Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 7.920
Filter
1.
Nature ; 629(8011): 295-306, 2024 May.
Article in English | MEDLINE | ID: mdl-38720037

ABSTRACT

Fossil fuels-coal, oil and gas-supply most of the world's energy and also form the basis of many products essential for everyday life. Their use is the largest contributor to the carbon dioxide emissions that drive global climate change, prompting joint efforts to find renewable alternatives that might enable a carbon-neutral society by as early as 2050. There are clear paths for renewable electricity to replace fossil-fuel-based energy, but the transport fuels and chemicals produced in oil refineries will still be needed. We can attempt to close the carbon cycle associated with their use by electrifying refinery processes and by changing the raw materials that go into a refinery from fossils fuels to carbon dioxide for making hydrocarbon fuels and to agricultural and municipal waste for making chemicals and polymers. We argue that, with sufficient long-term commitment and support, the science and technology for such a completely fossil-free refinery, delivering the products required after 2050 (less fuels, more chemicals), could be developed. This future refinery will require substantially larger areas and greater mineral resources than is the case at present and critically depends on the capacity to generate large amounts of renewable energy for hydrogen production and carbon dioxide capture.


Subject(s)
Carbon Dioxide , Fossil Fuels , Oil and Gas Industry , Renewable Energy , Carbon Cycle , Carbon Dioxide/adverse effects , Carbon Dioxide/isolation & purification , Coal/adverse effects , Coal/supply & distribution , Fossil Fuels/adverse effects , Fossil Fuels/supply & distribution , Hydrogen/chemistry , Natural Gas/adverse effects , Natural Gas/supply & distribution , Petroleum/adverse effects , Petroleum/supply & distribution , Renewable Energy/statistics & numerical data , Oil and Gas Industry/methods , Oil and Gas Industry/trends
2.
PLoS One ; 19(5): e0302044, 2024.
Article in English | MEDLINE | ID: mdl-38771802

ABSTRACT

In order to strengthen the safety management of coal slurry preparation systems, a dynamic risk assessment method was established by using the bow-tie (BT) model and the Structure-variable Dynamic Bayesian Network (SVDBN). First, the BT model was transformed into a static Bayesian network (BN) model of the failure of a coal slurry preparation system by using the bow-tie model and the structural similarity of the Bayesian cognitive science, based on the SVDBN recursive reasoning algorithm. The risk factors of the coal slurry preparation system were deduced using the Python language in two ways, and at the same time, preventive measures were put forward according to the weak links. In order to verify the accuracy and feasibility of this method, the simulation results were compared with those obtained using GeNIe software. The reasoning results of the two methods were very similar. Without considering maintenance factors, the failure rate of the coal slurry preparation system gradually increases with increasing time. When considering maintenance factors, the reliability of the coal slurry preparation system will gradually be maintained at a certain threshold, and the maintenance factors will increase the reliability of the system. The proposed method can provide a theoretical basis for the risk assessment and safety management of coal slurry preparation systems.


Subject(s)
Bayes Theorem , Coal , Risk Assessment/methods , Algorithms , Models, Theoretical , Humans
4.
J Environ Manage ; 359: 121004, 2024 May.
Article in English | MEDLINE | ID: mdl-38710146

ABSTRACT

In order to fully understand the carbon emission from different fuels in rural villages of China, especially in the typical atmospheric pollution areas. The characteristics of carbonaceous aerosols and carbon dioxide (CO2) with its stable carbon isotope (δ13C) were investigated in six households, which two households used coal, two households used wood as well as two households used biogas and liquefied petroleum gas (LPG), from two rural villages in Fenwei Plain from March to April 2021. It showed that the fine particulate matter (PM2.5) emitted from biogas and LPG couldn't be as lower as expected in this area. However, the clean fuels could relatively reduce the emissions of organic carbon (OC) and element carbon (EC) in PM2.5 compare to the solid fuels. The pyrolyzed carbon (OP) accounted more total carbon (TC) in coal than the other fuels use households, indicating that more water-soluble OC existed, and it still had the highest secondary organic carbon (SOC) than the other fuels. Meantime, the coal combustions in the two villages had the highest CO2 concentration of 527.6 ppm and 1120.6 ppm, respectively, while the clean fuels could effectively reduce it. The average δ13C values (-26.9‰) was much lighter than almost all the outdoor monitoring and similar to the δ13C values for coal combustion and vehicle emission, showing that they might be the main contributors of the regional atmospheric aerosol in this area. During the sandstorm, the indoor PM2.5 mass and CO2 were increasing obviously. The indoor cancer risk of PAHs for adults and children were greater than 1 × 10-6, exert a potential carcinogenic risk to human of solid fuels combustion in rural northern China. It is important to continue concern the solid fuel combustion and its health impact in rural areas.


Subject(s)
Aerosols , Carbon Dioxide , Carbon Isotopes , Particulate Matter , Carbon Dioxide/analysis , China , Particulate Matter/analysis , Aerosols/analysis , Carbon Isotopes/analysis , Coal , Air Pollutants/analysis , Carbon/analysis , Humans , Family Characteristics , Rural Population , Environmental Monitoring
5.
J Environ Manage ; 359: 121071, 2024 May.
Article in English | MEDLINE | ID: mdl-38718608

ABSTRACT

Particulate matter with an aerodynamic diameter of less than 1 µm (PM1.0) can be extremely hazardous to human health, so it is imperative to accurately estimate the spatial and temporal distribution of PM1.0 and analyze the impact of related policies on it. In this study, a stacking generalization model was trained based on aerosol optical depth (AOD) data from satellite observations, combined with related data affecting aerosol concentration such as meteorological data and geographic data. Using this model, the PM1.0 concentration distribution in China during 2016-2019 was estimated, and verified by comparison with ground-based stations. The coefficient of determination (R2) of the model is 0.94, and the root-mean-square error (RMSE) is 8.49 µg/m3, mean absolute error (MAE) is 4.10 µg/m3, proving that the model has a very high performance. Based on the model, this study analyzed the PM1.0 concentration changes during the heating period (November and December) in the regions where the "coal-to-gas" policy was implemented in China, and found that the proposed "coal-to-gas" policy did reduce the PM1.0 concentration in the implemented regions. However, the lack of natural gas due to the unreasonable deployment of the policy in the early stage caused the increase of PM1.0 concentration. This study can provide a reference for the next step of urban air pollution policy development.


Subject(s)
Air Pollutants , Particulate Matter , Particulate Matter/analysis , China , Air Pollutants/analysis , Coal , Environmental Monitoring , Air Pollution/analysis , Aerosols/analysis
6.
Environ Geochem Health ; 46(6): 202, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38696051

ABSTRACT

Determining the origin and pathways of contaminants in the natural environment is key to informing any mitigation process. The mass magnetic susceptibility of soils allows a rapid method to measure the concentration of magnetic minerals, derived from anthropogenic activities such as mining or industrial processes, i.e., smelting metals (technogenic origin), or from the local bedrock (of geogenic origin). This is especially effective when combined with rapid geochemical analyses of soils. The use of multivariate analysis (MVA) elucidates complex multiple-component relationships between soil geochemistry and magnetic susceptibility. In the case of soil mining sites, X-ray fluorescence (XRF) spectroscopic data of soils contaminated by mine waste shows statistically significant relationships between magnetic susceptibility and some base metal species (e.g., Fe, Pb, Zn, etc.). Here, we show how qualitative and quantitative MVA methodologies can be used to assess soil contamination pathways using mass magnetic susceptibility and XRF spectra of soils near abandoned coal and W/Sn mines (NW Portugal). Principal component analysis (PCA) showed how the first two primary components (PC-1 + PC-2) explained 94% of the sample variability, grouped them according to their geochemistry and magnetic susceptibility in to geogenic and technogenic groups. Regression analyses showed a strong positive correlation (R2 > 0.95) between soil geochemistry and magnetic properties at the local scale. These parameters provided an insight into the multi-element variables that control magnetic susceptibility and indicated the possibility of efficient assessment of potentially contaminated sites through mass-specific soil magnetism.


Subject(s)
Environmental Monitoring , Soil Pollutants , Spectrometry, X-Ray Emission , Soil Pollutants/analysis , Spectrometry, X-Ray Emission/methods , Multivariate Analysis , Environmental Monitoring/methods , Mining , Portugal , Principal Component Analysis , Soil/chemistry , Tin/analysis , Magnetic Phenomena , Coal Mining , Coal
7.
PLoS One ; 19(5): e0297994, 2024.
Article in English | MEDLINE | ID: mdl-38696455

ABSTRACT

When using end shield shearer to recover end slope coal resources, the stability of the overlying rock slope of the end slope is controlled by leaving coal pillars. Due to the influence of the self weight of the overlying rock layer, the coal pillar will be subjected to eccentric loads, and the influence of eccentric loads needs to be considered in the design of the coal pillar size. With the help of PFC discrete element software, uniaxial compression tests were carried out on coal sample containing hole defects under different degrees of eccentric loads based on the calibration of micro mechanical parameters. The results show that the peak stress, cracking stress and dilatancy stress of coal sample decrease in a linear function law with the increase of load eccentricity coefficient. The evolution of the number of microscopic cracks during uniaxial compression under eccentric load can be divided into four stages: the calm stage before crack initiation I, the stable propagation stage II, the unstable propagation and penetration stage III, and the post failure stage IV. The distribution of macroscopic cracks is jointly influenced by the relative position of the loading area and the hole defect. When the hole defect is within the loading area, the hole plays a guiding role in the evolution of coal sample cracks, and the macroscopic crack runs through the edge of the loading area and the hole. When the hole defect is located outside the loading zone, the degree of eccentric load is large, weakening the guiding effect of the hole defect on the crack, and the macroscopic crack does not pass through the hole defect.


Subject(s)
Coal , Stress, Mechanical , Compressive Strength
8.
Environ Sci Technol ; 58(21): 9187-9199, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38691631

ABSTRACT

The coal-dominated electricity system, alongside increasing industrial electricity demand, places China into a dilemma between industrialization and environmental impacts. A practical solution is to exploit air quality and health cobenefits of industrial energy efficiency measures, which has not yet been integrated into China's energy transition strategy. This research examines the pivotal role of industrial electricity savings in accelerating coal plant retirements and assesses the nexus of energy-pollution-health by modeling nationwide coal-fired plants at individual unit level. It shows that minimizing electricity needs by implementing more efficient technologies leads to the phaseout of 1279 hyper-polluting units (subcritical, <300 MW) by 2040, advancing the retirement of these units by an average of 7 years (3-16 years). The retirements at different locations yield varying levels of air quality improvements (9-17%), across six power grids. Reduced exposure to PM2.5 could avoid 123,100 pollution-related cumulative deaths over the next 20 years from 2020, of which ∼75% occur in the Central, East, and North grids, particularly coal-intensive and populous provinces (e.g., Shandong and Jiangsu). These findings provide key indicators to support geographically specific policymaking and lay out a rationale for decision-makers to incorporate multiple benefits into early coal phaseout strategies to avoid lock-in risk.


Subject(s)
Air Pollution , Coal , Electricity , Power Plants , China , Humans , Air Pollutants
9.
Arch Microbiol ; 206(6): 263, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38753104

ABSTRACT

Coal seam microbes, as endogenous drivers of secondary biogenic gas production in coal seams, might be related to methane production in coal seams. In this study, we carried out anaerobic indoor culture experiments of microorganisms from three different depths of bituminous coal seams in Huainan mining area, and revealed the secondary biogas generation mechanism of bituminous coal seams by using the combined analysis of macro-genome and metabolism multi-omics. The results showed that the cumulative mass molar concentrations (Molality) of biomethane production increased with the increase of the coal seam depth in two consecutive cycles. At the genus level, there were significant differences in the bacterial and archaeal community structures corresponding to the three coal seams 1#, 6#, and 9#(p < 0.05). The volatile matter of air-dry basis (Vad) of coal was significantly correlated with differences in genus-level composition of bacteria and archaea, with correlations of R bacterial = 0.368 and R archaeal = 0.463, respectively. Functional gene analysis showed that the relative abundance of methanogenesis increased by 42% before and after anaerobic fermentation cultivation. Meanwhile, a total of 11 classes of carbon metabolism homologues closely related to methanogenesis were detected in the liquid metabolites of coal bed microbes after 60 days of incubation. Finally, the fatty acid, amino acid and carbohydrate synergistic methanogenic metabolic pathway was reconstructed based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. The expression level of mcrA gene within the metabolic pathway of the 1# deep coal sample was significantly higher than that of the other two groups (p < 0.05 for significance), and the efficient expression of mcrA gene at the end of the methanogenic pathway promoted the conversion of bituminous coal organic matter to methane. Therefore, coal matrix compositions may be the key factors causing diversity in microbial community and metabolic function, which might be related to the different methane content in different coal seams.


Subject(s)
Archaea , Bacteria , Coal , Methane , Methane/metabolism , Archaea/metabolism , Archaea/genetics , Archaea/classification , Bacteria/genetics , Bacteria/metabolism , Bacteria/classification , Bacteria/isolation & purification , Anaerobiosis , Biofuels , Fermentation , Coal Mining , Multiomics
10.
Water Res ; 256: 121526, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38583333

ABSTRACT

The presence of Ag(I) and Pb(II) ions in wastewater poses a significant threat to human health in contemporary times. This study aims to explore the development of a novel and economical adsorbent by grafting MnO2 particles onto low-rank coal, providing an innovative solution for the remediation of water contaminated with silver and lead. The synthesized nanocomposites, referred to as MnO2-Coal, underwent thorough characterization using FTIR, XRD, BET, and SEM to highlight the feasibility of in-situ surface modification of coal with MnO2 nanoparticles. The adsorption of Ag(I) and Pb(II) from their respective aqueous solution onto MnO2-Coal was systematically investigated, with optimization of key parameters such as pH, temperature, initial concentration, contact time, ionic strength, and competing ions. Remarkably adsorption equilibrium was achieved within a 10 min, resulting in impressive removal rates of 80-90 % for both Ag(I) and Pb(II) at pH 6. The experimental data were evaluated using Langmuir, Freundlich, and Temkin isotherm models. The Langmuir isotherm model proved to be more accurate in representing the adsorption of Ag(I) and Pb(II) ions onto MnO2-Coal, exhibiting high regression coefficients (R2 = 0.99) and maximum adsorption capacities of 93.57 and 61.98 mg/g, along with partition coefficients of 4.53 and 71.92 L/g for Ag(I) and Pb(II), respectively, at 293 K. Kinetic assessments employing PFO, PSO, Elovich, and IPD models indicated that the PFO and PSO models were most suitable for adsorption mechanism of Pb(II) and Ag(I) on MnO2-Coal composites, respectively. Moreover, thermodynamic evaluation revealed the spontaneous and endothermic adsorption process for Ag(I), while exothermic behavior for adsorption of Pb(II). Importantly, this approach not only demonstrates cost-effectiveness but also environmental friendliness in treating heavy metal-contamination in water. The research suggests the potential of MnO2-Coal composites as efficient and sustainable adsorbents for water purification applications.


Subject(s)
Lead , Manganese Compounds , Oxides , Silver , Wastewater , Water Pollutants, Chemical , Silver/chemistry , Lead/chemistry , Wastewater/chemistry , Water Pollutants, Chemical/chemistry , Adsorption , Manganese Compounds/chemistry , Oxides/chemistry , Coal , Water Purification/methods , Hydrogen-Ion Concentration , Kinetics
11.
Water Res ; 256: 121627, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38642539

ABSTRACT

The complex composition of coal chemical wastewater (CCW), marked by numerous highly toxic aromatic compounds, induces the destabilization of the biochemical treatment system, leading to suboptimal treatment efficacy. In this study, a biochemical treatment system was established to efficiently degrade aromatic compounds by quantitatively regulating the dosage of co-metabolized substrates (specifically, the chemical oxygen demand (COD) Glucose: COD Sodium acetate = 3:1, 1:3, and 1:1). The findings demonstrated that the system achieved optimal performance under the condition that the ratio of COD Glucose to COD Sodium acetate was 3:1. When the co-metabolized substrate was added to the system at an optimal ratio, examination of pollutant removal and cumulative effects revealed that the removal efficiencies for COD and total organic carbon (TOC) reached 94.61 % and 86.40 %, respectively. The removal rates of benzene series, nitrogen heterocyclic compounds, polycyclic aromatic hydrocarbons, and phenols were 100 %, 100 %, 63.58 %, and 94.12 %, respectively. Research on the physiological response of microbial cells showed that, under optimal ratio regulation, co-metabolic substrates led to a substantial rise in microbial extracellular polymeric substances (EPS) secretion, particularly extracellular proteins. When the system reached the end of its operation, the contents of loosely bound EPS (LB-EPS) and tightly bound EPS (TB-EPS) for proteins in the optimal group were 7.12 mg/g-SS and 152.28 mg/g-SS, respectively. Meanwhile, the ratio of α-Helix / (ß-Sheet + Random coil) and the proportion of intermolecular interaction forces were also increased in the optimal group. At system completion, the ratio of α-Helix / (ß-Sheet + Random coil) reached 0.717 (LB-EPS) and 0.618 (TB-EPS), respectively. Additionally, the proportion of intermolecular interaction forces reached 74.83 % (LB-EPS) and 55.03 % (TB-EPS). An in-depth analysis of the metabolic regulation of microorganisms indicated that the introduction of optimal ratios of co-metabolic substrates contributed to a noteworthy upregulation in the expression of Catechol 2,3-dioxygenase (C23O) and Dehydrogenase (DHA). The expression levels of C23O and DHA were measured at 0.029 U/mg Pro·g MLSS and 75.25 mg TF·(g MLSS·h)-1 (peak value), respectively. Correspondingly, enrichment of aromatic compound-degrading bacteria, including Thauera, Saccharimonadales, and Candidatus_Competibacter, occurred, along with the upregulation of associated functional genes such as Catechol 1,2-dioxygenase, Catechol 2,3-dioxygenase, Protocatechuate 3,4-dioxygenase, and Protocatechuate 4,5-dioxygenase. Considering the intricate system of multiple coexisting aromatic compounds in real CCW, this study not only obtained an optimal ratio for carbon source addition but also enhanced the efficient utilization of carbon sources and improved the capability of the system to effectively degrade aromatic compounds. Additionally, this paper established a theoretical foundation for metabolic regulation and harmless treatment within the biochemical treatment of intricate systems, exemplified by real CCW.


Subject(s)
Biodegradation, Environmental , Carbon , Coal , Wastewater , Wastewater/chemistry , Carbon/metabolism , Waste Disposal, Fluid/methods , Water Pollutants, Chemical/metabolism , Biological Oxygen Demand Analysis , Polycyclic Aromatic Hydrocarbons/metabolism
12.
J Environ Manage ; 358: 120815, 2024 May.
Article in English | MEDLINE | ID: mdl-38593739

ABSTRACT

The present research study investigates the performance of pyrolysis oils recycled from waste tires as a collector in coal flotation. Three different types of pyrolysis oils (namely, POT1, POT2, and POT3) were produced through a two-step pressure pyrolysis method followed by an oil rolling process. The characteristics of POTs were adjusted using various oil-modifying additives such as mineral salts and organic solvents. The chemical structure of POTs was explored by employing necessary instrumental analysis techniques, including microwave-assisted acid digestion (MAD), inductively coupled plasma atomic emission spectroscopy (ICP-AES), Fourier-transform infrared spectroscopy (FT-IR), and gas chromatography-mass spectrometry (GC-MS). The collecting performance of POTs in coal flotation was evaluated using an experimental design based on Response Surface Methodology (RSM), considering the ash content and yield of the final concentrate. The effect of the type and dosage of POTs was evaluated in conjunction with other important operating variables, including the dosage of frother, dosage of depressant, and the type of coal. Results of POTs characterization revealed that the pyrolysis oils were a complex composition of light and heavy hydrocarbon molecules, including naphthalene, biphenyl, acenaphthylene, fluorene, and pyrene. Statistical analysis of experimental results showed that among different POTs, POT1 exhibited remarkable superiority, achieving not only a 15% higher coal recovery but also a 12% lower ash content. The outstanding performance of POT1 was attributed to its unique composition, which includes a concentrated presence of carbon chains within the optimal range for efficient flotation. Additionally, the FT-IR spectra of POT1 reveal specific functional groups, including aromatic and aliphatic compounds, greatly enhancing its interaction with coal surfaces, as confirmed by contact angle measurement. This research provides valuable insights into the specific carbon chains and functional groups that contribute to the effectiveness of POT as a collector, facilitating the optimization of coal flotation processes and underscoring the environmental advantages of employing pyrolysis oils as sustainable alternatives in the mining industry.


Subject(s)
Coal , Pyrolysis , Recycling , Gas Chromatography-Mass Spectrometry , Spectroscopy, Fourier Transform Infrared , Oils/chemistry , Automobiles
13.
Arch Microbiol ; 206(5): 234, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664262

ABSTRACT

Exploration and marketable exploitation of coalbed methane (CBM) as cleaner fuel has been started globally. In addition, incidence of methane in coal basins is an imperative fraction of global carbon cycle. Significantly, subsurface coal ecosystem contains methane forming archaea. There is a rising attention in optimizing microbial coal gasification to exploit the abundant or inexpensive coal reserves worldwide. Therefore, it is essential to understand the coalbeds in geo-microbial perspective. Current review provides an in-depth analysis of recent advances in our understanding of how methanoarchaea are distributed in coal deposits globally. Specially, we highlight the findings on coal-associated methanoarchaeal existence, abundance, diversity, metabolic activity, and biogeography in diverse coal basins worldwide. Growing evidences indicates that we have arrived an exciting era of archaeal research. Moreover, gasification of coal into methane by utilizing microbial methanogenesis is a considerable way to mitigate the energy crisis for the rising world population.


Subject(s)
Archaea , Coal , Methane , Methane/metabolism , Archaea/metabolism , Archaea/genetics , Ecosystem , Phylogeny
14.
PLoS One ; 19(4): e0301836, 2024.
Article in English | MEDLINE | ID: mdl-38656978

ABSTRACT

Driven by the goal of achieving sustainable development and carbon neutrality. Addressing environmental pollution and remediating land damage have become critical challenges in resource-based cities and regions with low land use efficiency. As a response, this study focuses on the 23 provinces where China's coal resource-based cities are situated. Utilizing data from 2014 to 2020, this research employs the SBM-Undesirable model, which considers undesirable outputs in efficiency calculations, and the Tobit regression test. It aims to explore the spatio-temporal variations in industrial transformation within resource-based cities and its impact on the efficiency of green space utilization. Furthermore, it analyzes the characteristics and the extent of the influence of factors such as industrial structure adjustments on urban land use efficiency, maximizing the output of land as a factor of production. The results show that: (1) Over the 7-year period studied, China consistently made nationwide adjustments to land area and land use structure to meet the needs of urban development (2) The regression test results show that the industrial transformation of resource-based cities can promote the improvement of green space utilization efficiency. The positive influence coefficient is 0.064 and is significant at a 1% level. (3) Environmental regulation, government expenditure, international trade, and green cover play a positive role in promoting green land use. The study provides valuable insights for policymakers and urban planners seeking to foster sustainable development in resource-based cities.


Subject(s)
Cities , Coal , Conservation of Natural Resources , Sustainable Development , China , Sustainable Development/trends , Conservation of Natural Resources/methods , Environmental Pollution , Humans
15.
Environ Sci Pollut Res Int ; 31(20): 30243-30255, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38602640

ABSTRACT

The development of renewable energy is indispensable to promoting the low-carbon transition of power systems. Nevertheless, it also brings uncertainty to the reliability of power systems. Herein, the panel model and panel threshold model are established based on the provincial data in China from 2012 to 2020. The results reveal that the negative effect of renewable energy development (RED) on power supply reliability (PSR) is gradually lessening. If the development of renewable energy is a rational way, power supply reliability can be improved. Additionally, energy-exporting regions bear more risks of RED than energy-importing regions. If the coal prices are stable and natural disasters are manageable, the RED can enhance the PSR. However, if they are not stable or controllable, a high proportion of renewable energy in the power system could cause even more severe problems with PSR. Based on these critical results, some suggestions are made to promote the formation of a new power system.


Subject(s)
Renewable Energy , China , Power Plants , Coal , Electric Power Supplies , Reproducibility of Results
16.
Article in English | MEDLINE | ID: mdl-38630118

ABSTRACT

The taxonomic position of three actinobacterial strains, BCCO 10_0061T, BCCO 10_0798T, and BCCO 10_0856T, recovered from bare soil in the Sokolov Coal Basin, Czech Republic, was established using a polyphasic approach. The multilocus sequence analysis based on 100 single-copy genes positioned BCCO 10_0061T in the same cluster as Lentzea waywayandensis, strain BCCO 10_0798T in the same cluster as Lentzea flaviverrucosa, Lentzea californiensis, Lentzea violacea, and Lentzea albidocapillata, and strain BCCO 10_0856T clustered together with Lentzea kentuckyensis and Lentzea alba. Morphological and chemotaxonomic characteristics of these strains support their assignment to the genus Lentzea. In all three strains, MK-9(H4) accounted for more than 80 % of the isoprenoid quinone. The diagnostic diamino acid in the cell-wall peptidoglycan was meso-diaminopimelic acid. The whole-cell sugars were rhamnose, ribose, mannose, glucose, and galactose. The major fatty acids (>10 %) were iso-C15 : 0, anteiso-C15 : 0, iso-C16 : 0, and C16 : 0. The polar lipids were diphosphatidylglycerol, methyl-phosphatidylethanolamine, phosphatidylethanolamine, hydroxy-phosphatidylethanolamine, phosphatidylglycerol, and phosphatidylinositol. The genomic DNA G+C content of strains (mol%) was 68.8 for BCCO 10_0061T, 69.2 for BCCO 10_0798T, and 68.5 for BCCO 10_0856T. The combination of digital DNA-DNA hybridization results, average nucleotide identity values and phenotypic characteristics of BCCO 10_0061T, BCCO 10_0798T, and BCCO 10_0856T distinguishes them from their closely related strains. Bioinformatic analysis of the genome sequences of the strains revealed several biosynthetic gene clusters (BGCs) with identities >50 % to already known clusters, including BGCs for geosmin, coelichelin, ε-poly-l-lysine, and erythromycin-like BGCs. Most of the identified BGCs showed low similarity to known BGCs (<50 %) suggesting their genetic potential for the biosynthesis of novel secondary metabolites. Based on the above results, each strain represents a novel species of the genus Lentzea, for which we propose the name Lentzea sokolovensis sp. nov. for BCCO 10_0061T (=DSM 116175T), Lentzea kristufekii sp. nov. for BCCO 10_0798T (=DSM 116176T), and Lentzea miocenica sp. nov. for BCCO 10_0856T (=DSM 116177T).


Subject(s)
Actinobacteria , Actinomycetales , Phosphatidylethanolamines , Czech Republic , Base Composition , Fatty Acids/chemistry , Phylogeny , Sequence Analysis, DNA , RNA, Ribosomal, 16S/genetics , DNA, Bacterial/genetics , Bacterial Typing Techniques , Bacteria , Coal
17.
Chemosphere ; 358: 142115, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38657689

ABSTRACT

Extracellular polymeric substance (EPS) with highly hydrophilic groups and sludge with high compressibility are determined sludge dewaterability. Herein, Fe2+ catalyzed calcium peroxide (CaO2) assisted by oxalic acid (OA) Fenton-like process combined with coal slime was applied to improve sludge dewaterability. Results demonstrated that the sludge treated by 0.45/1/1.1-OA/Fe2+/CaO2 mM/g DS, the water content (WC), specific resistance to filtration and capillary suction time dropped to 53.01%, 24.3 s and 1.2 × 1012 m/kg, respectively. Under coal slime ratio as 0.6, WC and compressibility were further reduced to 42.72% and 0.66, respectively. The hydroxyl radicals generated by OA/Fe2+/CaO2 under near-neutral pH layer by layer collapsed EPS, resulting in the degradation and migration of inner releasing components and the exposure of inner sludge flocs skeleton. The hydrophilic tryptophan-like protein of TB-EPS were degraded into aromatic protein of S-EPS and exposed inner hydrophobic sites. The protein secondary structures were transformed by destroying hydrophilic functional groups, which were attributed to the reducing α-helix ratio and reconstructing ß-sheet. Moreover, coal slime as the skeleton builder lowered compressibility and formed more macropores to increase the filterability of pre-oxidized sludge for the higher intensity of rigid substances. This study deepened the understanding of OA enhanced Fenton-like system effects on sludge dewaterability and proposed a cost-effective and synergistic waste treatment strategy in sludge dewatering.


Subject(s)
Oxalic Acid , Sewage , Waste Disposal, Fluid , Sewage/chemistry , Oxalic Acid/chemistry , Waste Disposal, Fluid/methods , Iron/chemistry , Peroxides/chemistry , Extracellular Polymeric Substance Matrix/chemistry , Hydrogen Peroxide/chemistry , Hydrophobic and Hydrophilic Interactions , Water/chemistry , Coal
18.
Environ Sci Pollut Res Int ; 31(20): 29656-29668, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38587778

ABSTRACT

The substantial amount of mercury emissions from coal-fired flue gas causes severe environmental contamination. With the Minamata Convention now officially in force, it is critical to strengthen mercury pollution control. Existing activated carbon injection technologies suffer from poor desulfurization performance and risk secondary-release risks. Therefore, considering the potential industrial application of adsorbents, we selected cost-effective and readily available activated coke (AC) as the carrier in this study. Four metal selenides-copper, iron, manganese, and tin-were loaded onto the AC to overcome the application problems of existing technologies. After 120 min of adsorption, the CuSe/AC exhibited the highest efficiency in removing Hg0, surpassing 80% according to the experimental findings. In addition, the optimal adsorption temperature window was 30-120 °C, the maximum adsorption rate was 2.9 × 10-2 mg·g-1·h-1, and the effectiveness of CuSe/AC in capturing Hg0 only dropped by 5.2% in the sulfur-containing atmosphere. The physicochemical characterization results indicated that the AC surface had a uniform loading of CuSe with a nanosheet structure resembling polygon and that the Cu-to-Se atomic ratio was close to 1:1. Finally, two possible Hg0 reaction pathways on CuSe/AC were proposed. Moreover, it was elucidated that the highly selective binding of Hg0 with ligand-unsaturated Se- was the key factor in achieving high adsorption efficiency and sulfur resistance in the selenium-functionalized AC adsorbent. This finding offers substantial theoretical support for the industrial application of this adsorbent.


Subject(s)
Coal , Coke , Mercury , Selenium , Adsorption , Selenium/chemistry , Mercury/chemistry , Air Pollutants/chemistry
19.
Environ Sci Pollut Res Int ; 31(22): 32519-32537, 2024 May.
Article in English | MEDLINE | ID: mdl-38658508

ABSTRACT

The transformation of solid wastes from industrial production into effective adsorbents could significantly contribute to wastewater treatment. In this study, after acidizing and burning soft scale (SS) from coal gasification system, two magnetic adsorbents (mag-ASS and mag-BASS) were prepared via the combination of magnetite with ultrasonic, respectively. The treatment effects of mag-ASS and mag-BASS were then investigated for simulated wastewater containing macromolecular organic matter [i.e., methylene blue (MB)] and Ca2+. The results indicated that the pseudo second order kinetic, Elovich, Freundlich, Langmuir and Temkin model could well describe the adsorption behavior of MB and Ca2+ onto mag-ASS and mag-BASS. The maximum adsorption capacities of mag-ASS for MB and mag-BASS for Ca2+ were 600.53 mg/g and 102.54 mg/g, respectively. Surprisingly, the adsorption abilities of mag-ASS for MB and mag-BASS for Ca2+ show significantly higher than the others. The adsorption mechanisms of MB mainly included electrostatic interaction, π-π conjugate interaction and cation exchange, while those of Ca2+ were mainly electrostatic interaction and cation exchange. The diffusion of MB and Ca2+ onto the magnetic adsorbents might be controlled by the combined effects of intraparticle and liquid film diffusion. There was no significant reduction in adsorption capacity after 8 cycles of adsorption and desorption, indicating that SS-based magnetic adsorbents had good recyclability and stability. Moreover, the removal efficiency of mag-BASS for total hardness and total organic carbon in real coal gasification gray water (CGGW) was 82.60 and 64.10%, respectively. The treatment of CGGW and the resource of wastes would significantly promote the reasonable disposal of coal gasification scales.


Subject(s)
Calcium , Coal , Methylene Blue , Methylene Blue/chemistry , Adsorption , Calcium/chemistry , Wastewater/chemistry , Kinetics , Water Pollutants, Chemical/chemistry , Water Purification/methods
20.
Environ Sci Pollut Res Int ; 31(22): 31942-31966, 2024 May.
Article in English | MEDLINE | ID: mdl-38639906

ABSTRACT

Land surface subsidence is an environmental hazard resulting from the extraction of underground resources. In underground mining, when mineral materials are extracted deep within the ground, the emptying or caving of the mined spaces leads to vertical displacement of the ground, known as subsidence. This subsidence can extend to the surface as trough subsidence, as the movement and deformation of the hanging-wall rocks of the mining stope propagate upwards. Accurately predicting subsidence is crucial for estimating damage and protecting surface buildings and structures in mining areas. Therefore, developing a model that considers all relevant parameters for subsidence estimation is essential. In this article, we discuss the prediction of land subsidence caused by the caving of a stop's roof, focusing on coal mining using the longwall method. The main aim of this research is to improve the accuracy of prediction models of land subsidence due to mining. For this purpose, we consider a total of 11 parameters related to coal mining, including mining thickness and depth (related to the deposit), as well as density, cohesion, internal friction angle, elasticity modulus, bulk modulus, shear modulus, Poisson's ratio, uniaxial compressive strength, and tensile strength (related to the overburden). We utilize information collected from 14 coal mines regarding mining and subsidence to achieve this. We then explore the prediction of subsidence caused by mining using the gene expression programming (GEP) algorithm, optimized through a combination of the artificial bee colony (ABC) and ant lion optimizer (ALO) algorithms. Modeling results demonstrate that combining the GEP algorithm with optimization based on the ABC algorithm yields the best subsidence prediction, achieving a correlation coefficient of 0.96. Furthermore, sensitivity analysis reveals that mining depth and density have the greatest and least effects, respectively, on land surface subsidence resulting from coal mining using the longwall method.


Subject(s)
Coal Mining , Machine Learning , Models, Theoretical , Coal
SELECTION OF CITATIONS
SEARCH DETAIL
...