Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Microbiome ; 8(1): 108, 2020 07 16.
Article in English | MEDLINE | ID: mdl-32678024

ABSTRACT

BACKGROUND: Altered microbiome composition and aberrant promoter hypermethylation of tumor suppressor genes (TSGs) are two important hallmarks of colorectal cancer (CRC). Here we performed concurrent 16S rRNA gene sequencing and methyl-CpG binding domain-based capture sequencing in 33 tissue biopsies (5 normal colonic mucosa tissues, 4 pairs of adenoma and adenoma-adjacent tissues, and 10 pairs of CRC and CRC-adjacent tissues) to identify significant associations between TSG promoter hypermethylation and CRC-associated bacteria, followed by functional validation of the methylation-associated bacteria. RESULTS: Fusobacterium nucleatum and Hungatella hathewayi were identified as the top two methylation-regulating bacteria. Targeted analysis on bona fide TSGs revealed that H. hathewayi and Streptococcus spp. significantly correlated with CDX2 and MLH1 promoter hypermethylation, respectively. Mechanistic validation with cell-line and animal models revealed that F. nucleatum and H. hathewayi upregulated DNA methyltransferase. H. hathewayi inoculation also promoted colonic epithelial cell proliferation in germ-free and conventional mice. CONCLUSION: Our integrative analysis revealed previously unknown epigenetic regulation of TSGs in host cells through inducing DNA methyltransferase by F. nucleatum and H. hathewayi, and established the latter as CRC-promoting bacteria. Video abstract.


Subject(s)
Clostridiaceae/pathogenicity , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , DNA Methylation , Epithelial Cells/metabolism , Fusobacterium nucleatum/pathogenicity , Genes, Tumor Suppressor , Promoter Regions, Genetic/genetics , Aged , Animals , Epigenesis, Genetic , Epigenome , Humans , Male , Mice , Mice, Inbred C57BL , Middle Aged , RNA, Ribosomal, 16S/genetics
2.
PLoS One ; 15(7): e0236595, 2020.
Article in English | MEDLINE | ID: mdl-32706816

ABSTRACT

Colorectal cancer (CRC) risk is influenced by host genetics, sex, and the gut microbiota. Using a genetically susceptible mouse model of CRC induced via inoculation with pathobiont Helicobacter spp. and demonstrating variable tumor incidence, we tested the ability of the Th17-enhancing commensal Candidatus Savagella, more commonly denoted as Segmented Filamentous Bacteria (SFB), to influence the incidence and severity of colitis-associated CRC in male and female mice. To document the composition of the gut microbiota during CRC development and identify taxa associated with disease, fecal samples were collected before and throughout disease development and characterized via 16S rRNA sequencing. While there were no significant SFB-dependent effects on disease incidence or severity, SFB was found to exert a sex-dependent protective effect in male mice. Furthermore, SFB stabilized the GM against Helicobacter-induced changes post-inoculation, resulting in a shift in disease association from Helicobacter spp. to Escherichia coli. These data support sex-dependent SFB-mediated effects on CRC risk, and highlight the complex community dynamics within the GM during exposure to inflammatory pathobionts.


Subject(s)
Clostridiaceae/pathogenicity , Colitis/pathology , Colorectal Neoplasms/pathology , Animals , Clostridiaceae/genetics , Colitis/complications , Colorectal Neoplasms/etiology , Disease Models, Animal , Feces/microbiology , Female , Gastrointestinal Microbiome , Helicobacter/physiology , Male , Mice , Mice, Inbred BALB C , Mice, Knockout , Neoplasm Staging , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 16S/metabolism , Smad3 Protein/deficiency , Smad3 Protein/genetics
3.
Inflamm Bowel Dis ; 25(5): 902-913, 2019 04 11.
Article in English | MEDLINE | ID: mdl-30321331

ABSTRACT

BACKGROUND: Inflammatory bowel diseases (IBDs) are a group of heterogeneous inflammatory conditions affecting the gastrointestinal tract. Although there is considerable evidence linking the gut microbiota to intestinal inflammation, there is limited knowledge on its potential role in the development of extraintestinal manifestations of IBD. METHODS: Four groups of patients were included: IBD-associated arthropathy (IBD-A); IBD without arthropathy (IBD-N); rheumatoid arthritis (RA); and non-IBD, nonarthritis controls. DNA from stool samples was isolated and sequenced using the Illumina platform. Paired-end reads were quality-controlled using SHI7 and processed with SHOGUN. Abundance and diversity analyses were performed using QIIME, and compositional biomarker identification was performed using LEfSe. RESULTS: One hundred eighty patients were included in the analysis. IBD-A was associated with an increased abundance of microbial tyrosine degradation pathways when compared with IBD-N (P = 0.02), whereas IBD-A and RA patients both shared an increased abundance of Clostridiaceae when compared with controls (P = 0.045). We found that history of bowel surgery was a significant source of variability (P = 0.001) among all IBD patients and was associated with decreased alpha diversity and increased abundance of Enterobacteriaceae (P = 0.004). CONCLUSIONS: An increased abundance of gut microbial tyrosine degradation pathways was associated with IBD-A. An increased abundance of Clostridiaceae was shared by both IBD-A and RA patients and suggests a potentially common microbial link for inflammatory arthritis. The increased abundance of Enterobacteriaceae, previously reported in IBD, may be due to the effects of previous bowel surgery and highlights the importance of controlling for this variable in future studies.


Subject(s)
Arthritis, Rheumatoid/diagnosis , Arthritis/diagnosis , Clostridiaceae/pathogenicity , Dysbiosis/diagnosis , Gastrointestinal Microbiome , Gram-Positive Bacterial Infections/complications , Inflammatory Bowel Diseases/diagnosis , Arthritis/etiology , Arthritis/pathology , Arthritis, Rheumatoid/etiology , Arthritis, Rheumatoid/pathology , Case-Control Studies , Clostridiaceae/genetics , Cross-Sectional Studies , Dysbiosis/etiology , Dysbiosis/pathology , Feces/microbiology , Female , Follow-Up Studies , Gram-Positive Bacterial Infections/microbiology , Humans , Inflammatory Bowel Diseases/etiology , Inflammatory Bowel Diseases/pathology , Male , Middle Aged , Prognosis , RNA, Ribosomal, 16S/genetics
SELECTION OF CITATIONS
SEARCH DETAIL