Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Fetal Pediatr Pathol ; 42(2): 334-341, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36048137

ABSTRACT

Background: Walker-Warburg syndrome (WWS) (OMIM #236670) is an autosomal recessive disorder characterized by congenital muscular dystrophy, hydrocephalus, cobblestone lissencephaly, and retinal dysplasia. The main genes involved are: POMT1, POMT2, POMGNT1, FKTN, LARGE1, and FKRP. Case report: We present a fetus with WWS showing at ultrasound severe triventricular hydrocephalus. Pregnancy was legally terminated at 21 weeks +2 days of gestation. In vivo and postmortem magnetic resonance revealed corpus callosum agenesis and cerebellar hypoplasia. Cobblestone lissencephaly was observed at post-mortem. Next generation sequencing (NGS) of 193 genes, performed on fetal DNA extracted from amniocytes, detected two heterozygous mutations in the POMT2 gene. The c.1238G > C p.(Arg413Pro) mutation was paternally inherited and is known to be pathogenic. The c.553G > A p.(Gly185Arg) mutation was maternally inherited and has not been previously described. Conclusion: Compound heterozygous mutations in the POMT2 gene caused a severe cerebral fetal phenotype diagnosed prenatally at midgestation allowing therapeutic pregnancy termination.


Subject(s)
Cobblestone Lissencephaly , Hydrocephalus , Walker-Warburg Syndrome , Humans , Female , Pregnancy , Walker-Warburg Syndrome/diagnosis , Walker-Warburg Syndrome/genetics , Mutation, Missense , Cobblestone Lissencephaly/genetics , Mutation , Hydrocephalus/diagnostic imaging , Hydrocephalus/genetics , Labor Presentation , Pentosyltransferases/genetics
2.
Stem Cells Dev ; 27(21): 1494-1506, 2018 11 01.
Article in English | MEDLINE | ID: mdl-30084753

ABSTRACT

The interactions of hematopoietic stem and progenitor cells (HSPCs) with extracellular matrix (ECM) components and cells from the bone marrow (BM) microenvironment control their homeostasis. Regenerative BM conditions can induce expression of the ECM protein transforming growth factor beta-induced gene H3 (TGFBI or BIGH3) in murine HSPCs. In this study, we examined how increased or reduced TGFBI expression in human HSPCs and BM mesenchymal stromal cells (MSCs) affects HSPC maintenance, differentiation, and migration. HSPCs that overexpressed TGFBI showed accelerated megakaryopoiesis, whereas granulocyte differentiation and proliferation of granulocyte, erythrocyte, and monocyte cultures were reduced. In addition, both upregulation and downregulation of TGFBI expression impaired HSPC colony-forming capacity of HSPCs. Interestingly, the colony-forming capacity of HSPCs with reduced TGFBI levels was increased after long-term co-culture with MSCs, as measured by long-term culture-colony forming cell (LTC-CFC) formation. Moreover, TGFBI downregulation in HSPCs resulted in increased cobblestone area-forming cell (CAFC) frequency, a measure for hematopoietic stem cell (HSC) capacity. Concordantly, TGFBI upregulation in HSPCs resulted in a decrease of CAFC and LTC-CFC frequency. These results indicate that reduced TGFBI levels in HSPCs enhanced HSC maintenance, but only in the presence of MSCs. In addition, reduced levels of TGFBI in MSCs affected MSC/HSPC interaction, as observed by an increased migration of HSPCs under the stromal layer. In conclusion, tight regulation of TGFBI expression in the BM niche is essential for balanced HSPC proliferation and differentiation.


Subject(s)
Cell Proliferation/genetics , Extracellular Matrix Proteins/genetics , Hematopoietic Stem Cells/cytology , Mesenchymal Stem Cells/cytology , Stem Cells/cytology , Transforming Growth Factor beta/genetics , Bone Marrow Cells/cytology , Cell Differentiation/genetics , Cell Line , Cell Movement/genetics , Cobblestone Lissencephaly/genetics , Coculture Techniques , Flow Cytometry , Gene Expression Regulation, Developmental , Genetic Vectors , Hematopoiesis/genetics , Hematopoietic Stem Cells/metabolism , Humans , Lentivirus/genetics , Mesenchymal Stem Cells/metabolism , Stem Cells/metabolism
3.
Am J Hum Genet ; 99(5): 1181-1189, 2016 Nov 03.
Article in English | MEDLINE | ID: mdl-27773428

ABSTRACT

Cobblestone lissencephaly (COB) is a severe brain malformation in which overmigration of neurons and glial cells into the arachnoid space results in the formation of cortical dysplasia. COB occurs in a wide range of genetic disorders known as dystroglycanopathies, which are congenital muscular dystrophies associated with brain and eye anomalies and range from Walker-Warburg syndrome to Fukuyama congenital muscular dystrophy. Each of these conditions has been associated with alpha-dystroglycan defects or with mutations in genes encoding basement membrane components, which are known to interact with alpha-dystroglycan. Our screening of a cohort of 25 families with recessive forms of COB identified six families affected by biallelic mutations in TMTC3 (encoding transmembrane and tetratricopeptide repeat containing 3), a gene without obvious functional connections to alpha-dystroglycan. Most affected individuals showed brainstem and cerebellum hypoplasia, as well as ventriculomegaly. However, the minority of the affected individuals had eye defects or elevated muscle creatine phosphokinase, separating the TMTC3 COB phenotype from typical congenital muscular dystrophies. Our data suggest that loss of TMTC3 causes COB with minimal eye or muscle involvement.


Subject(s)
Alleles , Carrier Proteins/genetics , Cobblestone Lissencephaly/genetics , Membrane Proteins/genetics , Amino Acid Sequence , Basement Membrane/metabolism , Brain/abnormalities , Brain/diagnostic imaging , Carrier Proteins/metabolism , Cerebellum/abnormalities , Cerebellum/diagnostic imaging , Cobblestone Lissencephaly/diagnostic imaging , Developmental Disabilities/diagnostic imaging , Developmental Disabilities/genetics , Dystroglycans/metabolism , Eye Abnormalities/diagnostic imaging , Eye Abnormalities/genetics , Female , Humans , Infant , Male , Membrane Proteins/metabolism , Mutation , Nervous System Malformations/diagnostic imaging , Nervous System Malformations/genetics , Neuroglia/metabolism , Neurons/pathology , Pedigree , Phenotype
4.
Neuromuscul Disord ; 23(12): 1010-5, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24144914

ABSTRACT

Mutations in the fukutin gene were first identified in Japanese patients with classic Fukuyama congenital muscular dystrophy, a severe form of congenital muscular dystrophy associated with cobblestone lissencephaly and ocular defects. Patients of different ethnicities and with milder phenotypes, including limb girdle muscular dystrophy and cardiomyopathy without brain impairment, have also been reported. The hallmark of this disorder, regardless of the clinical outcome, is moderate-to-severe hypoglycosylation of alpha-dystroglycan in muscle sections. We describe the case of a boy harboring two novel mutations in fukutin gene and presenting a five-year history of asymptomatic hyperCKemia, without overt muscle, brain or ocular involvement. Genetic investigations, guided by the presence of moderate myopathic changes on muscle biopsy with loss of immunodetectable alpha-dystroglycan, led to a definitive diagnosis. Cardiac and echocardiographic examinations at follow-up disclosed low normal left ventricular function but no active cardiovascular symptoms. We suggest that fukutin mutations should be sought in asymptomatic hyperCKemia and subclinical heart dysfunction.


Subject(s)
Cobblestone Lissencephaly/genetics , Creatine Kinase/metabolism , Dystonia/genetics , Membrane Proteins/genetics , Mutation/genetics , Cardiomyopathies/complications , Cardiomyopathies/genetics , Child , Cobblestone Lissencephaly/complications , Dystonia/complications , Dystroglycans/metabolism , Humans , Male
5.
Neurogenetics ; 14(1): 77-83, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23274687

ABSTRACT

GPR56-related bilateral frontoparietal polymicrogyria (BFPP) is a rare recessively inherited disorder of neuronal migration caused by mutations of GPR56. To better delineate the clinical, molecular, and neuroradiological phenotypes associated with BFPP, we performed conventional magnetic resonance imaging and diffusion tensor imaging studies in a series of prospectively enrolled patients carrying novel GPR56 mutations. All subjects with GPR56-related BFPP showed a characteristic morphological pattern, including abnormalities of the cerebellar cortex with cerebellar cysts located at the periphery, a mildly thick corpus callosum, and a flat pons. Significant alterations of myelination and white matter tract abnormalities were documented. The present study confirms the phenotypic overlap between GPR56-related brain dysgenesis and other cobblestone-like syndromes and illustrates the contribution of 3D neuroimaging in the characterization of malformations of cortical development.


Subject(s)
Brain/diagnostic imaging , Cobblestone Lissencephaly/diagnostic imaging , Cobblestone Lissencephaly/genetics , Mutation , Receptors, G-Protein-Coupled/genetics , Base Sequence , Child, Preschool , Cohort Studies , DNA Mutational Analysis , Diffusion Tensor Imaging , Female , Genetic Association Studies , Humans , Infant , Magnetic Resonance Imaging , Male , Mutation/physiology , Phenotype , Radiography
6.
Am J Hum Genet ; 91(6): 1135-43, 2012 Dec 07.
Article in English | MEDLINE | ID: mdl-23217329

ABSTRACT

Cobblestone lissencephaly is a peculiar brain malformation with characteristic radiological anomalies. It is defined as cortical dysplasia that results when neuroglial overmigration into the arachnoid space forms an extracortical layer that produces agyria and/or a "cobblestone" brain surface and ventricular enlargement. Cobblestone lissencephaly is pathognomonic of a continuum of autosomal-recessive diseases characterized by cerebral, ocular, and muscular deficits. These include Walker-Warburg syndrome, muscle-eye-brain disease, and Fukuyama muscular dystrophy. Mutations in POMT1, POMT2, POMGNT1, LARGE, FKTN, and FKRP identified these diseases as alpha-dystroglycanopathies. Our exhaustive screening of these six genes, in a cohort of 90 fetal cases, led to the identification of a mutation in only 53% of the families, suggesting that other genes might also be involved. We therefore decided to perform a genome-wide study in two multiplex families. This allowed us to identify two additional genes: TMEM5 and ISPD. Because TMEM has a glycosyltransferase domain and ISPD has an isoprenoid synthase domain characteristic of nucleotide diP-sugar transferases, these two proteins are thought to be involved in the glycosylation of dystroglycan. Further screening of 40 families with cobblestone lissencephaly identified nonsense and frameshift mutations in another four unrelated cases for each gene, increasing the mutational rate to 64% in our cohort. All these cases displayed a severe phenotype of cobblestone lissencephaly A. TMEM5 mutations were frequently associated with gonadal dysgenesis and neural tube defects, and ISPD mutations were frequently associated with brain vascular anomalies.


Subject(s)
Cobblestone Lissencephaly/genetics , Membrane Proteins/genetics , Mutation , Nucleotidyltransferases/genetics , Alleles , Cobblestone Lissencephaly/diagnosis , Consanguinity , Exons , Family , Fetus/metabolism , Fetus/pathology , Gene Order , Genotype , Humans , Introns , Pentosyltransferases
7.
Brain ; 135(Pt 2): 469-82, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22323514

ABSTRACT

Cobblestone lissencephaly represents a peculiar brain malformation with characteristic radiological anomalies, defined as cortical dysplasia combined with dysmyelination, dysplastic cerebellum with cysts and brainstem hypoplasia. Cortical dysplasia results from neuroglial overmigration into the arachnoid space, forming an extracortical layer, responsible for agyria and/or 'cobblestone' brain surface and ventricular enlargement. The underlying mechanism is a disruption of the glia limitans, the outermost layer of the brain. Cobblestone lissencephaly is pathognomonic of a continuum of autosomal recessive diseases with cerebral, ocular and muscular deficits, Walker-Warburg syndrome, muscle-eye-brain and Fukuyama muscular dystrophy. Mutations in POMT1, POMT2, POMGNT1, LARGE, FKTN and FKRP genes attributed these diseases to α-dystroglycanopathies. However, studies have not been able to identify causal mutations in the majority of patients and to establish a clear phenotype/genotype correlation. Therefore, we decided to perform a detailed neuropathological survey and molecular screenings in 65 foetal cases selected on the basis of histopathological criteria. After sequencing the six genes of α-dystroglycanopathies, a causal mutation was observed in 66% of cases. On the basis of a ratio of severity, three subtypes clearly emerged. The most severe, which we called cobblestone lissencephaly A, was linked to mutations in POMT1 (34%), POMT2 (8%) and FKRP (1.5%). The least severe, cobblestone lissencephaly C, was linked to POMGNT1 mutations (18%). An intermediary type, cobblestone lissencephaly B, was linked to LARGE mutations (4.5%) identified for the first time in foetuses. We conclude that cobblestone lissencephaly encompasses three distinct subtypes of cortical malformations with different degrees of neuroglial ectopia into the arachnoid space and cortical plate disorganization regardless of gestational age. In the cerebellum, histopathological changes support the novel hypothesis that abnormal lamination arises from a deficiency in granule cells. Our studies demonstrate the positive impact of histoneuropathology on the identification of α-dystroglycanopathies found in 66% of cases, while with neuroimaging criteria and biological values, mutations are found in 32-50% of patients. Interestingly, our morphological classification was central in the orientation of genetic screening of POMT1, POMT2, POMGNT1, LARGE and FKRP. Despite intensive research, one-third of our cases remained unexplained; suggesting that other genes and/or pathways may be involved. This material offers a rich resource for studies on the affected neurodevelopmental processes of cobblestone lissencephaly and on the identification of other responsible gene(s)/pathway(s).


Subject(s)
Brain/pathology , Cobblestone Lissencephaly/genetics , Cobblestone Lissencephaly/pathology , Dystroglycans/genetics , Brain/metabolism , Cobblestone Lissencephaly/metabolism , Dystroglycans/metabolism , Female , Fetus , Humans , Infant, Newborn , Male , Mannosyltransferases/genetics , Mannosyltransferases/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , N-Acetylglucosaminyltransferases/genetics , N-Acetylglucosaminyltransferases/metabolism , Pentosyltransferases , Proteins/genetics , Proteins/metabolism
8.
Proc Natl Acad Sci U S A ; 108(31): 12925-30, 2011 Aug 02.
Article in English | MEDLINE | ID: mdl-21768377

ABSTRACT

GPR56, an orphan G protein-coupled receptor (GPCR) from the family of adhesion GPCRs, plays an indispensable role in cortical development and lamination. Mutations in the GPR56 gene cause a malformed cerebral cortex in both humans and mice that resembles cobblestone lissencephaly, which is characterized by overmigration of neurons beyond the pial basement membrane. However, the molecular mechanisms through which GPR56 regulates cortical development remain elusive due to the unknown status of its ligand. Here we identify collagen, type III, alpha-1 (gene symbol Col3a1) as the ligand of GPR56 through an in vitro biotinylation/proteomics approach. Further studies demonstrated that Col3a1 null mutant mice exhibit overmigration of neurons beyond the pial basement membrane and a cobblestone-like cortical malformation similar to the phenotype seen in Gpr56 null mutant mice. Functional studies suggest that the interaction of collagen III with its receptor GPR56 inhibits neural migration in vitro. As for intracellular signaling, GPR56 couples to the Gα(12/13) family of G proteins and activates RhoA pathway upon ligand binding. Thus, collagen III regulates the proper lamination of the cerebral cortex by acting as the major ligand of GPR56 in the developing brain.


Subject(s)
Basement Membrane/metabolism , Cerebral Cortex/metabolism , Collagen Type III/metabolism , Receptors, G-Protein-Coupled/metabolism , Animals , Basement Membrane/embryology , Basement Membrane/ultrastructure , Brain/embryology , Brain/metabolism , Cell Movement/drug effects , Cells, Cultured , Cerebral Cortex/embryology , Cobblestone Lissencephaly/genetics , Cobblestone Lissencephaly/metabolism , Collagen Type III/genetics , GTP-Binding Protein alpha Subunits, G12-G13/metabolism , Humans , Immunoblotting , Immunohistochemistry , Immunoprecipitation , Mice , Mice, Knockout , Microscopy, Immunoelectron , NIH 3T3 Cells , Neurons/cytology , Neurons/drug effects , Neurons/metabolism , Protein Binding , Receptors, G-Protein-Coupled/genetics , Recombinant Proteins/pharmacology , rhoA GTP-Binding Protein/genetics , rhoA GTP-Binding Protein/metabolism
9.
Brain ; 133(11): 3194-209, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20929962

ABSTRACT

GPR56 mutations cause an autosomal recessive polymicrogyria syndrome that has distinctive radiological features combining bilateral frontoparietal polymicrogyria, white matter abnormalities and cerebellar hypoplasia. Recent investigations of a GPR56 knockout mouse model suggest that bilateral bifrontoparietal polymicrogyria shares some features of the cobblestone brain malformation and demonstrate that loss of GPR56 leads to a dysregulation of the maintenance of the pial basement membrane integrity in the forebrain and the rostral cerebellum. In light of these findings and other data in the literature, this study aimed to refine the clinical features with the first description of a foetopathological case and to define the range of cobblestone-like features in GPR56 bilateral bifrontoparietal polymicrogyria in a sample of 14 patients. We identified homozygous GPR56 mutations in 14 patients from eight consanguineous families with typical bilateral bifrontoparietal polymicrogyria and in one foetal case, out of 30 patients with bifrontoparietal polymicrogyria referred for molecular screening. The foetal case, which was terminated at 35 weeks of gestation in view of suspicion of Walker Warburg syndrome, showed a cobblestone-like lissencephaly with a succession of normal, polymicrogyric and 'cobblestone-like' cortex with ectopic neuronal overmigration, agenesis of the cerebellar vermis and hypoplastic cerebellar hemispheres with additional neuronal overmigration in the pons and the cerebellar cortex. The 14 patients with GPR56 mutations (median 8.25 years, range 1.5-33 years) were phenotypically homogeneous with a distinctive clinical course characterized by pseudomyopathic behaviour at onset that subsequently evolved into severe mental and motor retardation. Generalized seizures (12/14) occurred later with onset ranging from 2.5 to 10 years with consistent electroencephalogram findings of predominantly anterior bursts of low amplitude α-like activity. Neuroimaging demonstrated a common phenotype with bilateral frontoparietally predominant polymicrogyria (13/13), cerebellar dysplasia with cysts mainly affecting the superior vermis (11/13) and patchy to diffuse myelination abnormalities (13/13). Additionally, the white matter abnormalities showed a peculiar evolution from severe hypomyelination at 4 months to patchy lesions later in childhood. Taken as a whole, these observations collectively demonstrate that GPR56 bilateral bifrontoparietal polymicrogyria combines all the features of a cobblestone-like lissencephaly and also suggest that GRP56-related defects produce a phenotypic continuum ranging from bilateral bifrontoparietal polymicrogyria to cobblestone-like lissencephaly.


Subject(s)
Cobblestone Lissencephaly/genetics , Frontal Lobe/pathology , Genes, Overlapping , Malformations of Cortical Development/genetics , Malformations of Cortical Development/pathology , Parietal Lobe/pathology , Receptors, G-Protein-Coupled/genetics , Abortion, Induced , Adolescent , Adult , Child , Child, Preschool , Cobblestone Lissencephaly/diagnosis , Cobblestone Lissencephaly/pathology , Female , Fetal Diseases/genetics , Fetal Diseases/pathology , Frameshift Mutation , Humans , Infant , Male , Malformations of Cortical Development/diagnosis , Mutation, Missense , Pedigree , Syndrome , Young Adult
10.
Stem Cells ; 28(3): 399-406, 2010 Mar 31.
Article in English | MEDLINE | ID: mdl-20049903

ABSTRACT

Alzheimer's disease amyloid precursor protein (APP) has been implicated in many neurobiologic processes, but supporting evidence remains indirect. Studies are confounded by the existence of two partially redundant APP homologues, APLP1 and APLP2. APP/APLP1/APLP2 triple knockout (APP tKO) mice display cobblestone lissencephaly and are perinatally lethal. To circumvent this problem, we generated APP triple knockout embryonic stem (ES) cells and differentiated these to APP triple knockout neurons in vitro and in vivo. In comparison with wild-type (WT) ES cell-derived neurons, APP tKO neurons formed equally pure neuronal cultures, had unaltered in vitro migratory capacities, had a similar acquisition of polarity, and were capable of extending long neurites and forming active excitatory synapses. These data were confirmed in vivo in chimeric mice with APP tKO neurons expressing the enhanced green fluorescent protein (eGFP) present in a WT background brain. The results suggest that the loss of the APP family of proteins has no major effect on these critical neuronal processes and that the apparent multitude of functions in which APP has been implicated might be characterized by molecular redundancy. Our stem cell culture provides an excellent tool to circumvent the problem of lack of viability of APP/APLP triple knockout mice and will help to explore the function of this intriguing protein further in vitro and in vivo.


Subject(s)
Amyloid beta-Protein Precursor/genetics , Brain/embryology , Brain/metabolism , Cell Differentiation/physiology , Embryonic Stem Cells/metabolism , Neurogenesis/genetics , Neurons/metabolism , Animals , Brain/cytology , Cell Culture Techniques , Cell Movement/genetics , Cell Polarity/genetics , Cells, Cultured , Chimera , Cobblestone Lissencephaly/genetics , Cobblestone Lissencephaly/metabolism , Cobblestone Lissencephaly/physiopathology , Embryonic Stem Cells/cytology , Female , Green Fluorescent Proteins/genetics , Male , Mice , Mice, Knockout , Nervous System Malformations/genetics , Nervous System Malformations/metabolism , Nervous System Malformations/physiopathology , Neural Pathways/cytology , Neural Pathways/embryology , Neural Pathways/metabolism , Neurites/metabolism , Neurites/ultrastructure , Neurons/cytology
11.
Neurology ; 72(5): 410-8, 2009 Feb 03.
Article in English | MEDLINE | ID: mdl-19020296

ABSTRACT

OBJECTIVES: To determine the involvement of the midbrain and hindbrain (MHB) in the groups of classic (cLIS), variant (vLIS), and cobblestone complex (CBSC) lissencephalies and to determine whether a correlation exists between the cerebral malformation and the MHB abnormalities. METHODS: MRI scans of 111 patients (aged 1 day to 32 years; mean 5 years 4 months) were retrospectively reviewed. After reviewing the brain involvement on MRI, the cases were reclassified according to known mutation (LIS1, DCX, ARX, VLDLR, RELN, MEB, WWS) or mutation phenotype (LIS1-P, DCX-P, RELN-P, ARX-P, VLDLR-P) determined on the basis of characteristic MRI features. Abnormalities in the MHB were then recorded. For each structure, a score was assigned, ranging from 0 (normal) to 3 (severely abnormal). The differences between defined groups and the correlation between the extent of brain agyria/pachygyria and MHB involvement were assessed using Kruskal-Wallis and chi(2) McNemar tests. RESULTS: There was a significant difference in MHB appearance among the three major groups of cLIS, vLIS, and CBSC. The overall score showed a severity gradient of MHB involvement: cLIS (0 or 1), vLIS (7), and CBSC (11 or 12). The extent of cerebral lissencephaly was significantly correlated with the severity of MHB abnormalities (p = 0.0029). CONCLUSION: Our study focused on posterior fossa anomalies, which are an integral part of cobblestone complex lissencephalies but previously have not been well categorized for other lissencephalies. According to our results and the review of the literature, we propose a new classification of human lissencephalies.


Subject(s)
Cerebral Cortex/abnormalities , Lissencephaly/pathology , Mesencephalon/abnormalities , Rhombencephalon/abnormalities , Adolescent , Adult , Child , Child, Preschool , Cobblestone Lissencephaly/classification , Cobblestone Lissencephaly/genetics , Cobblestone Lissencephaly/pathology , DNA Mutational Analysis , Female , Genetic Testing , Genotype , Humans , Infant , Infant, Newborn , Lissencephaly/classification , Lissencephaly/genetics , Magnetic Resonance Imaging , Male , Phenotype , Reelin Protein , Retrospective Studies , Young Adult
13.
Hum Mutat ; 29(11): E231-41, 2008 Nov.
Article in English | MEDLINE | ID: mdl-18752264

ABSTRACT

Walker-Warburg syndrome (WWS) is a genetically heterogeneous autosomal recessive disease characterized by congenital muscular dystrophy, cobblestone lissencephaly, and ocular malformations. Mutations in six genes involved in the glycosylation of á-dystroglycan (POMT1, POMT2, POMGNT1, FCMD, FKRP and LARGE) have been identified in WWS patients, but account for only a portion of WWS cases. To better understand the genetics of WWS and establish the frequency and distribution of mutations across WWS genes, we genotyped all known loci in a cohort of 43 WWS patients of varying geographical and ethnic origin. Surprisingly, we reached a molecular diagnosis for 40% of our patients and found mutations in POMT1, POMT2, FCMD and FKRP, many of which were novel alleles, but no mutations in POMGNT1 or LARGE. Notably, the FCMD gene was a more common cause of WWS than previously expected in the European/American subset of our cohort, including all Ashkenazi Jewish cases, who carried the same founder mutation.


Subject(s)
Abnormalities, Multiple/genetics , Membrane Proteins/genetics , Mutation , Abnormalities, Multiple/ethnology , Child , Cobblestone Lissencephaly/ethnology , Cobblestone Lissencephaly/genetics , DNA Mutational Analysis , Eye Abnormalities/ethnology , Eye Abnormalities/genetics , Female , Genome, Human , Genotype , Humans , Male , Middle East , Muscular Dystrophies/ethnology , Muscular Dystrophies/genetics , Pedigree , Phenotype , Syndrome
14.
Neurogenetics ; 8(4): 279-88, 2007 Nov.
Article in English | MEDLINE | ID: mdl-17906881

ABSTRACT

Muscle-eye-brain disease (MEB, OMIM 253280) is an autosomal recessive disorder characterized by a distinct triad of congenital muscular dystrophy, structural eye abnormalities, and cobblestone lissencephaly. Clinically, MEB patients present with early onset muscular hypotonia, severely compromised motor development, and mental retardation. Magnetic resonance imaging reveals a lissencephaly type II with hypoplasia of the brainstem and cerebellum. MEB is associated with mutations in the gene for protein O-mannose beta-1,2-N-acetylglucosaminyltransferase (POMGnT1, OMIM 606822). In this paper, we report the clinical findings of nine MEB patients from eight families. Eight of the nine patients presented typical features of MEB. However, a broad phenotypic variability was observed, ranging from two patients with severe autistic features to another patient with an unusually mild phenotype, initially diagnosed as congenital muscular dystrophy. Furthermore, severe hydrocephalus was reported in two families during a previous pregnancy, emphasizing the phenotypic overlap with Walker-Warburg syndrome. In addition to three previously reported mutations, we identified six novel POMGnT1 mutations (one missense, five truncating) in the present patient cohort. Our data suggest mutational hotspots within the minimal catalytic domain at arginine residue 442 (exon 16) and in intron 17. It is interesting to note that all mutations analyzed so far result in a complete loss of enzyme activity. Therefore, we conclude that the type and position of the POMGnT1 mutations are not of predictive value for the clinical severity. This supports the notion that additional environmental and/or genetic factors may contribute to the observed broad spectrum of POMGnT1-associated phenotypes.


Subject(s)
Cobblestone Lissencephaly/enzymology , Cobblestone Lissencephaly/genetics , Eye Abnormalities/enzymology , Eye Abnormalities/genetics , Muscular Dystrophies/enzymology , Muscular Dystrophies/genetics , Mutation , N-Acetylglucosaminyltransferases/genetics , Adolescent , Animals , Base Sequence , Child , Child, Preschool , Cobblestone Lissencephaly/pathology , DNA/genetics , Dystroglycans/metabolism , Female , Genes, Recessive , Genotype , Heterozygote , Homozygote , Humans , Infant , Male , Mice , Mice, Knockout , Muscular Dystrophies/congenital , Muscular Dystrophies/pathology , Mutation, Missense , N-Acetylglucosaminyltransferases/chemistry , N-Acetylglucosaminyltransferases/deficiency , Phenotype , Syndrome
SELECTION OF CITATIONS
SEARCH DETAIL
...