Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Anal Chim Acta ; 1273: 341537, 2023 Sep 08.
Article in English | MEDLINE | ID: mdl-37423668

ABSTRACT

Despite the advances in low-field nuclear magnetic resonance (NMR), there are limited spectroscopic applications for untargeted analysis and metabolomics. To evaluate its potential, we combined high-field and low-field NMR with chemometrics for the differentiation between virgin and refined coconut oil and for the detection of adulteration in blended samples. Although low-field NMR has less spectral resolution and sensitivity compared to high-field NMR, it was still able to achieve a differentiation between virgin and refined coconut oils, as well as between virgin coconut oil and blends, using principal component analysis (PCA), partial least squares discriminant analysis (PLS-DA), and random forest techniques. These techniques were not able to distinguish between blends with different levels of adulteration; however, partial least squares regression (PLSR) enabled the quantification of adulteration levels for both NMR approaches. Given the significant benefits of low-field NMR, including economic and user-friendly analysis and fitting in an industrial environment, this study establishes the proof of concept for its utilization in the challenging scenario of coconut oil authentication. Also, this method has the potential to be used for other similar applications that involve untargeted analysis.


Subject(s)
Food Contamination , Plant Oils , Olive Oil/analysis , Coconut Oil/analysis , Food Contamination/analysis , Plant Oils/analysis , Magnetic Resonance Spectroscopy
2.
Article in English | MEDLINE | ID: mdl-36608113

ABSTRACT

The goal of this work was to investigate the impact of refining on coconut oil particularly on the most toxicologically relevant fraction of the mineral oil aromatic hydrocarbon (MOAH) contamination, namely the fraction composed by the three to seven aromatic rings. A fully integrated platform consisting of a liquid chromatography (LC), a comprehensive multidimensional gas chromatography (GC) (LC-GC × GC) and flame ionization detector (FID) was used to obtained a more detailed characterization of the MOAH sub-classes distribution. The revised EN pr 16995:2017-08 official method was used for preparing the samples, both with and without the auxiliary epoxidation step. Crude coconut oil was spiked with different MOAH standards, namely naphthalenes, alkylated naphthalenes, benzo(a)pyrene, and its alkylated homologues. Refining was modelled by deodorization at 230 °C, stripping with 10 kg/h of steam under 1 mbar vacuum for 3 h. Complete removal of the naphthalenes and reduction of more than 98.8% of the benzo(a)pyrenes was observed. Epoxidation had a significant impact on the MOAH fraction with more than three rings, but with a high dependency on the sample matrix, being significantly less evident in the refined samples than in the crude ones.


Subject(s)
Hydrocarbons, Aromatic , Petroleum , Mineral Oil/analysis , Coconut Oil/analysis , Food Contamination/analysis , Hydrocarbons, Aromatic/analysis , Chromatography, Gas/methods , Petroleum/analysis
3.
Int J Cosmet Sci ; 44(3): 289-298, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35377477

ABSTRACT

OBJECTIVE: The present study is intended to characterize the surfactant damage suffered by the hair cortex in routine washing and the mechanistic effect of Coconut Based Hair Oils (CBHO) to mitigate the damage. METHODS: Surfactants which diffuse into the hair structure solubilize protein moieties, leading to an increase in porosity and internal surface area as well as the pore volume. The changes in hair pores occurring in the hair cortex are measured by nitrogen sorption method in line with the Brunauer-Emmett-Teller (BET) theory. Single fiber tensile parameters were measured using Diastron MTT 175. Color protection was measured quantitatively using spectrophotometer as well as visual rating by trained panelists. RESULTS: The pore surface area data clearly show the benefit of introducing coconut-based hair oils (CBHO) into the hair by preventing increase in hair porosity. A statistically significant decrease in break stress and toughness were observed and the same were reversed by the application of CBHO. A pronounced color protection effect was also recorded with the application of CBHO. CONCLUSION: The porosity reduction effect seen with the use of CBHO is attributed to the CBHO molecules blocking the diffusion pathways in the endocuticle and the matrix part of the cortical cells, limiting protein surfactant interaction resulting in reduced solubilization and loss. Since, the color molecules are likely to be much smaller than the protein moieties, a pronounced color protection effect suggests that the penetrated CBHO molecules form a dense diffusion barrier in the matrix, cell membrane complex (CMC) and the endocuticle regions of hair - which are the main diffusion pathways out of hair. The study confirms the damage repair potential of CBHO and that it works by increasing the hydrophobicity of hair - both on the hair surface and in the cortex.


OBJECTIF: La présente étude a pour but de caractériser les dommages causés par les surfactants au cortex pilaire lors des lavages de routine et l'effet mécanique des huiles capillaires à base de noix de coco (CBHO) pour atténuer ces dommages. MÉTHODES: Les tensioactifs qui diffusent dans la structure du cheveu solubilisent les fractions de protéines, ce qui entraîne une augmentation de la porosité et de la surface interne ainsi que du volume des pores. Les modifications des pores du cheveu survenant dans le cortex pilaire sont mesurées par la méthode de sorption de l'azote, conformément à la théorie de Brunauer-Emmett-Teller (BET). Les paramètres de traction de la fibre unique ont été mesurés à l'aide du Diastron MTT 175. La protection de la couleur a été mesurée quantitativement en utilisant un spectrophotomètre ainsi qu'une évaluation visuelle par des panélistes formés. LES RÉSULTATS: Les données sur la surface des pores montrent clairement l'avantage d'introduire des huiles capillaires à base de noix de coco (CBHO) dans les cheveux en empêchant l'augmentation de la porosité des cheveux. Une diminution statistiquement significative de la contrainte de rupture et de la résistance a été observée, qui a été inversée par l'application de CBHO. Un effet prononcé de protection de la couleur a également été enregistré avec l'application de CBHO. LA CONCLUSION: L'effet de réduction de la porosité observé avec l'utilisation de CBHO est attribué aux molécules de CBHO bloquant les voies de diffusion dans l'endocuticule et la partie matricielle des cellules corticales, limitant l'interaction protéine surfactant résultant en une solubilisation et une perte réduite. Étant donné que les molécules de couleur sont probablement beaucoup plus petites que les parties protéiques, un effet prononcé de protection de la couleur suggère que les molécules CBHO pénétrées forment une barrière de diffusion dense dans la matrice, le complexe de la membrane cellulaire (CMC) et les régions endocuticulaires des cheveux - qui sont les principales voies de diffusion hors des cheveux. L'étude confirme le potentiel de réparation des dommages du CBHO et le fait qu'il agit en augmentant l'hydrophobie des cheveux - à la fois sur la surface du cheveu et dans le cortex.


Subject(s)
Cocos , Hair , Coconut Oil/analysis , Coconut Oil/metabolism , Coconut Oil/pharmacology , Hair/chemistry , Porosity , Surface-Active Agents/analysis
4.
J Oleo Sci ; 70(10): 1343-1356, 2021 Oct 05.
Article in English | MEDLINE | ID: mdl-34497179

ABSTRACT

Various events of edible oils adulteration with inferior ingredients were reported regularly in recent years. This review is aimed to provide an overview of edible oils adulteration practices, regulatory compliance and detection technologies. Many detection technologies for edible oils adulteration were developed in the past such as methods that are based on chromatography or spectroscopy. Electrochemical sensors like electric nose and tongue are also gaining popularity in the detection of adulterated virgin olive oil and virgin coconut oil. It can be concluded that these detection technologies are essential in the combat with food adulterers and can be improved.


Subject(s)
Food Analysis/methods , Food Contamination/analysis , Food Contamination/legislation & jurisprudence , Plant Oils/analysis , Chromatography , Coconut Oil/analysis , Electrochemical Techniques , Food Contamination/prevention & control , Olive Oil/analysis , Spectrum Analysis
5.
N Engl J Med ; 382(8): 697-705, 2020 02 20.
Article in English | MEDLINE | ID: mdl-31860793

ABSTRACT

BACKGROUND: The causative agents for the current national outbreak of electronic-cigarette, or vaping, product use-associated lung injury (EVALI) have not been established. Detection of toxicants in bronchoalveolar-lavage (BAL) fluid from patients with EVALI can provide direct information on exposure within the lung. METHODS: BAL fluids were collected from 51 patients with EVALI in 16 states and from 99 healthy participants who were part of an ongoing study of smoking involving nonsmokers, exclusive users of e-cigarettes or vaping products, and exclusive cigarette smokers that was initiated in 2015. Using the BAL fluid, we performed isotope dilution mass spectrometry to measure several priority toxicants: vitamin E acetate, plant oils, medium-chain triglyceride oil, coconut oil, petroleum distillates, and diluent terpenes. RESULTS: State and local health departments assigned EVALI case status as confirmed for 25 patients and as probable for 26 patients. Vitamin E acetate was identified in BAL fluid obtained from 48 of 51 case patients (94%) in 16 states but not in such fluid obtained from the healthy comparator group. No other priority toxicants were found in BAL fluid from the case patients or the comparator group, except for coconut oil and limonene, which were found in 1 patient each. Among the case patients for whom laboratory or epidemiologic data were available, 47 of 50 (94%) had detectable tetrahydrocannabinol (THC) or its metabolites in BAL fluid or had reported vaping THC products in the 90 days before the onset of illness. Nicotine or its metabolites were detected in 30 of 47 of the case patients (64%). CONCLUSIONS: Vitamin E acetate was associated with EVALI in a convenience sample of 51 patients in 16 states across the United States. (Funded by the National Cancer Institute and others.).


Subject(s)
Acute Lung Injury/pathology , Bronchoalveolar Lavage Fluid/chemistry , Electronic Nicotine Delivery Systems , Vaping/adverse effects , Vitamin E/analysis , Acute Lung Injury/etiology , Adolescent , Adult , Aged , Cigarette Smoking , Coconut Oil/analysis , Female , Humans , Limonene/analysis , Male , Middle Aged , United States , Young Adult
6.
Article in English | MEDLINE | ID: mdl-31593521

ABSTRACT

Coconut oil has properties that are beneficial to human health. It assists in reducing total cholesterol, triacylglycerol (TAG), phospholipids, low-density lipoprotein (LDL) cholesterol, and very low-density lipoprotein (VLDL) cholesterol in serum and tissues. So its production, and consequently consumption, have increased in recent years. However, it has been a target for intentional adulteration with lower priced oils and fats, such as soybean oil and palm kernel oil (PKO). Coconut oil (CO) and PKO have similar chemical and physical characteristics that make it difficult to verify adulteration of CO with PKO. This study demonstrates a simple, sensitive, and fast technique that uses direct infusion electrospray ionisation mass spectrometry (ESI-MS) in conjunction with principal component analysis (PCA), in order to detect CO adulterated with PKO. Among the seven commercial coconut oil samples analysed, three were adulterated with PKO. Therefore, the suggested direct infusion ESI-MS method can be used in routine analysis to guarantee the quality of coconut oil.


Subject(s)
Coconut Oil/chemistry , Plant Oils/analysis , Coconut Oil/analysis , Palm Oil , Spectrometry, Mass, Electrospray Ionization
7.
Food Chem ; 245: 798-805, 2018 Apr 15.
Article in English | MEDLINE | ID: mdl-29287444

ABSTRACT

This study aimed at evaluating the polycyclic aromatic hydrocarbons (PAHs) contamination of commercial vegetable oils and examined the identity through the fatty acids profiles. Coconut, safflower, evening primrose, and linseed oils marketed in São Paulo (Brazil) were investigated totaling 69 samples. Four PAHs, benzo[a]anthracene (BaA), chrysene (Chr), benzo[b]fluoranthene (BbF), and benzo[a]pyrene (BaP), were detected in 96% of the samples at individual levels ranging from not detected to 14.99 µg kg-1. Chrysene was the abundant hydrocarbon found among all types of oils, with the highest median values. The results of the fatty acid profiles revealed that 43% showed different profiles according to the ones on their labels, with a higher incidence of adulteration of evening primrose oils. The maximum tolerable limits by European Regulation No. 835/2011 were exceeded for BaP in 12%, and for total 4 PAHs in 28%, with a greater contribution of adulterated samples.


Subject(s)
Fatty Acids/analysis , Food Contamination/analysis , Linseed Oil/analysis , Plant Oils/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Brazil , Chrysenes , Coconut Oil/analysis , Food Analysis , Linoleic Acids/analysis , Oenothera biennis , Plant Oils/chemistry , Safflower Oil/analysis , gamma-Linolenic Acid/analysis
8.
Curr Opin Clin Nutr Metab Care ; 21(2): 97-103, 2018 03.
Article in English | MEDLINE | ID: mdl-29256925

ABSTRACT

PURPOSE OF REVIEW: Intravenous lipid emulsions (IVLEs) are an essential component of parenteral nutrition. With the recent incorporation of new lipid emulsions into the Canadian and American market, the clinician responsible for prescribing these lipids should be educated regarding the different fatty acid (FA) profiles of these lipids, as well as their metabolic and functional effects. RECENT FINDINGS: New IVLEs contain a mix of soybean oil and olive oil, or a mix of soybean oil, coconut oil, olive oil and fish oil. These new lipid emulsions provide less essential fatty acids (FAs) (linoleic and alpha linolenic acids) than in pure soybean oil, yet incorporation of fish oil into an IVLE may decrease the amount of essential FAs required. Fish oil is a treatment for hypertriglyceridemia, and therefore, IVLEs that include fish oil may decrease serum triglycerides. Historical perspective is that fish oil can be associated with increased bleeding time. Evidence suggests that there is no association between fish oil and increased bleeding in patients, even those who are using anticoagulants. New IVLEs provide less vitamin K than soybean oil alone. Patients, or the parenteral nutrition solutions that include these new IVLEs should be supplemented with vitamin K. SUMMARY: Canadian and American Guidelines for IVLEs were based on soybean oil. Current practice should be tailored to which IVLE is being prescribed.


Subject(s)
Fat Emulsions, Intravenous/chemistry , Fish Oils/analysis , Parenteral Nutrition , Blood Coagulation/drug effects , Canada , Coconut Oil/analysis , Fat Emulsions, Intravenous/adverse effects , Fat Emulsions, Intravenous/pharmacology , Humans , Hypertriglyceridemia/blood , Hypertriglyceridemia/therapy , Linoleic Acid/analysis , Olive Oil/analysis , Soybean Oil/analysis , United States , Vitamin K/analysis , alpha-Linolenic Acid/analysis
9.
JPEN J Parenter Enteral Nutr ; 41(3): 489-495, 2017 03.
Article in English | MEDLINE | ID: mdl-26041821

ABSTRACT

BACKGROUND: Intravenous fat emulsions (IVFE) with different fatty acid compositions contain vitamin E as a by-product of vegetable and animal oil during the refining processes. Likewise, other lipid-soluble vitamins may be present in IVFE. No data, however, exist about phytonadione (vitamin K1) concentration in IVFE information leaflets. Therefore, our aim was to evaluate the phytonadione content in different IVFE. MATERIALS AND METHODS: Analyses were carried out in triplicate on 6 branded IVFE as follows: 30% soybean oil (100%), 20% olive-soybean oil (80%-20%), 20% soybean-medium-chain triglycerides (MCT) coconut oil (50%-50%), 20% soybean-olive-MCT-fish oil (30%-25%-30%-15%), 20% soybean-MCT-fish oil (40%-50%-10%), and 10% pure fish oil (100%). Phytonadione was analyzed and quantified by a quali-quantitative liquid chromatography-mass spectrometry (LC-MS) method after its extraction from the IVFE by an isopropyl alcohol-hexane mixture, reverse phase-liquid chromatography, and specific multiple-reaction monitoring for phytonadione and vitamin d3 (as internal standard). This method was validated through specificity, linearity, and accuracy. RESULTS: Average vitamin K1 content was 500, 100, 90, 100, 95, and 70 µg/L in soybean oil, olive-soybean oil, soybean-MCT coconut oil, soybean-olive-MCT-fish oil, soybean-MCT-fish oil, and pure fish oil intravenous lipid emulsions (ILEs), respectively. The analytical LC-MS method was extremely effective in terms of specificity, linearity ( r = 0.99), and accuracy (coefficient of variation <5%). CONCLUSIONS: Phytonadione is present in IVFE, and its intake varies according to IVFE type and the volume administered. It can contribute to daily requirements and become clinically relevant when simultaneously infused with multivitamins during long-term parenteral nutrition. LC-MS seems adequate in assessing vitamin K1 intake in IVFE.


Subject(s)
Fat Emulsions, Intravenous/chemistry , Vitamin K 1/analysis , Chromatography, Liquid , Coconut Oil/analysis , Fish Oils/analysis , Mass Spectrometry , Olive Oil/analysis , Parenteral Nutrition , Reproducibility of Results , Soybean Oil/analysis , Triglycerides/analysis
10.
Drug Deliv Transl Res ; 6(3): 254-62, 2016 06.
Article in English | MEDLINE | ID: mdl-26813671

ABSTRACT

Microemulsions are interesting formulations for cosmeceutical applications due to their good appearance, high solubilization power, thermodynamic stability, and enhancement of skin penetration. In addition, they can spontaneously form when suitable types and amounts of components are simply mixed. In this study, the phase behavior of the nonionic systems with various parameters was studied by construction of phase diagrams using titration method. Natural oils, i.e., coconut oil (CO), rice bran oil (RBO), and palm oil (PO), were analyzed for their fatty acid compositions and then mixed with blends of nonionic surfactants (Tween80: Span80) and water or mixtures of water and a cosolvent, propylene glycol (PG), to find the microemulsion regions. Subsequently, some microemulsions were selected for physical characterization. The largest microemulsion regions which were obtained from CO, RBO, and PO covered the sizes of 11.65, 9.84, and 9.24 %, respectively. The surfactant mixture at weight ratio of 1:1 was the most suitable for CO and PO, but for RBO, it was 2:1. PG could increase the microemulsion regions of PO from 9.24 to 15.33 %, depending on PG concentrations. Hence, the sizes of the microemulsion regions were related to oil types, surfactant mixtures, and ratios between water and PG. The studied microemulsions were water-in-oil (w/o) type, and their internal droplets were in the nanosize range. They exhibited Newtonian flow behavior and their mean viscosity values were from 247.53 to 690.35 cP which were correlated with the types and concentrations of the components in the formulations. In conclusion, natural oils could form w/o microemulsions with nonionic surfactants. The microemulsion formation and characteristics were related to many parameters of the components.


Subject(s)
Cosmeceuticals/chemistry , Emulsions/chemistry , Chemistry, Pharmaceutical , Coconut Oil/analysis , Coconut Oil/chemistry , Fatty Acids/chemistry , Palm Oil/analysis , Palm Oil/chemistry , Propylene Glycol/chemistry , Rheology , Rice Bran Oil/analysis , Rice Bran Oil/chemistry , Surface-Active Agents/chemistry , Viscosity , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...