustered the perspective and the will to address. Our vision tends to focus on what is useful to ourselves as individuals in the short term, instead of more broadly on what is needed for the long-term good of our species. We do not consider what our purpose and role could be in the life of our planet. We do not ask "What is the point of human beings?" In this time of climate crisis, answering this question by developing a shared sense of purpose, a purpose centered on caring for the world as a whole, might give our species the perspective and will we need to survive.


Subject(s)
Climate Change , Humans
13.
PeerJ ; 12: e17500, 2024.
Article in English | MEDLINE | ID: mdl-38827286

ABSTRACT

Plants growing along wide elevation gradients in mountains experience considerable variations in environmental factors that vary across elevations. The most pronounced elevational changes are in climate conditions with characteristic decrease in air temperature with an increase in elevation. Studying intraspecific elevational variations in plant morphological traits and biomass allocation gives opportunity to understand how plants adapted to steep environmental gradients that change with elevation and how they may respond to climate changes related to global warming. In this study, phenotypic variation of an alpine plant Soldanella carpatica Vierh. (Primulaceae) was investigated on 40 sites distributed continuously across a 1,480-m elevation gradient in the Tatra Mountains, Central Europe. Mixed-effects models, by which plant traits were fitted to elevation, revealed that on most part of the gradient total leaf mass, leaf size and scape height decreased gradually with an increase in elevation, whereas dry mass investment in roots and flowers as well as individual flower mass did not vary with elevation. Unexpectedly, in the uppermost part of the elevation gradient overall plant size, including both below-and aboveground plant parts, decreased rapidly causing abrupt plant miniaturization. Despite the plant miniaturization at the highest elevations, biomass partitioning traits changed gradually across the entire species elevation range, namely, the leaf mass fraction decreased continuously, whereas the flower mass fraction and the root:shoot ratio increased steadily from the lowest to the highest elevations. Observed variations in S. carpatica phenotypes are seen as structural adjustments to environmental changes across elevations that increase chances of plant survival and reproduction at different elevations. Moreover, results of the present study agreed with the observations that populations of species from the 'Soldanella' intrageneric group adapted to alpine and subnival zones still maintain typical 'Soldanella'-like appearance, despite considerable reduction in overall plant size.


Subject(s)
Altitude , Biomass , Plant Leaves , Plant Leaves/anatomy & histology , Flowers/anatomy & histology , Flowers/growth & development , Climate Change
14.
Proc Natl Acad Sci U S A ; 121(24): e2315700121, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38830099

ABSTRACT

Given the importance of climate in shaping species' geographic distributions, climate change poses an existential threat to biodiversity. Climate envelope modeling, the predominant approach used to quantify this threat, presumes that individuals in populations respond to climate variability and change according to species-level responses inferred from spatial occurrence data-such that individuals at the cool edge of a species' distribution should benefit from warming (the "leading edge"), whereas individuals at the warm edge should suffer (the "trailing edge"). Using 1,558 tree-ring time series of an aridland pine (Pinus edulis) collected at 977 locations across the species' distribution, we found that trees everywhere grow less in warmer-than-average and drier-than-average years. Ubiquitous negative temperature sensitivity indicates that individuals across the entire distribution should suffer with warming-the entire distribution is a trailing edge. Species-level responses to spatial climate variation are opposite in sign to individual-scale responses to time-varying climate for approximately half the species' distribution with respect to temperature and the majority of the species' distribution with respect to precipitation. These findings, added to evidence from the literature for scale-dependent climate responses in hundreds of species, suggest that correlative, equilibrium-based range forecasts may fail to accurately represent how individuals in populations will be impacted by changing climate. A scale-dependent view of the impact of climate change on biodiversity highlights the transient risk of extinction hidden inside climate envelope forecasts and the importance of evolution in rescuing species from extinction whenever local climate variability and change exceeds individual-scale climate tolerances.


Subject(s)
Climate Change , Extinction, Biological , Pinus , Pinus/physiology , Trees , Biodiversity , Forecasting/methods , Temperature , Climate Models
15.
J Allied Health ; 53(2): 136-141, 2024.
Article in English | MEDLINE | ID: mdl-38834340

ABSTRACT

With growing recognition that climate change is a significant threat to human health, allied health professionals are increasingly recognized as critical allies in addressing this threat. This article describes the approach that Rush University's College of Sciences is pursuing to better prepare health sciences students for this reality. Faculty and students enrolled across all programs of the College were surveyed regarding their levels of concern about global warming using items from the Six Americas Survey, as well as perceived importance of planetary health curricular elements adapted from the Planetary Health Report Card. Faculty were additionally asked about perceived opportunities to bring planetary health education into each of the degree programs offered by the university. A total of 37 faculty and 43 students completed the survey, collectively representing all programs in the college. Responses reflected widespread interest in expanding planetary health education, but topic priorities and optimal methods for implementation differed between programs. Although the survey process had limitations, it demonstrated the need for greater attention to planetary health across curricula and offered more efficient approaches implementing this essential content across programs.


Subject(s)
Curriculum , Humans , Climate Change , Needs Assessment , Faculty , Female , Male
20.
Glob Chang Biol ; 30(6): e17344, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38837566

ABSTRACT

Hosting 1460 plant and 126 vertebrate endemic species, the Great Escarpment (hereafter, Escarpment) forms a semi-circular "amphitheater" of mountains girdling southern Africa from arid west to temperate east. Since arid and temperate biota are usually studied separately, earlier studies overlooked the biogeographical importance of the Escarpment as a whole. Bats disperse more widely than other mammalian taxa, with related species and intraspecific lineages occupying both arid and temperate highlands of the Escarpment, providing an excellent model to address this knowledge gap. We investigated patterns of speciation and micro-endemism from modeled past, present, and future distributions in six clades of southern African bats from three families (Rhinolophidae, Cistugidae, and Vespertilionidae) having different crown ages (Pleistocene to Miocene) and biome affiliations (temperate to arid). We estimated mtDNA relaxed clock dates of key divergence events across the six clades in relation both to biogeographical features and patterns of phenotypic variation in crania, bacula and echolocation calls. In horseshoe bats (Rhinolophidae), both the western and eastern "arms" of the Escarpment have facilitated dispersals from the Afrotropics into southern Africa. Pleistocene and pre-Pleistocene "species pumps" and temperate refugia explained observed patterns of speciation, intraspecific divergence and, in two cases, mtDNA introgression. The Maloti-Drakensberg is a center of micro-endemism for bats, housing three newly described or undescribed species. Vicariance across biogeographic barriers gave rise to 29 micro-endemic species and intraspecific lineages whose distributions were congruent with those identified in other phytogeographic and zoogeographic studies. Although Köppen-Geiger climate models predict a widespread replacement of current temperate ecosystems in southern Africa by tropical or arid ecosystems by 2070-2100, future climate Maxent models for 13 bat species (all but one of those analyzed above) showed minimal range changes in temperate species from the eastern Escarpment by 2070, possibly due to the buffering effect of mountains to climate change.


Subject(s)
Chiroptera , Climate Change , DNA, Mitochondrial , Animals , Chiroptera/physiology , Chiroptera/genetics , Africa, Southern , DNA, Mitochondrial/genetics , DNA, Mitochondrial/analysis , Phylogeny , Genetic Speciation , Phylogeography , Animal Distribution
SELECTION OF CITATIONS
SEARCH DETAIL
...