Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.149
Filter
1.
BMJ Open ; 14(6): e079767, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38834319

ABSTRACT

INTRODUCTION: Severe osteogenesis imperfecta (OI) is a debilitating disease with no cure or sufficiently effective treatment. Mesenchymal stem cells (MSCs) have good safety profile, show promising effects and can form bone. The Boost Brittle Bones Before Birth (BOOSTB4) trial evaluates administration of allogeneic expanded human first trimester fetal liver MSCs (BOOST cells) for OI type 3 or severe type 4. METHODS AND ANALYSIS: BOOSTB4 is an exploratory, open-label, multiple dose, phase I/II clinical trial evaluating safety and efficacy of postnatal (n=15) or prenatal and postnatal (n=3, originally n=15) administration of BOOST cells for the treatment of severe OI compared with a combination of historical (1-5/subject) and untreated prospective controls (≤30). Infants<18 months of age (originally<12 months) and singleton pregnant women whose fetus has severe OI with confirmed glycine substitution in COL1A1 or COL1A2 can be included in the trial.Each subject receives four intravenous doses of 3×106/kg BOOST cells at 4 month intervals, with 48 (doses 1-2) or 24 (doses 3-4) hours in-patient follow-up, primary follow-up at 6 and 12 months after the last dose and long-term follow-up yearly until 10 years after the first dose. Prenatal subjects receive the first dose via ultrasound-guided injection into the umbilical vein within the fetal liver (16+0 to 35+6 weeks), and three doses postnatally.The primary outcome measures are safety and tolerability of repeated BOOST cell administration. The secondary outcome measures are number of fractures from baseline to primary and long-term follow-up, growth, change in bone mineral density, clinical OI status and biochemical bone turnover. ETHICS AND DISSEMINATION: The trial is approved by Competent Authorities in Sweden, the UK and the Netherlands (postnatal only). Results from the trial will be disseminated via CTIS, ClinicalTrials.gov and in scientific open-access scientific journals. TRIAL REGISTRATION NUMBERS: EudraCT 2015-003699-60, EUCT: 2023-504593-38-00, NCT03706482.


Subject(s)
Mesenchymal Stem Cell Transplantation , Osteogenesis Imperfecta , Humans , Osteogenesis Imperfecta/therapy , Female , Pregnancy , Mesenchymal Stem Cell Transplantation/methods , Infant , Clinical Trials, Phase I as Topic , Multicenter Studies as Topic , Infant, Newborn , Clinical Trials, Phase II as Topic , Mesenchymal Stem Cells , Treatment Outcome , Male , Fetal Stem Cells/transplantation
2.
Biom J ; 66(4): e2300398, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38738318

ABSTRACT

In recent years, both model-based and model-assisted designs have emerged to efficiently determine the optimal biological dose (OBD) in phase I/II trials for immunotherapy and targeted cellular agents. Model-based designs necessitate repeated model fitting and computationally intensive posterior sampling for each dose-assignment decision, limiting their practical application in real trials. On the other hand, model-assisted designs employ simple statistical models and facilitate the precalculation of a decision table for use throughout the trial, eliminating the need for repeated model fitting. Due to their simplicity and transparency, model-assisted designs are often preferred in phase I/II trials. In this paper, we systematically evaluate and compare the operating characteristics of several recent model-assisted phase I/II designs, including TEPI, PRINTE, Joint i3+3, BOIN-ET, STEIN, uTPI, and BOIN12, in addition to the well-known model-based EffTox design, using comprehensive numerical simulations. To ensure an unbiased comparison, we generated 10,000 dosing scenarios using a random scenario generation algorithm for each predetermined OBD location. We thoroughly assess various performance metrics, such as the selection percentages, average patient allocation to OBD, and overdose percentages across the eight designs. Based on these assessments, we offer design recommendations tailored to different objectives, sample sizes, and starting dose locations.


Subject(s)
Biometry , Clinical Trials, Phase I as Topic , Clinical Trials, Phase II as Topic , Models, Statistical , Humans , Clinical Trials, Phase I as Topic/methods , Clinical Trials, Phase II as Topic/methods , Biometry/methods , Research Design
3.
Trials ; 25(1): 328, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38760804

ABSTRACT

BACKGROUND: The SARS CoV-2 pandemic has resulted in more than 1.1 million deaths in the USA alone. Therapeutic options for critically ill patients with COVID-19 are limited. Prior studies showed that post-infection treatment of influenza A virus-infected mice with the liponucleotide CDP-choline, which is an essential precursor for de novo phosphatidylcholine synthesis, improved gas exchange and reduced pulmonary inflammation without altering viral replication. In unpublished studies, we found that treatment of SARS CoV-2-infected K18-hACE2-transgenic mice with CDP-choline prevented development of hypoxemia. We hypothesize that administration of citicoline (the pharmaceutical form of CDP-choline) will be safe in hospitalized SARS CoV-2-infected patients with hypoxemic acute respiratory failure (HARF) and that we will obtain preliminary evidence of clinical benefit to support a larger Phase 3 trial using one or more citicoline doses. METHODS: We will conduct a single-site, double-blinded, placebo-controlled, and randomized Phase 1/2 dose-ranging and safety study of Somazina® citicoline solution for injection in consented adults of any sex, gender, age, or ethnicity hospitalized for SARS CoV-2-associated HARF. The trial is named "SCARLET" (Supplemental Citicoline Administration to Reduce Lung injury Efficacy Trial). We hypothesize that SCARLET will show that i.v. citicoline is safe at one or more of three doses (0.5, 2.5, or 5 mg/kg, every 12 h for 5 days) in hospitalized SARS CoV-2-infected patients with HARF (20 per dose) and provide preliminary evidence that i.v. citicoline improves pulmonary outcomes in this population. The primary efficacy outcome will be the SpO2:FiO2 ratio on study day 3. Exploratory outcomes include Sequential Organ Failure Assessment (SOFA) scores, dead space ventilation index, and lung compliance. Citicoline effects on a panel of COVID-relevant lung and blood biomarkers will also be determined. DISCUSSION: Citicoline has many characteristics that would be advantageous to any candidate COVID-19 therapeutic, including safety, low-cost, favorable chemical characteristics, and potentially pathogen-agnostic efficacy. Successful demonstration that citicoline is beneficial in severely ill patients with SARS CoV-2-induced HARF could transform management of severely ill COVID patients. TRIAL REGISTRATION: The trial was registered at www. CLINICALTRIALS: gov on 5/31/2023 (NCT05881135). TRIAL STATUS: Currently enrolling.


Subject(s)
COVID-19 , Cytidine Diphosphate Choline , Randomized Controlled Trials as Topic , SARS-CoV-2 , Humans , Cytidine Diphosphate Choline/therapeutic use , Double-Blind Method , SARS-CoV-2/drug effects , COVID-19/complications , COVID-19 Drug Treatment , Clinical Trials, Phase II as Topic , Pneumonia, Viral/drug therapy , Pneumonia, Viral/virology , Pneumonia, Viral/complications , Treatment Outcome , Hypoxia/drug therapy , Male , Pandemics , Coronavirus Infections/drug therapy , Coronavirus Infections/complications , Hospitalization , Female , Betacoronavirus , Clinical Trials, Phase I as Topic , Respiratory Insufficiency/drug therapy , Respiratory Insufficiency/virology , Administration, Intravenous , Adult
4.
BMJ Open ; 14(5): e087516, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38816055

ABSTRACT

INTRODUCTION: Late-life treatment-resistant depression (LL-TRD) is common and increases risk for accelerated ageing and cognitive decline. Impaired sleep is common in LL-TRD and is a risk factor for cognitive decline. Slow wave sleep (SWS) has been implicated in key processes including synaptic plasticity and memory. A deficiency in SWS may be a core component of depression pathophysiology. The anaesthetic propofol can induce electroencephalographic (EEG) slow waves that resemble SWS. Propofol may enhance SWS and oral antidepressant therapy, but relationships are unclear. We hypothesise that propofol infusions will enhance SWS and improve depression in older adults with LL-TRD. This hypothesis has been supported by a recent small case series. METHODS AND ANALYSIS: SWIPED (Slow Wave Induction by Propofol to Eliminate Depression) phase I is an ongoing open-label, single-arm trial that assesses the safety and feasibility of using propofol to enhance SWS in older adults with LL-TRD. The study is enrolling 15 English-speaking adults over age 60 with LL-TRD. Participants will receive two propofol infusions 2-6 days apart. Propofol infusions are individually titrated to maximise the expression of EEG slow waves. Preinfusion and postinfusion sleep architecture are evaluated through at-home overnight EEG recordings acquired using a wireless headband equipped with dry electrodes. Sleep EEG recordings are scored manually. Key EEG measures include sleep slow wave activity, SWS duration and delta sleep ratio. Longitudinal changes in depression, suicidality and anhedonia are assessed. Assessments are performed prior to the first infusion and up to 10 weeks after the second infusion. Cognitive ability is assessed at enrolment and approximately 3 weeks after the second infusion. ETHICS AND DISSEMINATION: The study was approved by the Washington University Human Research Protection Office. Recruitment began in November 2022. Dissemination plans include presentations at scientific conferences, peer-reviewed publications and mass media. Positive results will lead to a larger phase II randomised placebo-controlled trial. TRIAL REGISTRATION NUMBER: NCT04680910.


Subject(s)
Cognitive Dysfunction , Propofol , Sleep, Slow-Wave , Humans , Propofol/administration & dosage , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/etiology , Aged , Sleep, Slow-Wave/drug effects , Electroencephalography , Male , Anesthetics, Intravenous/administration & dosage , Depressive Disorder, Treatment-Resistant/drug therapy , Female , Middle Aged , Clinical Trials, Phase I as Topic
5.
PLoS One ; 19(5): e0303623, 2024.
Article in English | MEDLINE | ID: mdl-38805424

ABSTRACT

BACKGROUND: Pheochromocytoma, or paraganglioma (PPGL), is a tumor that arises from catecholamine-producing chromaffin cells of the adrenal medulla or paraganglion. Systemic therapy, such as the combination of cyclophosphamide, vincristine, and dacarbazine or therapeutic radiopharmaceuticals such as [131I] meta-iodobenzylguanidine (MIBG), may be administered in cases of locally advanced tumors or distant metastases. However, the current therapies are limited in terms of efficacy and implementation. [211At] meta-astatobenzylguanidine (MABG) is an alpha-emitting radionuclide-labeled ligand that has demonstrated remarkable tumor-reducing effects in preclinical studies, and is expected to have a high therapeutic effect on pheochromocytoma cells. METHODS: We are currently conducting an investigator-initiated first-in-human clinical trial to evaluate the pharmacokinetics, safety, and efficacy of [211At] MABG. Patients with locally unresectable or metastatic PPGL refractory to standard therapy and scintigraphically positive [123I] MIBG aggregation are being recruited, and a 3 + 3 dose escalation design was adopted. The initial dose of [211At] MABG is 0.65 MBq/kg, with a dose escalation in a 1:2:4 ratio in each cohort. Dose-limiting toxicity is observed for 6 weeks after a single bolus dose of [211At] MABG, and the patients are observed for 3 months to explore safety and efficacy profiles. The primary endpoint is dose-limiting toxicity to determine both maximum tolerated and recommended doses. The secondary endpoints include radiopharmacokinetics, urinary radioactive excretion rate, urinary catecholamine response rate, objective response rate, progression free survival, [123I] MIBG scintigraphy on reducing tumor accumulation, and quality of life. TRIALS REGISTRATION: jRCT2021220012 registered on 17 June 2022.


Subject(s)
Adrenal Gland Neoplasms , Paraganglioma , Pheochromocytoma , Radiopharmaceuticals , Adult , Aged , Female , Humans , Male , Middle Aged , Adrenal Gland Neoplasms/drug therapy , Adrenal Gland Neoplasms/diagnostic imaging , Adrenal Gland Neoplasms/pathology , Adrenal Gland Neoplasms/metabolism , Guanidines/pharmacokinetics , Guanidines/therapeutic use , Paraganglioma/drug therapy , Paraganglioma/pathology , Paraganglioma/diagnostic imaging , Paraganglioma/metabolism , Pheochromocytoma/drug therapy , Pheochromocytoma/diagnostic imaging , Pheochromocytoma/pathology , Pheochromocytoma/metabolism , Radiopharmaceuticals/pharmacokinetics , Treatment Outcome , Clinical Trials, Phase I as Topic
6.
Invest New Drugs ; 42(3): 326-334, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38775890

ABSTRACT

In the era of precision oncology (PO), systemic therapies for patients (pts) with solid tumors have shifted from chemotherapy (CT) to targeted therapy (TT) and immunotherapy (IO). This systematic survey describes features of trials enrolling between 2010 and 2020, focusing on inclusion criteria, type of dose escalation scheme (DES) utilized, and use of expansion cohorts (ECs). A literature search identified phase I studies in adults with solid tumors published January 1, 2000- December 31, 2020 from 12 journals. We included only studies enrolling between 2010 and 2020 to better capture the PO era. Two reviewers abstracted data; a third established concordance. Of 10,744 studies, 10,195 were non-topical or enrolled prior to 2010; 437 studies were included. The most common drug classes were TT (47.6%), IO (22%), and CT (6.9%). In studies which reported race, patients were predominantly white (61.7%) or Asian (25.7%), followed by black (6.5%) or other (6.1%). Heterogeneity was observed in the reporting and specification of study inclusion criteria. Only 40.1% of studies utilized ECs, and among the studies which used ECS, 46.6% were defined by genomic selection. Rule-based DES were used in 89% of trials; a 3+3 design was used in 80.5%. Of all drugs tested, 37.5% advanced to phase II, while 10.3% garnered regulatory licensure (for an indication tested in phase I). In the era of PO, TT and IO have emerged as the most studied agents in phase I trials. Rule-based DES, which are more relevant for escalating CT, are still chiefly utilized.


Subject(s)
Clinical Trials, Phase I as Topic , Neoplasms , Precision Medicine , Humans , Neoplasms/drug therapy , Neoplasms/therapy , Antineoplastic Agents/therapeutic use , Molecular Targeted Therapy , Immunotherapy , Medical Oncology
7.
J Immunother Cancer ; 12(4)2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38589248

ABSTRACT

BACKGROUND: Despite the encouraging outcome of chimeric antigen receptor T cell (CAR-T) targeting B cell maturation antigen (BCMA) in managing relapsed or refractory multiple myeloma (RRMM) patients, the therapeutic side effects and dysfunctions of CAR-T cells have limited the efficacy and clinical application of this promising approach. METHODS: In this study, we incorporated a short hairpin RNA cassette targeting PD-1 into a BCMA-CAR with an OX-40 costimulatory domain. The transduced PD-1KD BCMA CAR-T cells were evaluated for surface CAR expression, T-cell proliferation, cytotoxicity, cytokine production, and subsets when they were exposed to a single or repetitive antigen stimulation. Safety and efficacy were initially observed in a phase I clinical trial for RRMM patients. RESULTS: Compared with parental BCMA CAR-T cells, PD-1KD BCMA CAR-T cell therapy showed reduced T-cell exhaustion and increased percentage of memory T cells in vitro. Better antitumor activity in vivo was also observed in PD-1KD BCMA CAR-T group. In the phase I clinical trial of the CAR-T cell therapy for seven RRMM patients, safety and efficacy were initially observed in all seven patients, including four patients (4/7, 57.1%) with at least one extramedullary site and four patients (4/7, 57.1%) with high-risk cytogenetics. The overall response rate was 85.7% (6/7). Four patients had a stringent complete response (sCR), one patient had a CR, one patient had a partial response, and one patient had stable disease. Safety profile was also observed in these patients, with an incidence of manageable mild to moderate cytokine release syndrome and without the occurrence of neurological toxicity. CONCLUSIONS: Our study demonstrates a design concept of CAR-T cells independent of antigen specificity and provides an alternative approach for improving the efficacy of CAR-T cell therapy.


Subject(s)
Multiple Myeloma , Receptors, Chimeric Antigen , Humans , B-Cell Maturation Antigen/genetics , B-Cell Maturation Antigen/metabolism , Down-Regulation , Multiple Myeloma/therapy , Phenotype , Programmed Cell Death 1 Receptor/metabolism , T-Lymphocytes , Clinical Trials, Phase I as Topic
8.
Sci Transl Med ; 16(741): eadl2055, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38569014

ABSTRACT

No licensed vaccines or therapies exist for patients infected with Nipah virus (NiV), although an experimental human monoclonal antibody (mAb) cross-reactive to the NiV and Hendra virus (HeV) G glycoprotein, m102.4, has been tested in a phase 1 trial and has been provided under compassionate use for both HeV and NiV exposures. NiV is a highly pathogenic zoonotic paramyxovirus causing regular outbreaks in humans and animals in South and Southeast Asia. The mortality rate of NiV infection in humans ranges from 40% to more than 90%, making it a substantial public health concern. The NiV G glycoprotein mediates host cell attachment, and the F glycoprotein facilitates membrane fusion and infection. We hypothesized that a mAb against the prefusion conformation of the F glycoprotein may confer better protection than m102.4. To test this, two potent neutralizing mAbs against NiV F protein, hu1F5 and hu12B2, were compared in a hamster model. Hu1F5 provided superior protection to hu12B2 and was selected for comparison with m102.4 for the ability to protect African green monkeys (AGMs) from a stringent NiV challenge. AGMs were exposed intranasally to the Bangladesh strain of NiV and treated 5 days after exposure with either mAb (25 milligrams per kilogram). Whereas only one of six AGMs treated with m102.4 survived until the study end point, all six AGMs treated with hu1F5 were protected. Furthermore, a reduced 10 milligrams per kilogram dose of hu1F5 also provided complete protection against NiV challenge, supporting the upcoming clinical advancement of this mAb for postexposure prophylaxis and therapy.


Subject(s)
Henipavirus Infections , Nipah Virus , Animals , Antibodies, Monoclonal , Bangladesh , Chlorocebus aethiops , Glycoproteins/metabolism , Henipavirus Infections/prevention & control , Primates , Clinical Trials, Phase I as Topic
9.
Trends Cancer ; 10(5): 383-385, 2024 May.
Article in English | MEDLINE | ID: mdl-38580534

ABSTRACT

The MYC proto-oncogene encodes a master transcriptional regulator that is frequently dysregulated in human cancer. Decades of efforts have failed to identify a MYC-targeted therapeutic, and this is still considered to be a holy grail in drug development. We highlight a recent report by Garralda et al. of a Phase 1 clinical trial of OMO-103 in patients with solid malignancies.


Subject(s)
Molecular Targeted Therapy , Neoplasms , Proto-Oncogene Mas , Proto-Oncogene Proteins c-myc , Humans , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/metabolism , Proto-Oncogene Proteins c-myc/antagonists & inhibitors , Molecular Targeted Therapy/methods , Neoplasms/drug therapy , Neoplasms/genetics , Neoplasms/therapy , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacology , Clinical Trials, Phase I as Topic , Gene Expression Regulation, Neoplastic/drug effects
10.
Clin Trials ; 21(3): 267-272, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38570906

ABSTRACT

With the advent of targeted agents and immunological therapies, the medical research community has become increasingly aware that conventional methods for determining the best dose or schedule of a new agent are inadequate. It has been well established that conventional phase I designs cannot reliably identify safe and effective doses. This problem applies, generally, for cytotoxic agents, radiation therapy, targeted agents, and immunotherapies. To address this, the US Food and Drug Administration's Oncology Center of Excellence initiated Project Optimus, with the goal "to reform the dose optimization and dose selection paradigm in oncology drug development." As a response to Project Optimus, the articles in this special issue of Clinical Trials review recent advances in methods for choosing the dose or schedule of a new agent with an overall objective of informing clinical trialists of these innovative designs. This introductory article briefly reviews problems with conventional methods, the regulatory changes that encourage better dose optimization designs, and provides brief summaries of the articles that follow in this special issue.


Subject(s)
Antineoplastic Agents , Dose-Response Relationship, Drug , Research Design , United States Food and Drug Administration , Humans , United States , Antineoplastic Agents/administration & dosage , Neoplasms/drug therapy , Medical Oncology/methods , Maximum Tolerated Dose , Clinical Trials, Phase I as Topic/methods , Drug Development/methods
11.
Clin Trials ; 21(3): 350-357, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38618916

ABSTRACT

In the last few years, numerous novel designs have been proposed to improve the efficiency and accuracy of phase I trials to identify the maximum-tolerated dose (MTD) or the optimal biological dose (OBD) for noncytotoxic agents. However, the conventional 3+3 approach, known for its and poor performance, continues to be an attractive choice for many trials despite these alternative suggestions. The article seeks to underscore the importance of moving beyond the 3+3 design by highlighting a different key element in trial design: the estimation of sample size and its crucial role in predicting toxicity and determining the MTD. We use simulation studies to compare the performance of the most used phase I approaches: 3+3, Continual Reassessment Method (CRM), Keyboard and Bayesian Optimal Interval (BOIN) designs regarding three key operating characteristics: the percentage of correct selection of the true MTD, the average number of patients allocated per dose level, and the average total sample size. The simulation results consistently show that the 3+3 algorithm underperforms in comparison to model-based and model-assisted designs across all scenarios and metrics. The 3+3 method yields significantly lower (up to three times) probabilities in identifying the correct MTD, often selecting doses one or even two levels below the actual MTD. The 3+3 design allocates significantly fewer patients at the true MTD, assigns higher numbers to lower dose levels, and rarely explores doses above the target dose-limiting toxicity (DLT) rate. The overall performance of the 3+3 method is suboptimal, with a high level of unexplained uncertainty and significant implications for accurately determining the MTD. While the primary focus of the article is to demonstrate the limitations of the 3+3 algorithm, the question remains about the preferred alternative approach. The intention is not to definitively recommend one model-based or model-assisted method over others, as their performance can vary based on parameters and model specifications. However, the presented results indicate that the CRM, Keyboard, and BOIN designs consistently outperform the 3+3 and offer improved efficiency and precision in determining the MTD, which is crucial in early-phase clinical trials.


Subject(s)
Algorithms , Bayes Theorem , Clinical Trials, Phase I as Topic , Computer Simulation , Dose-Response Relationship, Drug , Maximum Tolerated Dose , Research Design , Humans , Sample Size , Clinical Trials, Phase I as Topic/methods , Models, Statistical
12.
Expert Opin Investig Drugs ; 33(4): 371-387, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38445383

ABSTRACT

INTRODUCTION: Antimicrobial resistance is a major threat to modern healthcare, and it is often regarded that the antibiotic pipeline is 'dry.' AREAS COVERED: Antimicrobial agents active against Gram negative bacilli in Phase I, II, or III clinical trials were reviewed. EXPERT OPINION: Nearly 50 antimicrobial agents (28 small molecules and 21 non-traditional antimicrobial agents) active against Gram-negative bacilli are currently in clinical trials. These have the potential to provide substantial improvements to the antimicrobial armamentarium, although it is known that 'leakage' from the pipeline occurs due to findings of toxicity during clinical trials. Significantly, a lack of funding for large phase III clinical trials is likely to prevent trials occurring for the indications most relevant to loss of life attributed to antimicrobial resistance such as ventilator-associated pneumonia. Non-traditional antimicrobial agents face issues in clinical development such as a lack of readily available and reliable susceptibility tests, and the potential need for superiority trials rather than non-inferiority trials. Most importantly, concrete plans must be made during clinical development for access of new antimicrobial agents to areas of the world where resistance to Gram negative bacilli is most frequent.


Subject(s)
Anti-Infective Agents , Gram-Negative Bacterial Infections , Humans , Anti-Bacterial Agents/pharmacology , Gram-Negative Bacteria , Gram-Negative Bacterial Infections/microbiology , Microbial Sensitivity Tests , Clinical Trials, Phase I as Topic , Clinical Trials, Phase II as Topic , Clinical Trials, Phase III as Topic
13.
BMJ Open ; 14(3): e077613, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38503417

ABSTRACT

INTRODUCTION: Diffuse intrinsic pontine glioma (DIPG) and paediatric high-grade glioma (pHGG) are aggressive glial tumours, for which conventional treatment modalities fall short. Dendritic cell (DC)-based immunotherapy is being investigated as a promising and safe adjuvant therapy. The Wilms' tumour protein (WT1) is a potent target for this type of antigen-specific immunotherapy and is overexpressed in DIPG and pHGG. Based on this, we designed a non-randomised phase I/II trial, assessing the feasibility and safety of WT1 mRNA-loaded DC (WT1/DC) immunotherapy in combination with conventional treatment in pHGG and DIPG. METHODS AND ANALYSIS: 10 paediatric patients with newly diagnosed or pretreated HGG or DIPG were treated according to the trial protocol. The trial protocol consists of leukapheresis of mononuclear cells, the manufacturing of autologous WT1/DC vaccines and the combination of WT1/DC-vaccine immunotherapy with conventional antiglioma treatment. In newly diagnosed patients, this comprises chemoradiation (oral temozolomide 90 mg/m2 daily+radiotherapy 54 Gy in 1.8 Gy fractions) followed by three induction WT1/DC vaccines (8-10×106 cells/vaccine) given on a weekly basis and a chemoimmunotherapy booster phase consisting of six 28-day cycles of oral temozolomide (150-200 mg/m2 on days 1-5) and a WT1/DC vaccine on day 21. In pretreated patients, the induction and booster phase are combined with best possible antiglioma treatment at hand. Primary objectives are to assess the feasibility of the production of mRNA-electroporated WT1/DC vaccines in this patient population and to assess the safety and feasibility of combining conventional antiglioma treatment with the proposed immunotherapy. Secondary objectives are to investigate in vivo immunogenicity of WT1/DC vaccination and to assess disease-specific and general quality of life. ETHICS AND DISSEMINATION: The ethics committee of the Antwerp University Hospital and the University of Antwerp granted ethics approval. Results of the clinical trial will be shared through publication in a peer-reviewed journal and presentations at conferences. TRIAL REGISTRATION NUMBER: NCT04911621.


Subject(s)
Cancer Vaccines , Diffuse Intrinsic Pontine Glioma , Glioma , Kidney Neoplasms , Vaccines , Wilms Tumor , Humans , Child , WT1 Proteins/metabolism , Temozolomide/therapeutic use , Diffuse Intrinsic Pontine Glioma/metabolism , Belgium , Quality of Life , Glioma/therapy , Glioma/pathology , Wilms Tumor/metabolism , Immunotherapy/methods , Dendritic Cells , RNA, Messenger , Cancer Vaccines/therapeutic use , Clinical Trials, Phase II as Topic , Clinical Trials, Phase I as Topic
14.
Cancer Treat Rev ; 125: 102720, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38502995

ABSTRACT

Antibody drug conjugates (ADCs) are an emerging class of treatments designed to improve efficacy and decrease toxicity compared with other systemic therapies through the selective delivery of cytotoxic agents to tumor cells. Datopotamab deruxtecan (Dato-DXd) is a novel ADC comprising a topoisomerase I inhibitor payload and a monoclonal antibody directed to trophoblast cell-surface antigen 2 (TROP2), a protein that is broadly expressed in several types of solid tumors. Dato-DXd is being investigated across multiple solid tumor indications. In the ongoing, first-in-human TROPION-PanTumor01 phase I study (ClinicalTrials.gov: NCT03401385), encouraging and durable antitumor activity and a manageable safety profile was demonstrated in patients with advanced/metastatic hormone receptor-positive/human epidermal growth factor receptor2-negative breast cancer (HR+/HER2- BC), triple-negative breast cancer (TNBC), and non-small cell lung cancer (NSCLC). Improved understanding of the adverse events (AEs) that are associated with Dato-DXd and their optimal management is essential to ensure safe and successful administration. Interstitial lung disease/pneumonitis, infusion-related reactions, oral mucositis/stomatitis, and ocular surface events have been identified as AEs of special interest (AESIs) for which appropriate prevention, monitoring, and management is essential. This article summarizes the incidence of AESIs among patients with HR+/HER2- BC, TNBC, and NSCLC reported in TROPION-PanTumor01. We report our recommendations for AESI prophylaxis, early detection, and management, using experience gained from treating AESIs that occur with Dato-DXd in clinical trials.


Subject(s)
Antineoplastic Agents , Breast Neoplasms , Carcinoma, Non-Small-Cell Lung , Immunoconjugates , Lung Neoplasms , Triple Negative Breast Neoplasms , Humans , Female , Immunoconjugates/adverse effects , Trastuzumab , Receptor, ErbB-2 , Camptothecin , Clinical Trials, Phase I as Topic
17.
PLoS One ; 19(3): e0294018, 2024.
Article in English | MEDLINE | ID: mdl-38437211

ABSTRACT

Standard treatment for patient with peritoneal metastases from colorectal cancer is cytoreductive surgery (CRS) and hyperthermic intraperitoneal chemotherapy (HIPEC). In recent years, the efficacy of oxaliplatin-based HIPEC has been challenged. An intensified HIPEC (oxaliplatin+irinotecan) in combination with early postoperative intraperitoneal chemotherapy (EPIC) has shown increased recurrence-free survival in retrospective studies. The aim of this trial is to develop a new HIPEC/EPIC regimen and evaluate its effect on morbidity, oncological outcome, and quality-of-life (QoL). This study is designed as a combined phase I/III multicenter randomized trial (RCT) of patients with peritoneal metastases from colorectal cancer eligible for CRS-HIPEC. An initial phase I dose escalation study, designed as a 3+3 stepwise escalation, will determine the maximum tolerable dose of 5-Fluorouracil (5-FU) as 1-day EPIC, enrolling a total of 15-30 patients in 5 dose levels. In the phase III efficacy study, patients are randomly assigned intraoperatively to either the standard treatment with oxaliplatin HIPEC (control arm) or oxaliplatin/irinotecan-HIPEC in combination with single dose of 1-day 5-FU EPIC (experimental arm). 5-FU is administered intraoperatively after CRS-HIPEC and closure of the abdomen. The primary endpoint is 12-month recurrence-free survival. Secondary endpoints include 5-year overall survival, 5-year recurrence-free survival (registry based), postoperative complications, and QoL up to 3 years after study treatment. This phase I/III trial aims to identify a more effective treatment of colorectal peritoneal metastases by combination of HIPEC and EPIC.


Subject(s)
Colorectal Neoplasms , Peritoneal Neoplasms , Humans , Clinical Trials, Phase I as Topic , Colorectal Neoplasms/drug therapy , Fluorouracil/therapeutic use , Hyperthermic Intraperitoneal Chemotherapy , Irinotecan , Multicenter Studies as Topic , Oxaliplatin/therapeutic use , Peritoneal Neoplasms/drug therapy , Quality of Life , Randomized Controlled Trials as Topic , Registries , Retrospective Studies , Clinical Trials, Phase III as Topic
18.
Biometrics ; 80(1)2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38364811

ABSTRACT

A generalized phase 1-2-3 design, Gen 1-2-3, that includes all phases of clinical treatment evaluation is proposed. The design extends and modifies the design of Chapple and Thall (2019), denoted by CT. Both designs begin with a phase 1-2 trial including dose acceptability and optimality criteria, and both select an optimal dose for phase 3. The Gen 1-2-3 design has the following key differences. In stage 1, it uses phase 1-2 criteria to identify a set of candidate doses rather than 1 dose. In stage 2, which is intermediate between phase 1-2 and phase 3, it randomizes additional patients fairly among the candidate doses and an active control treatment arm and uses survival time data from both stage 1 and stage 2 patients to select an optimal dose. It then makes a Go/No Go decision of whether or not to conduct phase 3 based on the predictive probability that the selected optimal dose will provide a specified substantive improvement in survival time over the control. A simulation study shows that the Gen 1-2-3 design has desirable operating characteristics compared to the CT design and 2 conventional designs.


Subject(s)
Research Design , Humans , Clinical Protocols , Computer Simulation , Dose-Response Relationship, Drug , Probability , Clinical Trials, Phase I as Topic , Clinical Trials, Phase II as Topic , Clinical Trials, Phase III as Topic
19.
Expert Opin Investig Drugs ; 33(3): 191-200, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38366937

ABSTRACT

INTRODUCTION: Hereditary angioedema (HAE) is a rare genetic disorder characterized by recurrent edema and predominantly caused by the dysregulation of the kinin-kallikrein system. AREAS COVERED: This manuscript presents the results of preclinical and early clinical trials of newer drugs targeting the dysregulated kinin-kallikrein system. ATN-249 is an oral drug that has shown promising results in preclinical and Phase I studies, and good tolerability in the prophylactic treatment of attacks. KVD900 is also an oral agent developed for the on-demand treatment of HAE attacks. It has shown positive results in Phase I/II studies, with rapid absorption. The third drug, IONIS-PKKRx, is an antisense oligonucleotide targeting plasma prekallikrein mRNA. It has shown a dose-dependent reduction of plasma prekallikrein levels and proenzyme activation in Phase I/II studies, and has shown promising results. STAR-0215 is a long acting anti-activated kallikrein monoclonal antibody. A Phase 1a single ascending dose trial evaluated its safety, pharmacokinetics, and pharmacodynamics. Lastly, NTLA-2002 is an investigational gene-editing therapy. EXPERT OPINION: The targeted treatment of the dysregulated kinin-kallikrein system with specific inhibitors is promising for the prevention of angioedema attacks. Ongoing phase III studies will provide further insight into the efficacy and long-term safety of these novel therapies, potentially expanding treatment options for HAE treatment.


Subject(s)
Angioedema , Angioedemas, Hereditary , Kallikreins , Humans , Angioedema/drug therapy , Angioedemas, Hereditary/drug therapy , Complement C1 Inhibitor Protein/therapeutic use , Kallikreins/antagonists & inhibitors , Kinins , Prekallikrein , Pyrazoles , Clinical Trials, Phase I as Topic , Clinical Trials, Phase II as Topic
20.
Front Public Health ; 12: 1106578, 2024.
Article in English | MEDLINE | ID: mdl-38384879

ABSTRACT

Post-acute sequelae of SARS-COV-2 (PASC) is growing in prevalence, and involves symptoms originating from the central neurological, cardiovascular, respiratory, gastrointestinal, autonomic nervous, or immune systems. There are non-specific symptoms such as fatigue, headaches, and brain fog, which cannot be ascribed to a single system. PASC places a notable strain on our healthcare system, which is already laden with a large number of acute-COVID-19 patients. Furthermore, it impedes social, academic and vocational functioning, and impacts family life, relationships, and work/financial life. The treatment for PASC needs to target this non-specific etiology and wide-ranging sequelae. In conditions similar to PASC, such as "chemo brain," and prolonged symptoms of concussion, the non-specific symptoms have shown to be effectively managed through education and strategies for self-management and Mindfulness interventions. However, such interventions have yet to be empirically evaluated in PASC to our knowledge. In response to this gap, we have developed a virtual education intervention synthesized by psychiatrists and clinical psychologists for the current study. We will undertake a two-phase randomized controlled trial to determine the feasibility (Phase 1; N = 90) and efficacy (Phase 2; sample sized based on phase 1 results) of the novel 8 week Education and Self-Management Strategies group compared to a mindfulness skills program, both delivered virtually. Main outcomes include confidence/ability to self-manage symptoms, quality of life, and healthcare utilization. This study stands to mitigate the deleterious intrusiveness of symptoms on everyday life in patients with PASC, and may also help to reduce the impact of PASC on the healthcare system. Clinical trial registration:https://classic.clinicaltrials.gov/ct2/show/NCT05268523; identifier NCT05268523.


Subject(s)
COVID-19 , Self-Management , Humans , Post-Acute COVID-19 Syndrome , Quality of Life , SARS-CoV-2 , Disease Progression , Randomized Controlled Trials as Topic , Clinical Trials, Phase I as Topic , Clinical Trials, Phase II as Topic
SELECTION OF CITATIONS
SEARCH DETAIL
...