Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 13(10): e0206158, 2018.
Article in English | MEDLINE | ID: mdl-30359426

ABSTRACT

Nonsense mutations, resulting in a premature stop codon in the open reading frame of mRNAs are responsible for thousands of inherited diseases. Readthrough of premature stop codons by small molecule drugs has emerged as a promising therapeutic approach to treat disorders resulting from premature termination of translation. The aminoglycoside antibiotics are a class of molecule known to promote readthrough at premature termination codons. Gentamicin consists of a mixture of major and minor aminoglycoside components. Here, we investigated the readthrough activities of the individual components and show that each of the four major gentamicin complex components representing 92-99% of the complex each had similar potency and activity to that of the complex itself. In contrast, a minor component (gentamicin X2) was found to be the most potent and active readthrough component in the gentamicin complex. The known oto- and nephrotoxicity associated with aminoglycosides preclude long-term use as readthrough agents. Thus, we evaluated the components of the gentamicin complex as well as the so-called "designer" aminoglycoside, NB124, for in vitro and in vivo safety. In cells, we observed that gentamicin X2 had a safety/readthrough ratio (cytotoxicity/readthrough potency) superior to that of gentamicin, G418 or NB124. In rodents, we observed that gentamicin X2 showed a safety profile that was superior to G418 overall including reduced nephrotoxicity. These results support further investigation of gentamicin X2 as a therapeutic readthrough agent.


Subject(s)
Codon, Nonsense/chemical synthesis , Genetic Diseases, Inborn/drug therapy , Gentamicins/pharmacology , Protein Synthesis Inhibitors/pharmacology , Aminoglycosides/pharmacology , Aminoglycosides/therapeutic use , Animals , Antibiotics, Antineoplastic/pharmacology , Cells, Cultured , Codon, Terminator/chemical synthesis , Embryo, Nonmammalian , Gentamicins/chemistry , Gentamicins/therapeutic use , Humans , Kidney Diseases/chemically induced , Kidney Diseases/pathology , Male , Open Reading Frames/drug effects , Open Reading Frames/genetics , Protein Synthesis Inhibitors/therapeutic use , Rats , Rats, Sprague-Dawley , Zebrafish/embryology
SELECTION OF CITATIONS
SEARCH DETAIL
...