Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 499
Filter
1.
J Neuroinflammation ; 21(1): 143, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38822367

ABSTRACT

The dysregulation of pro- and anti-inflammatory processes in the brain has been linked to the pathogenesis of major depressive disorder (MDD), although the precise mechanisms remain unclear. In this study, we discovered that microglial conditional knockout of Pdcd4 conferred protection against LPS-induced hyperactivation of microglia and depressive-like behavior in mice. Mechanically, microglial Pdcd4 plays a role in promoting neuroinflammatory responses triggered by LPS by inhibiting Daxx-mediated PPARγ nucleus translocation, leading to the suppression of anti-inflammatory cytokine IL-10 expression. Finally, the antidepressant effect of microglial Pdcd4 knockout under LPS-challenged conditions was abolished by intracerebroventricular injection of the IL-10 neutralizing antibody IL-10Rα. Our study elucidates the distinct involvement of microglial Pdcd4 in neuroinflammation, suggesting its potential as a therapeutic target for neuroinflammation-related depression.


Subject(s)
Co-Repressor Proteins , Interleukin-10 , Mice, Knockout , Microglia , Neuroinflammatory Diseases , PPAR gamma , Signal Transduction , Animals , Male , Mice , Adaptor Proteins, Signal Transducing/deficiency , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Apoptosis Regulatory Proteins/metabolism , Apoptosis Regulatory Proteins/genetics , Apoptosis Regulatory Proteins/deficiency , Co-Repressor Proteins/genetics , Co-Repressor Proteins/metabolism , Depression/metabolism , Depression/etiology , Interleukin-10/metabolism , Interleukin-10/deficiency , Interleukin-10/genetics , Lipopolysaccharides/toxicity , Mice, Inbred C57BL , Microglia/metabolism , Microglia/drug effects , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , Neuroinflammatory Diseases/metabolism , PPAR gamma/metabolism , PPAR gamma/genetics , Signal Transduction/physiology , Signal Transduction/drug effects
2.
Sci Adv ; 10(20): eadk9076, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38748792

ABSTRACT

Acute myeloid leukemia (AML) driven by the activation of EVI1 due to chromosome 3q26/MECOM rearrangements is incurable. Because transcription factors such as EVI1 are notoriously hard to target, insight into the mechanism by which EVI1 drives myeloid transformation could provide alternative avenues for therapy. Applying protein folding predictions combined with proteomics technologies, we demonstrate that interaction of EVI1 with CTBP1 and CTBP2 via a single PLDLS motif is indispensable for leukemic transformation. A 4× PLDLS repeat construct outcompetes binding of EVI1 to CTBP1 and CTBP2 and inhibits proliferation of 3q26/MECOM rearranged AML in vitro and in xenotransplant models. This proof-of-concept study opens the possibility to target one of the most incurable forms of AML with specific EVI1-CTBP inhibitors. This has important implications for other tumor types with aberrant expression of EVI1 and for cancers transformed by different CTBP-dependent oncogenic transcription factors.


Subject(s)
Alcohol Oxidoreductases , DNA-Binding Proteins , Leukemia, Myeloid, Acute , MDS1 and EVI1 Complex Locus Protein , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/pathology , MDS1 and EVI1 Complex Locus Protein/metabolism , MDS1 and EVI1 Complex Locus Protein/genetics , Alcohol Oxidoreductases/metabolism , Alcohol Oxidoreductases/genetics , Humans , Animals , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Mice , Co-Repressor Proteins/metabolism , Co-Repressor Proteins/genetics , Protein Binding , Cell Line, Tumor , Cell Proliferation , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics
3.
Int J Mol Sci ; 25(10)2024 May 11.
Article in English | MEDLINE | ID: mdl-38791273

ABSTRACT

The HMG-domain containing transcription factor Sox10 plays a crucial role in regulating Schwann cell survival and differentiation and is expressed throughout the entire Schwann cell lineage. While its importance in peripheral myelination is well established, little is known about its role in the early stages of Schwann cell development. In a search for direct target genes of Sox10 in Schwann cell precursors, the transcriptional co-repressor Tle4 was identified. At least two regions upstream of the Tle4 gene appear involved in mediating the Sox10-dependent activation. Once induced, Tle4 works in tandem with the bHLH transcriptional repressor Hes1 and exerts a dual inhibitory effect on Sox10 by preventing the Sox10 protein from transcriptionally activating maturation genes and by suppressing Sox10 expression through known enhancers of the gene. This mechanism establishes a regulatory barrier that prevents premature activation of factors involved in differentiation and myelin formation by Sox10 in immature Schwann cells. The identification of Tle4 as a critical downstream target of Sox10 sheds light on the gene regulatory network in the early phases of Schwann cell development. It unravels an elaborate regulatory circuitry that fine-tunes the timing and extent of Schwann cell differentiation and myelin gene expression.


Subject(s)
Cell Differentiation , SOXE Transcription Factors , Schwann Cells , Schwann Cells/metabolism , Schwann Cells/cytology , SOXE Transcription Factors/metabolism , SOXE Transcription Factors/genetics , Cell Differentiation/genetics , Animals , Co-Repressor Proteins/metabolism , Co-Repressor Proteins/genetics , Rats , Mice , Feedback, Physiological , Myelin Sheath/metabolism , Gene Expression Regulation , Humans , Transcription Factor HES-1/metabolism , Transcription Factor HES-1/genetics
4.
Development ; 151(7)2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38456494

ABSTRACT

Cerebellar neurons, such as GABAergic Purkinje cells (PCs), interneurons (INs) and glutamatergic granule cells (GCs) are differentiated from neural progenitors expressing proneural genes, including ptf1a, neurog1 and atoh1a/b/c. Studies in mammals previously suggested that these genes determine cerebellar neuron cell fate. However, our studies on ptf1a;neurog1 zebrafish mutants and lineage tracing of ptf1a-expressing progenitors have revealed that the ptf1a/neurog1-expressing progenitors can generate diverse cerebellar neurons, including PCs, INs and a subset of GCs in zebrafish. The precise mechanisms of how each cerebellar neuron type is specified remains elusive. We found that genes encoding the transcriptional regulators Foxp1b, Foxp4, Skor1b and Skor2, which are reportedly expressed in PCs, were absent in ptf1a;neurog1 mutants. foxp1b;foxp4 mutants showed a strong reduction in PCs, whereas skor1b;skor2 mutants completely lacked PCs, and displayed an increase in immature GCs. Misexpression of skor2 in GC progenitors expressing atoh1c suppressed GC fate. These data indicate that Foxp1b/4 and Skor1b/2 function as key transcriptional regulators in the initial step of PC differentiation from ptf1a/neurog1-expressing neural progenitors, and that Skor1b and Skor2 control PC differentiation by suppressing their differentiation into GCs.


Subject(s)
Cell Differentiation , Co-Repressor Proteins , Forkhead Transcription Factors , Purkinje Cells , Zebrafish , Animals , Cell Differentiation/genetics , Cerebellum , Co-Repressor Proteins/genetics , Co-Repressor Proteins/metabolism , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , Mammals , Neurons/metabolism , Purkinje Cells/metabolism , Zebrafish/genetics , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism
5.
Stem Cell Rev Rep ; 20(4): 1026-1039, 2024 May.
Article in English | MEDLINE | ID: mdl-38393667

ABSTRACT

Chronic trauma in diabetes is a leading cause of disability and mortality. Exosomes show promise in tissue regeneration. This study investigates the role of exosomes derived from adipose stem cells (ADSC-Exos) in angiogenesis. MiRNA-seq analysis revealed significant changes in 47 genes in human umbilical vein endothelial cells (HUVECs) treated with ADSC-Exos, with miR-146a-5p highly expressed. MiR-146a-5p mimics enhanced the pro-angiogenic effects of ADSC-Exos, while inhibitors had the opposite effect. JAZF1 was identified as a direct downstream target of miR-146a-5p through bioinformatics, qRT-PCR, and dual luciferase assay. Overexpress of JAZF1 resulted in decreased proliferation, migration, and angiogenic capacity of HUVECs, and reduced VEGFA expression. This study proposes that ADSC-Exos regulate angiogenesis partly via the miR-146a-5p/JAZF1 axis.


Subject(s)
Adipose Tissue , Co-Repressor Proteins , Exosomes , Human Umbilical Vein Endothelial Cells , MicroRNAs , Neovascularization, Physiologic , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Exosomes/metabolism , Human Umbilical Vein Endothelial Cells/metabolism , Neovascularization, Physiologic/genetics , Adipose Tissue/cytology , Adipose Tissue/metabolism , Co-Repressor Proteins/metabolism , Co-Repressor Proteins/genetics , Stem Cells/metabolism , Stem Cells/cytology , Cell Proliferation/genetics , Cell Movement/genetics , Neovascularization, Pathologic/metabolism , Neovascularization, Pathologic/genetics , Neovascularization, Pathologic/pathology , Diabetes Mellitus/metabolism , Diabetes Mellitus/genetics , Diabetes Mellitus/pathology , Wound Healing/genetics , Angiogenesis , DNA-Binding Proteins
6.
Indian J Pathol Microbiol ; 67(2): 396-400, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38391333

ABSTRACT

ABSTRACT: Synovial sarcoma (SS) is rarely documented in the female genital tract, especially confirmed by molecular testing for SYT::SSX translocation and TLE1 immunostaining. A 62-year-old lady presented with a progressively increasing lump and pain over her right groin, for 6-month duration. Radiologically, a well-defined, solid-cystic mass was seen involving the right labia with necrotic areas, sparing the underlying muscles and the overlying skin. She underwent a biopsy followed by a surgical excision. Histopathologic examination revealed a spindle cell sarcoma, including tumor cells exhibiting a prominent hemangiopericytomatous pattern. There were focal areas of epithelial differentiation (pseudoglandular) along with areas of round cell morphology and increased mitoses (poor differentiation) in the resected specimen. Immunohistochemically, the tumor cells were diffusely positive for TLE1, patchily positive for pan keratin (AE1/AE3) and EMA, the latter more in the areas of epithelial differentiation, while negative for CD34, SMA, desmin, S100P, and SOX10. INI1/SMARCB1 showed a characteristic weak to absent (mosaic) staining pattern. Furthermore, the tumor displayed SS18::SSX 1 fusion by RT-PCR. This constitutes one of the few reported cases of vulvar SS, confirmed by molecular testing and the first documented vulvar SS showing a mosaic pattern of INI1/SMARCB1 immunostaining. A review of the literature and diagnostic implications are presented herewith.


Subject(s)
Immunohistochemistry , SMARCB1 Protein , Sarcoma, Synovial , Vulva , Vulvar Neoplasms , Humans , Female , Sarcoma, Synovial/genetics , Sarcoma, Synovial/diagnosis , Sarcoma, Synovial/pathology , Middle Aged , SMARCB1 Protein/genetics , Vulvar Neoplasms/pathology , Vulvar Neoplasms/diagnosis , Vulvar Neoplasms/genetics , Vulva/pathology , Oncogene Proteins, Fusion/genetics , Biomarkers, Tumor/genetics , Histocytochemistry , Microscopy , Co-Repressor Proteins/genetics , Proto-Oncogene Proteins , Repressor Proteins
7.
Genes (Basel) ; 15(2)2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38397245

ABSTRACT

Intellectual disability with speech delay and behavioural abnormalities, as well as hypotonia, seizures, feeding difficulties and craniofacial dysmorphism, are the main symptoms associated with pathogenic variants of the ZMYND11 gene. The range of clinical manifestations of the ZMYND phenotype is constantly being expanded by new cases described in the literature. Here, we present two previously unreported paediatric patients with neurodevelopmental challenges, who were diagnosed with missense variants in the ZMYND11 gene. It should be noted that one of the individuals manifested with hyperinsulinaemic hypoglycaemia (HH), a symptom that was not described before in published works. The reason for the occurrence of HH in our proband is not clear, so we try to explain the origin of this symptom in the context of the ZMYND11 syndrome. Thus, this paper contributes to knowledge on the range of possible manifestations of the ZMYND disease and provides further evidence supporting its association with neurodevelopmental challenges.


Subject(s)
Abnormalities, Multiple , Intellectual Disability , Child , Humans , Abnormalities, Multiple/genetics , Abnormalities, Multiple/diagnosis , Cell Cycle Proteins/genetics , Co-Repressor Proteins/genetics , DNA-Binding Proteins/genetics , Intellectual Disability/genetics , Intellectual Disability/diagnosis , Mutation, Missense , Phenotype , Syndrome
8.
Proc Natl Acad Sci U S A ; 121(9): e2320129121, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38377195

ABSTRACT

Despite numerous female contraceptive options, nearly half of all pregnancies are unintended. Family planning choices for men are currently limited to unreliable condoms and invasive vasectomies with questionable reversibility. Here, we report the development of an oral contraceptive approach based on transcriptional disruption of cyclical gene expression patterns during spermatogenesis. Spermatogenesis involves a continuous series of self-renewal and differentiation programs of spermatogonial stem cells (SSCs) that is regulated by retinoic acid (RA)-dependent activation of receptors (RARs), which control target gene expression through association with corepressor proteins. We have found that the interaction between RAR and the corepressor silencing mediator of retinoid and thyroid hormone receptors (SMRT) is essential for spermatogenesis. In a genetically engineered mouse model that negates SMRT-RAR binding (SMRTmRID mice), the synchronized, cyclic expression of RAR-dependent genes along the seminiferous tubules is disrupted. Notably, the presence of an RA-resistant SSC population that survives RAR de-repression suggests that the infertility attributed to the loss of SMRT-mediated repression is reversible. Supporting this notion, we show that inhibiting the action of the SMRT complex with chronic, low-dose oral administration of a histone deacetylase inhibitor reversibly blocks spermatogenesis and fertility without affecting libido. This demonstration validates pharmacologic targeting of the SMRT repressor complex for non-hormonal male contraception.


Subject(s)
DNA-Binding Proteins , Repressor Proteins , Humans , Female , Male , Animals , Mice , DNA-Binding Proteins/metabolism , Repressor Proteins/genetics , Repressor Proteins/metabolism , Co-Repressor Proteins/genetics , Nuclear Receptor Co-Repressor 2/genetics , Tretinoin/pharmacology , Contraception , Nuclear Receptor Co-Repressor 1
9.
J Clin Invest ; 134(6)2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38300709

ABSTRACT

Virtually all patients with BRAF-mutant melanoma develop resistance to MAPK inhibitors largely through nonmutational events. Although the epigenetic landscape is shown to be altered in therapy-resistant melanomas and other cancers, a specific targetable epigenetic mechanism has not been validated. Here, we evaluated the corepressor for element 1-silencing transcription factor (CoREST) epigenetic repressor complex and the recently developed bivalent inhibitor corin within the context of melanoma phenotype plasticity and therapeutic resistance. We found that CoREST was a critical mediator of the major distinct melanoma phenotypes and that corin treatment of melanoma cells led to phenotype reprogramming. Global assessment of transcript and chromatin changes conferred by corin revealed specific effects on histone marks connected to epithelial-mesenchymal transition-associated (EMT-associated) transcription factors and the dual-specificity phosphatases (DUSPs). Remarkably, treatment of BRAF inhibitor-resistant (BRAFi-R) melanomas with corin promoted resensitization to BRAFi therapy. DUSP1 was consistently downregulated in BRAFi-R melanomas, which was reversed by corin treatment and associated with inhibition of p38 MAPK activity and resensitization to BRAFi therapies. Moreover, this activity was recapitulated by the p38 MAPK inhibitor BIRB 796. These findings identify the CoREST repressor complex as a central mediator of melanoma phenotype plasticity and resistance to targeted therapy and suggest that CoREST inhibitors may prove beneficial for patients with BRAFi-resistant melanoma.


Subject(s)
Melanoma , Humans , Melanoma/drug therapy , Melanoma/genetics , Proto-Oncogene Proteins B-raf/genetics , Co-Repressor Proteins/genetics , Drug Resistance, Neoplasm/genetics , Cell Line, Tumor , Protein Kinase Inhibitors/pharmacology , Phenotype , p38 Mitogen-Activated Protein Kinases
10.
Mol Plant Microbe Interact ; 37(3): 190-195, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38205771

ABSTRACT

Transcriptional corepressors form an ancient and essential layer of gene expression control in eukaryotes. TOPLESS and TOPLESS-RELATED (TPL/TPR) proteins constitute a conserved family of Groucho (Gro)/thymidine uptake 1 (Tup1)-type transcriptional corepressors and control diverse growth, developmental, and stress signaling responses in plants. Because of their central and versatile regulatory roles, they act as a signaling hub to integrate various input signaling pathways in the transcriptional responses. Recently, increasing pieces of evidence indicate the roles of TPL/TPR family proteins in the modulation of plant immunity. This is supported by studies on effectors of distantly related pathogens that target TPL/TPR proteins in planta. In this short review, we will summarize the latest findings concerning pathogens targeting plant TPL/TPR proteins to manipulate plant signaling responses for the successful invasion of their hosts. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Co-Repressor Proteins/genetics , Co-Repressor Proteins/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis/genetics , Transcription Factors/genetics , Plants/metabolism
11.
J Med Genet ; 61(5): 490-501, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38296633

ABSTRACT

INTRODUCTION: KCTD15 encodes an oligomeric BTB domain protein reported to inhibit neural crest formation through repression of Wnt/beta-catenin signalling, as well as transactivation by TFAP2. Heterozygous missense variants in the closely related paralogue KCTD1 cause scalp-ear-nipple syndrome. METHODS: Exome sequencing was performed on a two-generation family affected by a distinctive phenotype comprising a lipomatous frontonasal malformation, anosmia, cutis aplasia of the scalp and/or sparse hair, and congenital heart disease. Identification of a de novo missense substitution within KCTD15 led to targeted sequencing of DNA from a similarly affected sporadic patient, revealing a different missense mutation. Structural and biophysical analyses were performed to assess the effects of both amino acid substitutions on the KCTD15 protein. RESULTS: A heterozygous c.310G>C variant encoding p.(Asp104His) within the BTB domain of KCTD15 was identified in an affected father and daughter and segregated with the phenotype. In the sporadically affected patient, a de novo heterozygous c.263G>A variant encoding p.(Gly88Asp) was present in KCTD15. Both substitutions were found to perturb the pentameric assembly of the BTB domain. A crystal structure of the BTB domain variant p.(Gly88Asp) revealed a closed hexameric assembly, whereas biophysical analyses showed that the p.(Asp104His) substitution resulted in a monomeric BTB domain likely to be partially unfolded at physiological temperatures. CONCLUSION: BTB domain substitutions in KCTD1 and KCTD15 cause clinically overlapping phenotypes involving craniofacial abnormalities and cutis aplasia. The structural analyses demonstrate that missense substitutions act through a dominant negative mechanism by disrupting the higher order structure of the KCTD15 protein complex.


Subject(s)
BTB-POZ Domain , Craniofacial Abnormalities , Face , Humans , Abnormalities, Multiple , Co-Repressor Proteins/genetics , Craniofacial Abnormalities/genetics , Ectodermal Dysplasia , Face/abnormalities , Mutation, Missense/genetics , Syndrome
12.
Proc Natl Acad Sci U S A ; 121(2): e2316104121, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38165941

ABSTRACT

The nuclear receptor corepressor (NCoR) forms a complex with histone deacetylase 3 (HDAC3) that mediates repressive functions of unliganded nuclear receptors and other transcriptional repressors by deacetylation of histone substrates. Recent studies provide evidence that NCoR/HDAC3 complexes can also exert coactivator functions in brown adipocytes by deacetylating and activating PPARγ coactivator 1α (PGC1α) and that signaling via receptor activator of nuclear factor kappa-B (RANK) promotes the formation of a stable NCoR/HDAC3/PGC1ß complex that coactivates nuclear factor kappa-B (NFκB)- and activator protein 1 (AP-1)-dependent genes required for osteoclast differentiation. Here, we demonstrate that activation of Toll-like receptor (TLR) 4, but not TLR3, the interleukin 4 (IL4) receptor nor the Type I interferon receptor, also promotes assembly of an NCoR/HDAC3/PGC1ß coactivator complex. Receptor-specific utilization of TNF receptor-associated factor 6 (TRAF6) and downstream activation of extracellular signal-regulated kinase 1 (ERK1) and TANK-binding kinase 1 (TBK1) accounts for the common ability of RANK and TLR4 to drive assembly of an NCoR/HDAC3/PGC1ß complex in macrophages. ERK1, the p65 component of NFκB, and the p300 histone acetyltransferase (HAT) are also components of the induced complex and are associated with local histone acetylation and transcriptional activation of TLR4-dependent enhancers and promoters. These observations identify a TLR4/TRAF6-dependent signaling pathway that converts NCoR from a corepressor of nuclear receptors to a coactivator of NFκB and AP-1 that may be relevant to functions of NCoR in other developmental and homeostatic processes.


Subject(s)
Histones , TNF Receptor-Associated Factor 6 , Transcriptional Activation , Co-Repressor Proteins/genetics , Histones/genetics , Histones/metabolism , TNF Receptor-Associated Factor 6/genetics , TNF Receptor-Associated Factor 6/metabolism , Transcription Factor AP-1/metabolism , Toll-Like Receptor 4/metabolism , Signal Transduction , NF-kappa B/genetics , NF-kappa B/metabolism , Receptors, Cytoplasmic and Nuclear/metabolism
13.
Exp Mol Med ; 56(2): 251-263, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38297159

ABSTRACT

H3.3, the most common replacement variant for histone H3, has emerged as an important player in chromatin dynamics for controlling gene expression and genome integrity. While replicative variants H3.1 and H3.2 are primarily incorporated into nucleosomes during DNA synthesis, H3.3 is under the control of H3.3-specific histone chaperones for spatiotemporal incorporation throughout the cell cycle. Over the years, there has been progress in understanding the mechanisms by which H3.3 affects domain structure and function. Furthermore, H3.3 distribution and relative abundance profoundly impact cellular identity and plasticity during normal development and pathogenesis. Recurrent mutations in H3.3 and its chaperones have been identified in neoplastic transformation and developmental disorders, providing new insights into chromatin biology and disease. Here, we review recent findings emphasizing how two distinct histone chaperones, HIRA and DAXX, take part in the spatial and temporal distribution of H3.3 in different chromatin domains and ultimately achieve dynamic control of chromatin organization and function. Elucidating the H3.3 deposition pathways from the available histone pool will open new avenues for understanding the mechanisms by which H3.3 epigenetically regulates gene expression and its impact on cellular integrity and pathogenesis.


Subject(s)
Cell Cycle Proteins , Chromatin , Co-Repressor Proteins , Histones , Molecular Chaperones , Transcription Factors , Cell Cycle , Cell Division , Chromatin/genetics , Histone Chaperones/genetics , Humans , Molecular Chaperones/genetics , Co-Repressor Proteins/genetics , Transcription Factors/genetics , Cell Cycle Proteins/genetics
14.
Oncogene ; 43(7): 524-538, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38177411

ABSTRACT

Rhabdomyosarcoma tumor cells resemble differentiating skeletal muscle cells, which unlike normal muscle cells, fail to undergo terminal differentiation, underlying their proliferative and metastatic properties. We identify the corepressor TLE3 as a key regulator of rhabdomyosarcoma tumorigenesis by inhibiting the Wnt-pathway. Loss of TLE3 function leads to Wnt-pathway activation, reduced proliferation, decreased migration, and enhanced differentiation in rhabdomyosarcoma cells. Muscle-specific TLE3-knockout results in enhanced expression of terminal myogenic differentiation markers during normal mouse development. TLE3-knockout rhabdomyosarcoma cell xenografts result in significantly smaller tumors characterized by reduced proliferation, increased apoptosis and enhanced differentiation. We demonstrate that TLE3 interacts with and recruits the histone methyltransferase KMT1A, leading to repression of target gene activation and inhibition of differentiation in rhabdomyosarcoma. A combination drug therapy regime to promote Wnt-pathway activation by the small molecule BIO and inhibit KMT1A by the drug chaetocin led to significantly reduced tumor volume, decreased proliferation, increased expression of differentiation markers and increased survival in rhabdomyosarcoma tumor-bearing mice. Thus, TLE3, the Wnt-pathway and KMT1A are excellent drug targets which can be exploited for treating rhabdomyosarcoma tumors.


Subject(s)
Rhabdomyosarcoma , Humans , Mice , Animals , Co-Repressor Proteins/genetics , Histone Methyltransferases , Cell Differentiation/genetics , Rhabdomyosarcoma/pathology , Antigens, Differentiation , Cell Proliferation/genetics , Cell Line, Tumor
15.
Exp Cell Res ; 434(1): 113857, 2024 01 01.
Article in English | MEDLINE | ID: mdl-38008278

ABSTRACT

Genetic factors coordinate with environmental factors to drive the pathogenesis of prostate adenocarcinoma (PRAD). SPOP is one of the most mutated genes and LRP5 mediates lipid metabolism that is abnormally altered in PRAD. Here, we investigated the potential cross-talk between SPOP and LRP5 in PRAD. We find a negative correlation between SPOP and LRP5 proteins in PRAD. SPOP knockdown increased LRP5 protein while SPOP overexpression resulted in LRP5 reduction that was fully rescued by proteasome inhibitors. LRP5 intracellular tail has SPOP binding site and the direct interaction between LRP5 and SPOP was confirmed by Co-IP and GST-pulldown. Moreover, LRP5 competed with Daxx for SPOP-mediated degradation, establishing a dynamic balance among SPOP, LRP5 and Daxx. Overexpression of LRP5 tail could shift this balance to enhance Daxx-mediated transcriptional inhibition, and inhibit T cell activity in a co-culture system. Further, we generated human and mouse prostate cancer cell lines expressing SPOP variants (F133V, A227V, R368H). SPOP-F133V and SPOP-A227V have specific effects in up-regulating the protein levels of PD-1 and PD-L1. Consistently, SPOP-F133V and SPOP-A227V show robust inhibitory effects on T cells compared to WT SPOP in co-culture. This is further supported by the mouse syngeneic model showing that SPOP-F133V and SPOP-A227V enhance tumorigenesis of prostate cancer in in-vivo condition. Taken together, our study provides evidence that SPOP-LRP5 crosstalk plays an essential role, and the genetic variants of SPOP differentially modulate the expression and activity of immune checkpoints in prostate cancer.


Subject(s)
Prostatic Neoplasms , Repressor Proteins , Male , Animals , Mice , Humans , Repressor Proteins/genetics , Repressor Proteins/metabolism , B7-H1 Antigen/genetics , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Prostatic Neoplasms/pathology , Carcinogenesis/genetics , Cell Transformation, Neoplastic , Mutation , Low Density Lipoprotein Receptor-Related Protein-5/genetics , Molecular Chaperones/genetics , Co-Repressor Proteins/genetics
16.
Anat Histol Embryol ; 53(1): e12974, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37767699

ABSTRACT

During fertilization, DAXX (death domain-associated protein) mediates histone variant H3.3 incorporation into heterochromatin, which plays an important role in the maintenance of genomic integrity. rDNA, the ribosomal gene, is included in the first wave of gene activation after fertilization. Our and other studies indicated that loss of Daxx disturbs rDNA heterochromatinization and promotes rDNA transcription without change in protein expression of H3.3. However, maternal and zygotic deletion of Daxx impairs blastocyst development. Whether Daxx knockdown affects H3.3 expression and improves the rDNA transcription in preimplantation development has not been reported. In the present study, we injected HA-labelled H3.3 (H3.3-HA) into oocytes during ICSI procedure, and detected H3.3 and DAXX by immunofluorescent staining. Then, we knockdowned Daxx and detected the gene expression levels of Daxx, H3.3, 18s and 47s rRNA. We also performed immunofluorescent staining of B23, γH2A and EdU incorporation to demonstrate nuclear structure, DNA damage and replication. We found injection of H3.3-HA did not impair preimplantation development. Daxx siRNA did not change expression of H3.3 mRNA, and the development of two-cell embryos and blastocysts, but the overall replication and expression levels of rRNA were increased compared with that in the control group. Finally, knockdown of DAXX did not aggravate the DNA damage but loosened the nucleolus. We concluded that Daxx knockdown promoted DNA replication and rDNA transcription, but did not affect H3.3 expression and subsequent preimplantation development.


Subject(s)
Heterochromatin , Histones , Mice , Animals , DNA, Ribosomal/genetics , DNA, Ribosomal/metabolism , Histones/genetics , Histones/metabolism , Heterochromatin/metabolism , Blastocyst , Embryonic Development , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , Co-Repressor Proteins/genetics , Co-Repressor Proteins/metabolism
17.
Int J Gynecol Pathol ; 43(1): 33-40, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-36811828

ABSTRACT

Endometrial stromal tumors represent the second most common category of uterine mesenchymal tumors. Several different histologic variants and underlying genetic alterations have been recognized, one such being a group associated with BCORL1 rearrangements. They are usually high-grade endometrial stromal sarcomas, often associated with prominent myxoid background and aggressive behavior. Here, we report an unusual endometrial stromal neoplasm with JAZF1-BCORL1 rearrangement and briefly review the literature. The neoplasm formed a well-circumscribed uterine mass in a 50-yr-old woman and had an unusual morphologic appearance that did not warrant a high-grade categorization. It was characterized by a predominant population of epithelioid cells with clear to focally eosinophilic cytoplasm growing in interanastomosing cords and trabeculae set in a hyalinized stroma as well as nested and fascicular growths imparting focal resemblance to a uterine tumor resembling ovarian sex-cord tumor, PEComa, and a smooth muscle neoplasm. A minor storiform growth of spindle cells reminiscent of the fibroblastic variant of low-grade endometrial stromal sarcoma was also noted but conventional areas of low-grade endometrial stromal neoplasm were not identified. This case expands the spectrum of morphologic features seen in endometrial stromal tumors, especially when associated with a BCORL1 fusion and highlights the utility of immunohistochemical and molecular techniques in the diagnosis of these tumors, not all of which are high grade.


Subject(s)
Endometrial Neoplasms , Endometrial Stromal Tumors , Sarcoma, Endometrial Stromal , Uterine Neoplasms , Female , Humans , Endometrial Stromal Tumors/diagnosis , Endometrial Stromal Tumors/genetics , Endometrial Neoplasms/diagnosis , Endometrial Neoplasms/genetics , Endometrial Neoplasms/chemistry , Sarcoma, Endometrial Stromal/diagnosis , Sarcoma, Endometrial Stromal/genetics , Uterine Neoplasms/pathology , Uterus/pathology , DNA-Binding Proteins/genetics , Co-Repressor Proteins/genetics , Repressor Proteins/genetics
18.
Front Endocrinol (Lausanne) ; 14: 1235614, 2023.
Article in English | MEDLINE | ID: mdl-38107517

ABSTRACT

Introduction: Pluripotent stem cells can be generated from somatic cells by the Yamanaka factors Oct4, Sox2, Klf4 and c-Myc. Methods: Mouse embryonic fibroblasts (MEFs) were transduced with the Yamanaka factors and generation of induced pluripotent stem cells (iPSCs) was assessed by formation of alkaline phosphatase positive colonies, pluripotency gene expression and embryod bodies formation. Results: The thyroid hormone triiodothyronine (T3) enhances MEFs reprogramming. T3-induced iPSCs resemble embryonic stem cells in terms of the expression profile and DNA methylation pattern of pluripotency genes, and of their potential for embryod body formation and differentiation into the three major germ layers. T3 induces reprogramming even though it increases expression of the cyclin kinase inhibitors p21 and p27, which are known to oppose acquisition of pluripotency. The actions of T3 on reprogramming are mainly mediated by the thyroid hormone receptor beta and T3 can enhance iPSC generation in the absence of c-Myc. The hormone cannot replace Oct4 on reprogramming, but in the presence of T3 is possible to obtain iPSCs, although with low efficiency, without exogenous Klf4. Furthermore, depletion of the corepressor NCoR (or Nuclear Receptor Corepressor 1) reduces MEFs reprogramming in the absence of the hormone and strongly decreases iPSC generation by T3 and also by 9cis-retinoic acid, a well-known inducer of reprogramming. NCoR depletion also markedly antagonizes induction of pluripotency gene expression by both ligands. Conclusions: Inclusion of T3 on reprogramming strategies has a potential use in enhancing the generation of functional iPSCs for studies of cell plasticity, disease and regenerative medicine.


Subject(s)
Cellular Reprogramming , Nuclear Receptor Co-Repressor 1 , Pluripotent Stem Cells , Animals , Mice , Co-Repressor Proteins/genetics , Fibroblasts/metabolism , Hormones/metabolism , Pluripotent Stem Cells/metabolism , Thyroid Hormones/metabolism , Nuclear Receptor Co-Repressor 1/genetics
19.
Commun Biol ; 6(1): 1267, 2023 12 14.
Article in English | MEDLINE | ID: mdl-38097664

ABSTRACT

Lysine-specific demethylase 1A (LSD1) binds to the REST corepressor (RCOR) protein family of corepressors to erase transcriptionally active marks on histones. Functional diversity in these complexes depends on the type of RCOR included, which modulates the catalytic activity of the complex. Here, we studied the duplicative history of the RCOR and LSD gene families and analyzed the evolution of their interaction. We found that RCOR genes are the product of the two rounds of whole-genome duplications that occurred early in vertebrate evolution. In contrast, the origin of the LSD genes traces back before to the divergence of animals and plants. Using bioinformatics tools, we show that the RCOR and LSD1 interaction precedes the RCOR repertoire expansion that occurred in the last common ancestor of jawed vertebrates. Overall, we trace LSD1-RCOR complex evolution and propose that animal non-model species offer advantages in addressing questions about the molecular biology of this epigenetic complex.


Subject(s)
Histone Demethylases , Lysine , Animals , Histone Demethylases/genetics , Histone Demethylases/metabolism , Histones/metabolism , Vertebrates/genetics , Co-Repressor Proteins/genetics , Co-Repressor Proteins/metabolism
20.
Int J Biochem Cell Biol ; 165: 106480, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37884171

ABSTRACT

The occurrence of autophagy dysregulation is vital in the development of myelodysplastic syndrome and its transformation to acute myeloid leukemia. However, the mechanisms are largely unknown. Here, we have investigated the mechanism of the bcl6 corepressor mutation in myelodysplastic syndrome development and its transformation to acute myeloid leukemia. We identified a novel pathway involving histone deacetylase 6 and forkhead box protein O1, which leads to autophagy defects following the bcl6 corepressor mutation. And this further causes apoptosis and cell cycle arrest. The bcl6 corepressor-mutation-repressed autophagy resulted in the accumulation of damaged mitochondria, DNA, and reactive oxygen species in myelodysplastic syndrome cells, which could then lead to genomic instability and spontaneous mutation. Our results suggest that the bcl6 corepressor inactivating mutations exert pro-carcinogenic effects through survival strike, which is only an intermediate process. These findings provide mechanistic insights into the role of the bcl6 corepressor gene in myelodysplastic syndrome.


Subject(s)
Leukemia, Myeloid, Acute , Myelodysplastic Syndromes , Humans , Transcription Factors/metabolism , Myelodysplastic Syndromes/genetics , Mutation , Autophagy/genetics , Co-Repressor Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...