Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 609
Filter
1.
Cells ; 10(10)2021 10 19.
Article in English | MEDLINE | ID: mdl-34685782

ABSTRACT

Causal therapies for the auditory-pathway and inner-ear diseases are still not yet available for clinical application. Regenerative medicine approaches are discussed and examined as possible therapy options. Neural stem cells could play a role in the regeneration of the auditory pathway. In recent years, neural stem and progenitor cells have been identified in the cochlear nucleus, the second nucleus of the auditory pathway. The current investigation aimed to analyze cell maturation concerning cellular calcium activity. Cochlear nuclei from PND9 CD rats were microscopically dissected and propagated as neurospheres in free-floating cultures in stem-cell medium (Neurobasal, B27, GlutaMAX, EGF, bFGF). After 30 days, the dissociation and plating of these cells took place under withdrawal of the growth factors and the addition of retinoic acid, which induces neural cell differentiation. Calcium imaging analysis with BAPTA-1/Oregon Green was carried out at different times during the differentiation phase. In addition, the influence of different voltage-dependent calcium channels was analyzed through the targeted application of inhibitors of the L-, N-, R- and T-type calcium channels. For this purpose, comparative examinations were performed on CN NSCs, and primary CN neurons. As the cells differentiated, a significant increase in spontaneous neuronal calcium activity was demonstrated. In the differentiation stage, specific frequencies of the spontaneous calcium oscillations were measured in different regions of the individual cells. Initially, the highest frequency of spontaneous calcium oscillations was ascertainable in the maturing somata. Over time, these were overtaken by calcium oscillations in the axons and dendrites. Additionally, in the area of the growth cones, an increasing activity was determined. By inhibiting voltage-dependent calcium channels, their expression and function in the differentiation process were confirmed. A comparable pattern of maturation of these channels was found in CN NSCs and primary CN neurons. The present results show that neural stem cells of the rat cochlear nucleus differentiated not only morphologically but also functionally. Spontaneous calcium activities are of great relevance in terms of neurogenesis and integration into existing neuronal structures. These functional aspects of neurogenesis within the auditory pathway could serve as future targets for the exogenous control of neuronal regeneration.


Subject(s)
Calcium Signaling , Cell Differentiation , Cochlear Nucleus/cytology , Cochlear Nucleus/metabolism , Image Processing, Computer-Assisted , Animals , Calcium Channel Blockers/pharmacology , Calcium Channels/metabolism , Calcium Signaling/drug effects , Cell Differentiation/drug effects , Growth Cones/drug effects , Growth Cones/metabolism , Neural Stem Cells/cytology , Neural Stem Cells/drug effects , Neural Stem Cells/metabolism , Rats, Sprague-Dawley
2.
J Neurosci ; 41(43): 8904-8916, 2021 10 27.
Article in English | MEDLINE | ID: mdl-34518306

ABSTRACT

GABAergic inhibition in neurons plays a critical role in determining the output of neural circuits. Neurons in avian nucleus magnocellularis (NM) use several tonotopic-region-dependent specializations to relay the timing information of sound in the auditory nerve to higher auditory nuclei. Previously, we showed that feedforward GABAergic inhibition in NM has a different dependence on the level of auditory nerve activity, with the low-frequency region having a low-threshold and linear relationship, while the high-frequency region has a high-threshold and step-like relationship. However, it remains unclear how the GABAergic synapses are tonotopically regulated and interact with other specializations of NM neurons. In this study, we examined GABAergic transmission in the NM of chickens of both sexes and explored its contributions to the temporal coding of sound at each tonotopic region. We found that the number and size of unitary GABAergic currents and their reversal potential were finely tuned at each tonotopic region in the NM. At the lower-frequency region, unitary GABAergic currents were larger in number but smaller in size. In addition, their reversal potential was close to the resting potential of neurons, which enabled reliable inhibition despite the smaller potassium conductance. At the higher-frequency region, on the other hand, unitary GABAergic currents were fewer, larger, and highly depolarizing, which enabled powerful inhibition via activating the large potassium conductance. Thus, we propose that GABAergic synapses are coordinated with the characteristics of excitatory synapses and postsynaptic neurons, ensuring the temporal coding for wide frequency and intensity ranges.SIGNIFICANCE STATEMENT We found in avian cochlear nucleus that the number and size of unitary GABAergic inputs differed among tonotopic regions and correlated to respective excitatory inputs; it was larger in number but smaller in size for neurons tuned to lower-frequency sound. Furthermore, GABAergic reversal potential also differed among the regions in accordance with the size of Kv1 current; it was less depolarized in the lower-frequency neurons with smaller Kv1 current. These differentiations of GABAergic transmission maximized the effects of inhibition at each tonotopic region, ensuring precise and reliable temporal coding across frequencies and intensities. Our results emphasize the importance of optimizing characteristics of GABAergic transmission within individual neurons for proper neural circuit function.


Subject(s)
Cochlear Nerve/physiology , Cochlear Nucleus/physiology , Excitatory Postsynaptic Potentials/physiology , GABAergic Neurons/physiology , Inhibitory Postsynaptic Potentials/physiology , Animals , Chickens , Cochlear Nucleus/cytology , Female , Male , Organ Culture Techniques , Synapses/physiology , Time Factors
3.
Neuropharmacology ; 196: 108697, 2021 09 15.
Article in English | MEDLINE | ID: mdl-34242682

ABSTRACT

Excitatory synaptic transmission is largely mediated by glutamate receptors in central synapses, such as the calyx of Held synapse in the auditory brainstem. This synapse is best known for undergoing extensive morphological and functional changes throughout early development and thereby has served as a prominent model system to study presynaptic mechanisms of neurotransmitter release. However, the pivotal roles of N-methyl-d-aspartate receptors (NMDARs) in gating acute forms of activity-dependent, persistent plasticity in vitro and chronic developmental remodeling in vivo are hardly noted. This article will provide a retrospective review of key experimental evidence to conceptualize the impact of a transient abundance of NMDARs during the early postnatal stage on the functionality of fast-spiking central synapses while raising a series of outstanding questions that are of general significance for understanding the developing brain in health and diseases. This article is part of the special Issue on "Glutamate Receptors - NMDA receptors".


Subject(s)
Cochlear Nucleus/cytology , Neurons/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Synapses/metabolism , Synaptic Transmission/physiology , Trapezoid Body/cytology , Animals , Humans , Neuronal Plasticity , Neurons/physiology , Optical Imaging , Patch-Clamp Techniques , Receptors, AMPA/metabolism , Receptors, Glutamate/metabolism , Receptors, Metabotropic Glutamate/metabolism , Synapses/physiology
4.
Sci Rep ; 11(1): 6887, 2021 03 25.
Article in English | MEDLINE | ID: mdl-33767295

ABSTRACT

Multisensory integration of auditory and tactile information occurs already at the level of the cochlear nucleus. Rodents use their whiskers for tactile perception to guide them in their exploration of the world. As nocturnal animals with relatively poor vision, audiotactile interactions are of great importance for this species. Here, the influence of whisker deflections on sound-evoked spiking in the cochlear nucleus was investigated in vivo in anesthetized mice. Multichannel, silicon-probe electrophysiological recordings were obtained from both the dorsal and ventral cochlear nucleus. Whisker deflections evoked an increased spiking activity in fusiform cells of the dorsal cochlear nucleus and t-stellate cells in ventral cochlear nucleus, whereas bushy cells in the ventral cochlear nucleus showed a more variable response. The response to broadband noise stimulation increased in fusiform cells and primary-like bushy cells when the sound stimulation was preceded (~ 20 ms) by whisker stimulation. Multi-sensory integration of auditory and whisker input can thus occur already in this early brainstem nucleus, emphasizing the importance of early integration of auditory and somatosensory information.


Subject(s)
Acoustic Stimulation , Cochlear Nucleus/physiology , Evoked Potentials, Somatosensory , Neural Inhibition , Neurons/physiology , Sensation/physiology , Vibrissae/physiology , Animals , Cochlear Nucleus/cytology , Electric Stimulation , Male , Mice , Mice, Inbred C57BL , Neurons/cytology
5.
Neurosci Lett ; 751: 135803, 2021 04 23.
Article in English | MEDLINE | ID: mdl-33705930

ABSTRACT

Sensorineural hearing loss (SNHL) is a common causes of disability. Neural stem cells (NSCs) from the cochlear nuclei have been considered to be a potential direction for the treatment of SNHL. Neuregulin 1 (NRG1)/ErbB2 signaling displays an essential role in nervous system development. In this study, we aimed to explore the roles of NRG1/ErbB2 in differentiation and apoptosis of cochlear nuclei NSCs. The data showed that the expression of NGR1 and ErbB2 in cochlear nuclei NSCs isolated from rats were increased with the age of rats. NRG1 treatment reduced the nestin-positive cells number, increased the MAP2-positive and GFAP-positive cells number, decreased the expression of cleaved-caspase-3, and increased the activation of PI3K/AKT. ErbB2 knockdown by lentiviral-mediated ErbB2 shRNA infection reversed the effect of NRG1 on cochlear nuclei NSCs. LY294002 administration further enhanced the effect of ErbB2 silencing on the expression of nestin, MAP2, GFAP and cleaved-caspase-3. Taken together, NRG1/ErbB2 regulates differentiation and apoptosis of cochlear nucleus NSCs through PI3K/Akt pathway.


Subject(s)
Apoptosis , Cochlear Nucleus/metabolism , Neural Stem Cells/metabolism , Neuregulin-1/metabolism , Neurogenesis , Receptor, ErbB-2/metabolism , Animals , Cells, Cultured , Cochlear Nucleus/cytology , Cochlear Nucleus/growth & development , Neural Stem Cells/cytology , Neuregulin-1/genetics , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Rats , Rats, Sprague-Dawley , Receptor, ErbB-2/genetics , Signal Transduction
6.
J Neurophysiol ; 125(3): 915-937, 2021 03 01.
Article in English | MEDLINE | ID: mdl-33471627

ABSTRACT

Spherical bushy cells (SBCs) in the anteroventral cochlear nucleus receive a single or very few powerful axosomatic inputs from the auditory nerve. However, SBCs are also contacted by small regular bouton synapses of the auditory nerve, located in their dendritic tree. The function of these small inputs is unknown. It was speculated that the interaction of axosomatic inputs with small dendritic inputs improved temporal precision, but direct evidence for this is missing. In a compartment model of spherical bushy cells with a stylized or realistic three-dimensional (3-D) representation of the bushy dendrite, we explored this hypothesis. Phase-locked dendritic inputs caused both tonic depolarization and a modulation of the model SBC membrane potential at the frequency of the stimulus. For plausible model parameters, dendritic inputs were subthreshold. Instead, the tonic depolarization increased the excitability of the SBC model and the modulation of the membrane potential caused a phase-dependent increase in the efficacy of the main axosomatic input. This improved response rate and entrainment for low-input frequencies and temporal precision of output at and above the characteristic frequency. A careful exploration of morphological and biophysical parameters of the bushy dendrite suggested a functional explanation for the peculiar shape of the bushy dendrite. Our model for the first time directly implied a role for the small excitatory dendritic inputs in auditory processing: they modulate the efficacy of the main input and are thus a plausible mechanism for the improvement of temporal precision and fidelity in these central auditory neurons.NEW & NOTEWORTHY We modeled dendritic inputs from the auditory nerve that spherical bushy cells of the cochlear nucleus receive. Dendritic inputs caused both tonic depolarization and modulation of the membrane potential at the input frequency. This improved the rate, entrainment, and temporal precision of output action potentials. Our simulations suggest a role for small dendritic inputs in auditory processing: they modulate the efficacy of the main input supporting temporal precision and fidelity in these central auditory neurons.


Subject(s)
Action Potentials , Cochlear Nucleus/physiology , Dendrites/physiology , Synapses/physiology , Animals , Auditory Perception , Cochlear Nucleus/cytology , Gerbillinae , Sensory Receptor Cells/cytology , Sensory Receptor Cells/physiology
7.
Sci Rep ; 10(1): 20594, 2020 11 26.
Article in English | MEDLINE | ID: mdl-33244141

ABSTRACT

Psychophysical studies characterize hyperacusis as increased loudness growth over a wide-frequency range, decreased tolerance to loud sounds and reduced behavioral reaction time latencies to high-intensity sounds. While commonly associated with hearing loss, hyperacusis can also occur without hearing loss, implicating the central nervous system in the generation of hyperacusis. Previous studies suggest that ventral cochlear nucleus bushy cells may be putative neural contributors to hyperacusis. Compared to other ventral cochlear nucleus output neurons, bushy cells show high firing rates as well as lower and less variable first-spike latencies at suprathreshold intensities. Following cochlear damage, bushy cells show increased spontaneous firing rates across a wide-frequency range, suggesting that they might also show increased sound-evoked responses and reduced latencies to higher-intensity sounds. However, no studies have examined bushy cells in relationship to hyperacusis. Herein, we test the hypothesis that bushy cells may contribute to the neural basis of hyperacusis by employing noise-overexposure and single-unit electrophysiology. We find that bushy cells exhibit hyperacusis-like neural firing patterns, which are comprised of enhanced sound-driven firing rates, reduced first-spike latencies and wideband increases in excitability.


Subject(s)
Cochlear Nucleus/pathology , Hyperacusis/pathology , Animals , Cochlear Nerve/pathology , Cochlear Nucleus/cytology , Evoked Potentials, Auditory , Female , Guinea Pigs , Hyperacusis/etiology , Loudness Perception , Noise/adverse effects , Tinnitus/etiology , Tinnitus/pathology
8.
Elife ; 92020 11 03.
Article in English | MEDLINE | ID: mdl-33141020

ABSTRACT

Auditory processing depends upon inhibitory signaling by interneurons, even at its earliest stages in the ventral cochlear nucleus (VCN). Remarkably, to date only a single subtype of inhibitory neuron has been documented in the VCN, a projection neuron termed the D-stellate cell. With the use of a transgenic mouse line, optical clearing, and imaging techniques, combined with electrophysiological tools, we revealed a population of glycinergic cells in the VCN distinct from the D-stellate cell. These multipolar glycinergic cells were smaller in soma size and dendritic area, but over ten-fold more numerous than D-stellate cells. They were activated by auditory nerve and T-stellate cells, and made local inhibitory synaptic contacts on principal cells of the VCN. Given their abundance, combined with their narrow dendritic fields and axonal projections, it is likely that these neurons, here termed L-stellate cells, play a significant role in frequency-specific processing of acoustic signals.


Subject(s)
Cochlear Nucleus/cytology , Interneurons/cytology , Animals , Auditory Perception/physiology , Cochlear Nucleus/physiology , Female , Interneurons/physiology , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic
9.
J Vis Exp ; (162)2020 08 18.
Article in English | MEDLINE | ID: mdl-32894269

ABSTRACT

In vitro slice electrophysiology techniques measure single-cell activity with precise electrical and temporal resolution. Brain slices must be relatively thin to properly visualize and access neurons for patch-clamping or imaging, and in vitro examination of brain circuitry is limited to only what is physically present in the acute slice. To maintain the benefits of in vitro slice experimentation while preserving a larger portion of presynaptic nuclei, we developed a novel slice preparation. This "wedge slice" was designed for patch-clamp electrophysiology recordings to characterize the diverse monaural, sound-driven inputs to medial olivocochlear (MOC) neurons in the brainstem. These neurons receive their primary afferent excitatory and inhibitory inputs from neurons activated by stimuli in the contralateral ear and corresponding cochlear nucleus (CN). An asymmetrical brain slice was designed which is thickest in the rostro-caudal domain at the lateral edge of one hemisphere and then thins towards the lateral edge of the opposite hemisphere. This slice contains, on the thick side, the auditory nerve root conveying information about auditory stimuli to the brain, the intrinsic CN circuitry, and both the disynaptic excitatory and trisynaptic inhibitory afferent pathways that converge on contralateral MOC neurons. Recording is performed from MOC neurons on the thin side of the slice, where they are visualized using DIC optics for typical patch-clamp experiments. Direct stimulation of the auditory nerve is performed as it enters the auditory brainstem, allowing for intrinsic CN circuit activity and synaptic plasticity to occur at synapses upstream of MOC neurons. With this technique, one can mimic in vivo circuit activation as closely as possible within the slice. This wedge slice preparation is applicable to other brain circuits where circuit analyses would benefit from preservation of upstream connectivity and long-range inputs, in combination with the technical advantages of in vitro slice physiology.


Subject(s)
Brain Stem/cytology , Brain Stem/physiology , Connectome/methods , Neurons/physiology , Animals , Auditory Pathways/physiology , Cochlear Nerve/physiology , Cochlear Nucleus/cytology , Cochlear Nucleus/physiology , Olivary Nucleus/cytology , Olivary Nucleus/physiology , Patch-Clamp Techniques , Synapses/physiology
10.
J Neurosci ; 40(35): 6709-6721, 2020 08 26.
Article in English | MEDLINE | ID: mdl-32719016

ABSTRACT

The axon initial segment (AIS) is involved in action potential initiation. Structural and biophysical characteristics of the AIS differ among cell types and/or brain regions, but the underlying mechanisms remain elusive. Using immunofluorescence and electrophysiological methods, combined with super-resolution imaging, we show in the developing nucleus magnocellularis of the chicken in both sexes that the AIS is refined in a tonotopic region-dependent manner. This process of AIS refinement differs among cells tuned to different frequencies. At hearing onset, the AIS was ∼50 µm long with few voltage-gated sodium channels regardless of tonotopic region. However, after hatching, the AIS matured and displayed an ∼20-µm-long structure with a significant enrichment of sodium channels responsible for an increase in sodium current and a decrease in spike threshold. Moreover, the shortening was more pronounced, while the accumulation of channels was not, in neurons tuned to higher frequency, creating tonotopic differences in the AIS. We conclude that AIS shortening is mediated by disassembly of the cytoskeleton at the distal end of the AIS, despite intact periodicity of the submembranous cytoskeleton across the AIS. Importantly, deprivation of afferent input diminished the shortening in neurons tuned to a higher frequency to a larger extent in posthatch animals, with little effect on the accumulation of sodium channels. Thus, cytoskeletal reorganization and sodium channel enrichment at the AIS are differentially regulated depending on tonotopic region, but work synergistically to optimize neuronal output in the auditory nucleus.SIGNIFICANCE STATEMENT The axon initial segment (AIS) plays fundamental roles in determining neuronal output. The AIS varies structurally and molecularly across tonotopic regions in avian cochlear nucleus. However, the mechanism underlying these variations remains unclear. The AIS is immature around hearing onset, but becomes shorter and accumulates more sodium channels during maturation, with a pronounced shortening and a moderate channel accumulation at higher tonotopic regions. Afferent input adjusts sodium conductance at the AIS by augmenting AIS shortening (via disassembly of cytoskeletons at its distal end) specifically at higher-frequency regions. However, this had little effect on channel accumulation. Thus, cytoskeletal structure and sodium channel accumulation at the AIS are regulated differentially but work synergistically to optimize the neuronal output.


Subject(s)
Axons/physiology , Cochlear Nucleus/physiology , Neurogenesis , Action Potentials , Animals , Axons/metabolism , Chick Embryo , Chickens , Cochlear Nucleus/cytology , Cochlear Nucleus/growth & development , Cytoskeleton/metabolism , Female , Male , Sensory Receptor Cells/cytology , Sensory Receptor Cells/metabolism , Sensory Receptor Cells/physiology , Sodium Channels/metabolism
11.
J Neurosci ; 40(12): 2471-2484, 2020 03 18.
Article in English | MEDLINE | ID: mdl-32051325

ABSTRACT

The AMPA receptor (AMPAR) subunit GluA3 has been suggested to shape synaptic transmission and activity-dependent plasticity in endbulb-bushy cell synapses (endbulb synapses) in the anteroventral cochlear nucleus, yet the specific roles of GluA3 in the synaptic transmission at endbulb synapses remains unexplored. Here, we compared WT and GluA3 KO mice of both sexes and identified several important roles of GluA3 in the maturation of synaptic transmission and short-term plasticity in endbulb synapses. We show that GluA3 largely determines the ultrafast kinetics of endbulb synapses glutamatergic currents by promoting the insertion of postsynaptic AMPARs that contain fast desensitizing flop subunits. In addition, GluA3 is also required for the normal function, structure, and development of the presynaptic terminal which leads to altered short term-depression in GluA3 KO mice. The presence of GluA3 reduces and slows synaptic depression, which is achieved by lowering the probability of vesicle release, promoting efficient vesicle replenishment, and increasing the readily releasable pool of synaptic vesicles. Surprisingly, GluA3 also makes the speed of synaptic depression rate-invariant. We propose that the slower and rate-invariant speed of depression allows an initial response window that still contains presynaptic firing rate information before the synapse is depressed. Because this response window is rate-invariant, GluA3 extends the range of presynaptic firing rates over which rate information in bushy cells can be preserved. This novel role of GluA3 may be important to allowing the postsynaptic targets of spherical bushy cells in mice use rate information for encoding sound intensity and sound localization.SIGNIFICANCE STATEMENT We report novel roles of the glutamate receptor subunit GluA3 in synaptic transmission in synapses between auditory nerve fibers and spherical bushy cells (BCs) in the cochlear nucleus. We show that GluA3 contributes to the generation of ultrafast glutamatergic currents at these synapses, which is important to preserve temporal information about the sound. Furthermore, we demonstrate that GluA3 contributes to the normal function and development of the presynaptic terminal, whose properties shape short-term plasticity. GluA3 slows and attenuates synaptic depression, and makes it less dependent on the presynaptic firing rates. This may help BCs to transfer information about the high rates of activity that occur at the synapse in vivo to postsynaptic targets that use rate information for sound localization.


Subject(s)
Cochlear Nucleus/physiology , Neuronal Plasticity/physiology , Neurons/physiology , Receptors, AMPA/physiology , Synaptic Transmission/physiology , Animals , Auditory Perception/physiology , Benzothiadiazines/pharmacology , Cochlear Nucleus/cytology , Electrophysiological Phenomena/physiology , Excitatory Postsynaptic Potentials/drug effects , Excitatory Postsynaptic Potentials/physiology , Female , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Patch-Clamp Techniques , Presynaptic Terminals/physiology , Receptors, AMPA/drug effects , Receptors, AMPA/genetics , Sound Localization/physiology , Synaptic Vesicles/physiology , Synaptic Vesicles/ultrastructure
12.
PLoS One ; 15(1): e0226954, 2020.
Article in English | MEDLINE | ID: mdl-31940388

ABSTRACT

Descending cholinergic fibers innervate the cochlear nucleus. Spherical bushy cells, principal neurons of the anterior part of the ventral cochlear nucleus, are depolarized by cholinergic agonists on two different time scales. A fast and transient response is mediated by alpha-7 homomeric nicotinic receptors while a slow and long-lasting response is mediated by muscarinic receptors. Spherical bushy cells were shown to express M3 receptors, but the receptor subtypes involved in the slow muscarinic response were not physiologically identified yet. Whole-cell patch clamp recordings combined with pharmacology and immunohistochemistry were performed to identify the muscarinic receptor subtypes and the effector currents involved. Spherical bushy cells also expressed both M1 and M2 receptors. The M1 signal was stronger and mainly somatic while the M2 signal was localized in the neuropil and on the soma of bushy cells. Physiologically, the M-current was observed for the gerbil spherical bushy cells and was inhibited by oxotremorine-M application. Surprisingly, long application of carbachol showed only a transient depolarization. Even though no muscarinic depolarization could be detected, the input resistance increased suggesting a decrease in the cell conductance that matched with the closure of M-channels. The hyperpolarization-activated currents were also affected by muscarinic activation and counteracted the effect of the inactivation of M-current on the membrane potential. We hypothesize that this double muscarinic action might allow adaptation of effects during long durations of cholinergic activation.


Subject(s)
Cochlear Nucleus/cytology , Cochlear Nucleus/physiology , Receptors, Muscarinic/metabolism , Animals , Carbachol/pharmacology , Cholinergic Fibers , Gerbillinae , Membrane Potentials , Muscarinic Agonists/pharmacology , Oxotremorine/analogs & derivatives , Patch-Clamp Techniques
13.
J Neurosci ; 40(3): 509-525, 2020 01 15.
Article in English | MEDLINE | ID: mdl-31719165

ABSTRACT

Medial olivocochlear (MOC) efferent neurons in the brainstem comprise the final stage of descending control of the mammalian peripheral auditory system through axon projections to the cochlea. MOC activity adjusts cochlear gain and frequency tuning, and protects the ear from acoustic trauma. The neuronal pathways that activate and modulate the MOC somata in the brainstem to drive these cochlear effects are poorly understood. Evidence suggests that MOC neurons are primarily excited by sound stimuli in a three-neuron activation loop from the auditory nerve via an intermediate neuron in the cochlear nucleus. Anatomical studies suggest that MOC neurons receive diverse synaptic inputs, but the functional effect of additional synaptic influences on MOC neuron responses is unknown. Here we use patch-clamp electrophysiological recordings from identified MOC neurons in brainstem slices from mice of either sex to demonstrate that in addition to excitatory glutamatergic synapses, MOC neurons receive inhibitory GABAergic and glycinergic synaptic inputs. These synapses are activated by electrical stimulation of axons near the medial nucleus of the trapezoid body (MNTB). Focal glutamate uncaging confirms MNTB neurons as a source of inhibitory synapses onto MOC neurons. MNTB neurons inhibit MOC action potentials, but this effect depresses with repeat activation. This work identifies a new pathway of connectivity between brainstem auditory neurons and indicates that MOC neurons are both excited and inhibited by sound stimuli received at the same ear. The pathway depression suggests that the effect of MNTB inhibition of MOC neurons diminishes over the course of a sustained sound.SIGNIFICANCE STATEMENT Medial olivocochlear (MOC) neurons are the final stage of descending control of the mammalian auditory system and exert influence on cochlear mechanics to modulate perception of acoustic stimuli. The brainstem pathways that drive MOC function are poorly understood. Here we show for the first time that MOC neurons are inhibited by neurons of the MNTB, which may suppress the effects of MOC activity on the cochlea.


Subject(s)
Cochlear Nucleus/physiology , Neurons, Efferent/physiology , Olivary Nucleus/physiology , Trapezoid Body/physiology , Acoustic Stimulation , Animals , Axons/physiology , Brain Stem/cytology , Brain Stem/physiology , Cochlear Nerve/physiology , Cochlear Nucleus/cytology , Electric Stimulation , Excitatory Postsynaptic Potentials/genetics , Excitatory Postsynaptic Potentials/physiology , Female , Glutamates/physiology , Male , Mice , Mice, Inbred C57BL , Olivary Nucleus/cytology , Patch-Clamp Techniques , Synapses/physiology , Trapezoid Body/cytology
14.
PLoS Comput Biol ; 15(12): e1007563, 2019 12.
Article in English | MEDLINE | ID: mdl-31881018

ABSTRACT

Computations of acoustic information along the central auditory pathways start in the cochlear nucleus. Bushy cells in the anteroventral cochlear nucleus, which innervate monaural and binaural stations in the superior olivary complex, process and transfer temporal cues relevant for sound localization. These cells are categorized into two groups: spherical and globular bushy cells (SBCs/GBCs). Spontaneous rates of GBCs innervated by multiple auditory nerve (AN) fibers are generally lower than those of SBCs that receive a small number of large AN synapses. In response to low-frequency tonal stimulation, both types of bushy cells show improved phase-locking and entrainment compared to AN fibers. When driven by high-frequency tones, GBCs show primary-like-with-notch or onset-L peristimulus time histograms and relatively irregular spiking. However, previous in vivo physiological studies of bushy cells also found considerable unit-to-unit variability in these response patterns. Here we present a population of models that can simulate the observed variation in GBCs. We used a simple coincidence detection model with an adaptive threshold and systematically varied its six parameters. Out of 567000 parameter combinations tested, 7520 primary-like-with-notch models and 4094 onset-L models were selected that satisfied a set of physiological criteria for a GBC unit. Analyses of the model parameters and output measures revealed that the parameters of the accepted model population are weakly correlated with each other to retain major GBC properties, and that the output spiking patterns of the model are affected by a combination of multiple parameters. Simulations of frequency-dependent temporal properties of the model GBCs showed a reasonable fit to empirical data, supporting the validity of our population modeling. The computational simplicity and efficiency of the model structure makes our approach suitable for future large-scale simulations of binaural information processing that may involve thousands of GBC units.


Subject(s)
Cochlear Nucleus/physiology , Models, Neurological , Neurons/physiology , Acoustic Stimulation , Action Potentials/physiology , Animals , Auditory Pathways/physiology , Cochlear Nerve/physiology , Cochlear Nucleus/cytology , Computational Biology , Neurons/cytology , Synaptic Transmission/physiology
15.
Hear Res ; 384: 107824, 2019 12.
Article in English | MEDLINE | ID: mdl-31670183

ABSTRACT

Bushy cells of the ventral cochlear nucleus are time-coding neurons. They receive axosomatic synaptic terminals from the auditory nerve, the so-called endbulb of Held synapses and project to sound localization centers in the superior olivary complex. Bushy cells are specialized to maintain and even improve the temporal code contained in the auditory nerve activity. In the present review an overview is given of the dynamic features and convergent inputs that modulate the response of bushy cells to auditory stimuli. The biophysics and synaptic specializations and dynamics of these neurons were studied extensively. These studies will be reviewed briefly in the initial part of this paper. In addition to auditory nerve input, powerful but slow inhibitory inputs act on bushy cells. Studies on these inhibitory inputs to bushy cells are discussed as part of this review. Furthermore, evidence for four classes of additional or secondary inputs that also impinge on the bushy cells will be reviewed: 1) small auditory nerve boutons, 2) commissural connections that are either inhibitory or excitatory, 3) multimodal inputs from somatosensory nuclei and 4) descending modulatory axons employing monoaminergic transmitters all interact with the main auditory nerve input in the bushy cells. The present article aims at reviewing how complex the influences on neuronal processing are, already in this early stage of the auditory pathway. It is concluded that the various modulatory influences help to better adapt bushy cell coding functions to dynamics of the sensory world.


Subject(s)
Cochlear Nucleus/physiology , Neurons/physiology , Periodicity , Sound Localization , Synaptic Transmission , Time Perception , Acoustic Stimulation , Animals , Auditory Pathways/physiology , Cochlear Nucleus/cytology , Humans , Neural Inhibition
16.
J Neurophysiol ; 122(4): 1721-1727, 2019 10 01.
Article in English | MEDLINE | ID: mdl-31461365

ABSTRACT

Small-conductance Ca2+-activated K+ (SK) and large-conductance voltage- and Ca2+-activated K+ (BK) channels are Ca2+-activated K+ channels that control action potential firing in diverse neurons in the brain. In cartwheel cells of the dorsal cochlear nucleus, blockade of either channel type leads to excessive production of spike bursts. In the same cells, P/Q-type Ca2+ channels in plasma membrane and ryanodine receptors in endoplasmic reticulum supply Ca2+ to BK channels through Ca2+ nanodomain signaling. In this study, voltage-clamp experiments were performed in cartwheel cells in mouse brain slices to examine the Ca2+ signaling pathways underlying activation of SK channels. As with BK channels, SK channels required the activity of P/Q-type Ca2+ channels. However, this signaling occurred across Ca2+ micro- rather than nanodomain distances and was independent of Ca2+ release from endoplasmic reticulum. These differential modes of activation may lead to distinct time courses of the two K+ currents and therefore control excitability of auditory neurons across different timescales.NEW & NOTEWORTHY This study has shown for the first time that in cartwheel cells of the dorsal cochlear nucleus, small-conductance Ca2+-activated K+ (SK) channels were triggered by the activation of P/Q-type Ca2+ channels in which SK-P/Q-type coupling is mediated within the Ca2+ microdomains (loose coupling). Although Ca2+-induced Ca2+ release is able to activate large-conductance voltage- and Ca2+-activated K+ (BK) channels in cartwheel cells, it did not contribute to SK activation.


Subject(s)
Calcium Channels, P-Type/metabolism , Calcium Channels, Q-Type/metabolism , Cochlear Nucleus/metabolism , Neurons/metabolism , Small-Conductance Calcium-Activated Potassium Channels/metabolism , Action Potentials , Animals , Calcium Signaling , Cochlear Nucleus/cytology , Cochlear Nucleus/physiology , Endoplasmic Reticulum/metabolism , Mice , Mice, Inbred ICR , Neurons/physiology
17.
Hear Res ; 376: 33-46, 2019 05.
Article in English | MEDLINE | ID: mdl-30606624

ABSTRACT

The auditory part of the brainstem is composed of several nuclei specialized in the computation of the different spectral and temporal features of the sound before it reaches the higher auditory regions. There are a high diversity of neuronal types in these nuclei, many with remarkable electrophysiological and synaptic properties unique to these structures. This diversity reflects specializations necessary to process the different auditory signals in order to extract precisely the acoustic information necessary for the auditory perception by the animal. Low threshold Kv1 channels and HCN channels are expressed in neurons that use timing clues for auditory processing, like bushy and octopus cells, in order to restrict action potential firing and reduce input resistance and membrane time constant. Kv3 channels allow principal neurons of the MNTB and pyramidal DCN neurons to fire fast trains of action potentials. Calcium channels on cartwheel DCN neurons produce complex spikes characteristic of these neurons. Calyceal synapses compensate the low input resistance of bushy and principal neurons of the MNTB by releasing hundreds of glutamate vesicles resulting in large EPSCs acting in fast ionotropic glutamate receptors, in order to reduce temporal summation of synaptic potentials, allowing more precise correspondence of pre- and post-synaptic potentials, and phase-locking. Pre-synaptic calyceal sodium channels have fast recovery from inactivation allowing extremely fast trains of action potential firing, and persistent sodium channels produce spontaneous activity of fusiform neurons at rest, which expands the dynamic range of these neurons. The unique combinations of different ion channels, ionotropic receptors and synaptic structures create a unique functional diversity of neurons extremely adapted to their complex functions in the auditory processing.


Subject(s)
Auditory Pathways/physiology , Brain Stem/physiology , Ion Channels/physiology , Animals , Auditory Pathways/cytology , Brain Stem/cytology , Cochlear Nerve/cytology , Cochlear Nerve/physiology , Cochlear Nucleus/cytology , Cochlear Nucleus/physiology , Humans , Mammals , Models, Neurological , Neurons/cytology , Neurons/physiology , Superior Olivary Complex/cytology , Superior Olivary Complex/physiology , Synapses/physiology
18.
J Neurophysiol ; 121(3): 908-927, 2019 03 01.
Article in English | MEDLINE | ID: mdl-30649984

ABSTRACT

Sensory systems exploit parallel processing of stimulus features to enable rapid, simultaneous extraction of information. Mechanisms that facilitate this differential extraction of stimulus features can be intrinsic or synaptic in origin. A subdivision of the avian cochlear nucleus, nucleus angularis (NA), extracts sound intensity information from the auditory nerve and contains neurons that exhibit diverse responses to sound and current injection. NA neurons project to multiple regions ascending the auditory brain stem including the superior olivary nucleus, lateral lemniscus, and avian inferior colliculus, with functional implications for inhibitory gain control and sound localization. Here we investigated whether the diversity of auditory response patterns in NA can be accounted for by variation in intrinsic physiological features. Modeled sound-evoked auditory nerve input was applied to NA neurons with dynamic clamp during in vitro whole cell recording at room temperature. Temporal responses to auditory nerve input depended on variation in intrinsic properties, and the low-threshold K+ current was implicated as a major contributor to temporal response diversity and neuronal input-output functions. An auditory nerve model of acoustic amplitude modulation produced synchrony coding of modulation frequency that depended on the intrinsic physiology of the individual neuron. In Primary-Like neurons, varying low-threshold K+ conductance with dynamic clamp altered temporal modulation tuning bidirectionally. Taken together, these data suggest that intrinsic physiological properties play a key role in shaping auditory response diversity to both simple and more naturalistic auditory stimuli in the avian cochlear nucleus. NEW & NOTEWORTHY This article addresses the question of how the nervous system extracts different information in sounds. Neurons in the cochlear nucleus show diverse responses to acoustic stimuli that may allow for parallel processing of acoustic features. The present studies suggest that diversity in intrinsic physiological features of individual neurons, including levels of a low voltage-activated K+ current, play a major role in regulating the diversity of auditory responses.


Subject(s)
Cochlear Nucleus/physiology , Evoked Potentials, Auditory, Brain Stem , Action Potentials , Animals , Chickens , Cochlear Nerve/cytology , Cochlear Nerve/metabolism , Cochlear Nerve/physiology , Cochlear Nucleus/cytology , Cochlear Nucleus/metabolism , Neurons/metabolism , Neurons/physiology , Potassium/metabolism , Potassium Channels/metabolism
19.
J Comp Neurol ; 527(5): 999-1011, 2019 04 01.
Article in English | MEDLINE | ID: mdl-30414323

ABSTRACT

Tonotopy is a key anatomical feature of the vertebrate auditory system, but little is known about the mechanisms underlying its development. Since date of birth of a neuron correlates with tonotopic position in the cochlea, we investigated if it also correlates with tonotopic position in the cochlear nucleus (CN). In the cochlea, spiral ganglion neurons are organized in a basal to apical progression along the length of the cochlea based on birthdates, with neurons in the base (responding to high-frequency sounds) born early around mouse embryonic day (E) 9.5-10.5, and those in the apex (responding to low-frequency sounds) born late around E12.5-13.5. Using a low-dose thymidine analog incorporation assay, we examine whether CN neurons are arranged in a spatial gradient according to their birthdates. Most CN neurons are born between E10.5 and E13.5, with a peak at E12.5. A second wave of neuron birth was observed in the dorsal cochlear nucleus (DCN) beginning on E14.5 and lasts until E18.5. Large excitatory neurons were born in the first wave, and small local circuit neurons were born in the second. No spatial gradient of cell birth was observed in the DCN. In contrast, neurons in the anteroventral cochlear nucleus (AVCN) were found to be arranged in a dorsal to ventral progression according to their birthdates, which are aligned with the tonotopic axis. Most of these AVCN neurons are endbulb-innervated bushy cells. The correlation between birthdate and tonotopic position suggests testable mechanisms for specification of tonotopic position.


Subject(s)
Cochlear Nucleus/cytology , Cochlear Nucleus/physiology , Neurogenesis , Neurons/cytology , Neurons/physiology , Animals , Cochlear Nucleus/growth & development , Hearing/physiology , Mice
20.
Elife ; 72018 12 19.
Article in English | MEDLINE | ID: mdl-30566077

ABSTRACT

Vestibular function was established early in vertebrates and has remained, for the most part, unchanged. In contrast, each group of tetrapods underwent independent evolutionary processes to solve the problem of hearing on land, resulting in a remarkable mixture of conserved, divergent and convergent features that define extant auditory systems. The vestibuloacoustic nuclei of the hindbrain develop from a highly conserved ground plan and provide an ideal framework on which to address the participation of developmental processes to the evolution of neuronal circuits. We employed an electroporation strategy to unravel the contribution of two dorsoventral and four axial lineages to the development of the chick hindbrain vestibular and auditory nuclei. We compare the chick developmental map with recently established genetic fate-maps of the developing mouse hindbrain. Overall, we find considerable conservation of developmental origin for the vestibular nuclei. In contrast, a comparative analysis of the developmental origin of hindbrain auditory structures echoes the complex evolutionary history of the auditory system. In particular, we find that the developmental origin of the chick auditory interaural time difference circuit supports its emergence from an ancient vestibular network, unrelated to the analogous mammalian counterpart.


Subject(s)
Brain Stem/embryology , Cochlear Nucleus/embryology , Vestibular Nuclei/embryology , Vestibule, Labyrinth/embryology , Animals , Auditory Pathways/cytology , Auditory Pathways/embryology , Auditory Pathways/metabolism , Brain Stem/cytology , Brain Stem/metabolism , Chick Embryo , Chickens , Cochlear Nucleus/cytology , Cochlear Nucleus/metabolism , Electroporation , Gene Expression Regulation, Developmental , Mice , Mice, Transgenic , Neurons/metabolism , Rhombencephalon/cytology , Rhombencephalon/embryology , Rhombencephalon/metabolism , Species Specificity , Vestibular Nuclei/cytology , Vestibular Nuclei/metabolism , Vestibule, Labyrinth/cytology , Vestibule, Labyrinth/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...