Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 78
Filter
Add more filters










Publication year range
1.
Mol Biol Rep ; 51(1): 659, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38748061

ABSTRACT

BACKGROUND: Mitochondrial DNA (mtDNA) has become a significant tool for exploring genetic diversity and delineating evolutionary links across diverse taxa. Within the group of cold-water fish species that are native to the Indian Himalayan region, Schizothorax esocinus holds particular importance due to its ecological significance and is potentially vulnerable to environmental changes. This research aims to clarify the phylogenetic relationships within the Schizothorax genus by utilizing mitochondrial protein-coding genes. METHODS: Standard protocols were followed for the isolation of DNA from S. esocinus. For the amplification of mtDNA, overlapping primers were used, and then subsequent sequencing was performed. The genetic features were investigated by the application of bioinformatic approaches. These approaches covered the evaluation of nucleotide composition, codon usage, selective pressure using nonsynonymous substitution /synonymous substitution (Ka/Ks) ratios, and phylogenetic analysis. RESULTS: The study specifically examined the 13 protein-coding genes of Schizothorax species which belongs to the Schizothoracinae subfamily. Nucleotide composition analysis showed a bias towards A + T content, consistent with other cyprinid fish species, suggesting evolutionary conservation. Relative Synonymous Codon Usage highlighted leucine as the most frequent (5.18%) and cysteine as the least frequent (0.78%) codon. The positive AT-skew and the predominantly negative GC-skew indicated the abundance of A and C. Comparative analysis revealed significant conservation of amino acids in multiple genes. The majority of amino acids were hydrophobic rather than polar. The purifying selection was revealed by the genetic distance and Ka/Ks ratios. Phylogenetic study revealed a significant genetic divergence between S. esocinus and other Schizothorax species with interspecific K2P distances ranging from 0.00 to 8.87%, with an average of 5.76%. CONCLUSION: The present study provides significant contributions to the understanding of mitochondrial genome diversity and genetic evolution mechanisms in Schizothoracinae, hence offering vital insights for the development of conservation initiatives aimed at protecting freshwater fish species.


Subject(s)
Phylogeny , Animals , Mitochondrial Proteins/genetics , Base Composition/genetics , DNA, Mitochondrial/genetics , Codon Usage/genetics , Trout/genetics , Trout/classification , Codon/genetics , Genome, Mitochondrial/genetics , Evolution, Molecular , Fish Proteins/genetics , Genomics/methods , Genetic Variation/genetics , Cyprinidae/genetics , Cyprinidae/classification
2.
J Alzheimers Dis ; 99(3): 927-939, 2024.
Article in English | MEDLINE | ID: mdl-38728191

ABSTRACT

Background: Autophagy and apoptosis are cellular processes that maintain cellular homeostasis and remove damaged or aged organelles or aggregated and misfolded proteins. Stress factors initiate the signaling pathways common to autophagy and apoptosis. An imbalance in the autophagy and apoptosis, led by cascade of molecular mechanism prior to both processes culminate into neurodegeneration. Objective: In present study, we urge to investigate the codon usage pattern of genes which are common before initiating autophagy and apoptosis. Methods: In the present study, we took up eleven genes (DAPK1, BECN1, PIK3C3 (VPS34), BCL2, MAPK8, BNIP3 L (NIX), PMAIP1, BAD, BID, BBC3, MCL1) that are part of molecular signaling mechanism prior to autophagy and apoptosis. We analyzed dinucleotide odds ratio, codon bias, usage, context, and rare codon analysis. Results: CpC and GpG dinucleotides were abundant, with the dominance of G/C ending codons as preferred codons. Clustering analysis revealed that MAPK8 had a distinct codon usage pattern compared to other envisaged genes. Both positive and negative contexts were observed, and GAG-GAG followed by CTG-GCC was the most abundant codon pair. Of the six synonymous arginine codons, two codons CGT and CGA were the rarest. Conclusions: The information presented in the study may be used to manipulate the process of autophagy and apoptosis and to check the pathophysiology associated with their dysregulation.


Subject(s)
Apoptosis , Autophagy , Neurodegenerative Diseases , Autophagy/genetics , Humans , Apoptosis/genetics , Neurodegenerative Diseases/genetics , Codon Usage/genetics , Computer Simulation , Codon/genetics
3.
BMC Genom Data ; 25(1): 6, 2024 Jan 13.
Article in English | MEDLINE | ID: mdl-38218810

ABSTRACT

BACKGROUND: Hemerocallis citrina Baroni is a traditional vegetable crop widely cultivated in eastern Asia for its high edible, medicinal, and ornamental value. The phenomenon of codon usage bias (CUB) is prevalent in various genomes and provides excellent clues for gaining insight into organism evolution and phylogeny. Comprehensive analysis of the CUB of mitochondrial (mt) genes can provide rich genetic information for improving the expression efficiency of exogenous genes and optimizing molecular-assisted breeding programmes in H. citrina. RESULTS: Here, the CUB patterns in the mt genome of H. citrina were systematically analyzed, and the possible factors shaping CUB were further evaluated. Composition analysis of codons revealed that the overall GC (GCall) and GC at the third codon position (GC3) contents of mt genes were lower than 50%, presenting a preference for A/T-rich nucleotides and A/T-ending codons in H. citrina. The high values of the effective number of codons (ENC) are indicative of fairly weak CUB. Significant correlations of ENC with the GC3 and codon counts were observed, suggesting that not only compositional constraints but also gene length contributed greatly to CUB. Combined ENC-plot, neutrality plot, and Parity rule 2 (PR2)-plot analyses augmented the inference that the CUB patterns of the H. citrina mitogenome can be attributed to multiple factors. Natural selection, mutation pressure, and other factors might play a major role in shaping the CUB of mt genes, although natural selection is the decisive factor. Moreover, we identified a total of 29 high-frequency codons and 22 optimal codons, which exhibited a consistent preference for ending in A/T. Subsequent relative synonymous codon usage (RSCU)-based cluster and mt protein coding gene (PCG)-based phylogenetic analyses suggested that H. citrina is close to Asparagus officinalis, Chlorophytum comosum, Allium cepa, and Allium fistulosum in evolutionary terms, reflecting a certain correlation between CUB and evolutionary relationships. CONCLUSIONS: There is weak CUB in the H. citrina mitogenome that is subject to the combined effects of multiple factors, especially natural selection. H. citrina was found to be closely related to Asparagus officinalis, Chlorophytum comosum, Allium cepa, and Allium fistulosum in terms of their evolutionary relationships as well as the CUB patterns of their mitogenomes. Our findings provide a fundamental reference for further studies on genetic modification and phylogenetic evolution in H. citrina.


Subject(s)
Allium , Genome, Mitochondrial , Hemerocallis , Codon Usage/genetics , Phylogeny , Genome, Mitochondrial/genetics , Hemerocallis/genetics , Codon/genetics , Allium/genetics
4.
PeerJ ; 11: e16058, 2023.
Article in English | MEDLINE | ID: mdl-37780390

ABSTRACT

Japanagallia is a genus of Cicadomorpha in the family of leafhoppers that are plant piercing-sucking insects, and it is difficult to distinguish by morphological characteristics. So far, only one complete mitochondrial genome data has been reported for the genus Japanagallia. Therefore, in order to better understand this group, we assembled and annotated the complete mitochondrial genomes of five Japanagallia species, and analyzed their codon usage patterns. Nucleotide composition analysis showed that AT content was higher than GC content, and the protein-coding sequences preferred to end with A/T at the third codon position. Relative synonymous codon usage analysis revealed most over-represented codon ends with A or T. Parity plot analysis revealed the codon usage bias of mitochondrial genes was influenced by both natural selection and mutation pressure. In the neutrality plot, the slopes of regression lines were < 0.5, suggesting that natural selection was playing a major role while mutation pressure was of minor importance. The effective number of codons showed that the codon usage bias between genes and genomes was low. Correspondence analysis revealed that the codon usage pattern differed among 13 protein-coding genes. Phylogenetic analyses based on three datasets using two methods (maximum likelihood and Bayesian inference), restored the Megophthalminae monophyly with high support values (bootstrap support values (BS) = 100, Bayesian posterior probability (PP) = 1). In the obtained topology, the seven Japanagallia species were clustered into a monophyletic group and formed a sister group with Durgade. In conclusion, our study can provide a reference for the future research on organism evolution, identification and phylogeny relationships of Japanagallia species.


Subject(s)
Genome, Mitochondrial , Hemiptera , Animals , Codon Usage/genetics , Phylogeny , Genome, Mitochondrial/genetics , Hemiptera/genetics , Bayes Theorem , Codon/genetics
5.
Proc Natl Acad Sci U S A ; 120(41): e2312126120, 2023 10 10.
Article in English | MEDLINE | ID: mdl-37792516

ABSTRACT

The dynamic balance between tRNA supply and codon usage demand is a fundamental principle in the cellular translation economy. However, the regulation and functional consequences of this balance remain unclear. Here, we use PARIS2 interactome capture, structure modeling, conservation analysis, RNA-protein interaction analysis, and modification mapping to reveal the targets of hundreds of snoRNAs, many of which were previously considered orphans. We identify a snoRNA-tRNA interaction network that is required for global tRNA modifications, including 2'-O-methylation and others. Loss of Fibrillarin, the snoRNA-guided 2'-O-methyltransferase, induces global upregulation of tRNA fragments, a large group of regulatory RNAs. In particular, the snoRNAs D97/D133 guide the 2'-O-methylation of multiple tRNAs, especially for the amino acid methionine (Met), a protein-intrinsic antioxidant. Loss of D97/D133 snoRNAs in human HEK293 cells reduced target tRNA levels and induced codon adaptation of the transcriptome and translatome. Both single and double knockouts of D97 and D133 in HEK293 cells suppress Met-enriched proliferation-related gene expression programs, including, translation, splicing, and mitochondrial energy metabolism, and promote Met-depleted programs related to development, differentiation, and morphogenesis. In a mouse embryonic stem cell model of development, knockdown and knockout of D97/D133 promote differentiation to mesoderm and endoderm fates, such as cardiomyocytes, without compromising pluripotency, consistent with the enhanced development-related gene expression programs in human cells. This work solves a decades-old mystery about orphan snoRNAs and reveals a function of snoRNAs in controlling the codon-biased dichotomous cellular states of proliferation and development.


Subject(s)
Codon Usage , RNA, Small Nucleolar , Humans , Animals , Mice , RNA, Small Nucleolar/genetics , RNA, Small Nucleolar/metabolism , Codon Usage/genetics , HEK293 Cells , RNA, Transfer/genetics , Codon
6.
Genes (Basel) ; 14(9)2023 08 28.
Article in English | MEDLINE | ID: mdl-37761852

ABSTRACT

Prunus necrotic ringspot virus (PNRSV) is a significant virus of ornamental plants and fruit trees. It is essential to study this virus due to its impact on the horticultural industry. Several studies on PNRSV diversity and phytosanitary detection technology were reported, but the content on the codon usage bias (CUB), dinucleotide preference and codon pair bias (CPB) of PNRSV is still uncertain. We performed comprehensive analyses on a dataset consisting of 359 coat protein (CP) gene sequences in PNRSV to examine the characteristics of CUB, dinucleotide composition, and CPB. The CUB analysis of PNRSV CP sequences showed that it was not only affected by natural selection, but also affected by mutations, and natural selection played a more significant role compared to mutations as the driving force. The dinucleotide composition analysis showed an over-expression of the CpC/GpA dinucleotides and an under-expression of the UpA/GpC dinucleotides. The dinucleotide composition of the PNRSV CP gene showed a weak association with the viral lineages and hosts, but a strong association with viral codon positions. Furthermore, the CPB of PNRSV CP gene is low and is related to dinucleotide preference and codon usage patterns. This research provides reference for future research on PNRSV genetic diversity and gene evolution mechanism.


Subject(s)
Biological Evolution , Codon Usage , Codon Usage/genetics , Evolution, Molecular , Amino Acid Sequence
7.
Genes (Basel) ; 14(9)2023 08 30.
Article in English | MEDLINE | ID: mdl-37761878

ABSTRACT

Tenebrionidae is widely recognized owing to its species diversity and economic importance. Here, we determined the mitochondrial genomes (mitogenomes) of three Tenebrionidae species (Melanesthes exilidentata, Anatolica potanini, and Myladina unguiculina) and performed a comparative mitogenomic analysis to characterize the evolutionary characteristics of the family. The tenebrionid mitogenomes were highly conserved with respect to genome size, gene arrangement, base composition, and codon usage. All protein-coding genes evolved under purifying selection. The largest non-coding region (i.e., control region) showed several unusual features, including several conserved repetitive fragments (e.g., A+T-rich regions, G+C-rich regions, Poly-T tracts, TATA repeat units, and longer repetitive fragments) and tRNA-like structures. These tRNA-like structures can bind to the appropriate anticodon to form a cloverleaf structure, although base-pairing is not complete. We summarized the quantity, types, and conservation of tRNA-like sequences and performed functional and evolutionary analyses of tRNA-like sequences with various anticodons. Phylogenetic analyses based on three mitogenomic datasets and two tree inference methods largely supported the monophyly of each of the three subfamilies (Stenochiinae, Pimeliinae, and Lagriinae), whereas both Tenebrioninae and Diaperinae were consistently recovered as polyphyletic. We obtained a tenebrionid mitogenomic phylogeny: (Lagriinae, (Pimeliinae, ((Tenebrioninae + Diaperinae), Stenochiinae))). Our results provide insights into the evolution and function of tRNA-like sequences in tenebrionid mitogenomes and contribute to our general understanding of the evolution of Tenebrionidae.


Subject(s)
Coleoptera , Animals , Coleoptera/genetics , Phylogeny , RNA, Transfer/genetics , Codon Usage/genetics , Gene Order
8.
Int J Biol Macromol ; 250: 126080, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37536405

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variant is a heavily mutated virus and designated as a variant of concern. To investigate the codon usage pattern of this new variant, we performed mutation and codon bias analysis for Omicron as well as for its sub-lineages BA.1 and BA.2 and compared them with the original SARS-CoV-2 and the Delta variant sequences obtained in this study. Our results indicate that the sub-lineage BA.1 and BA.2 have up to 23 sites of difference on the spike protein, which have minimal impact on function. The Omicron variant and its sub-lineages have similar codon usage patterns and A/U ending codons appear to be preferred over G/C ending codons. The Omicron has a lower degree of codon usage bias in spite of evidence that natural selection, mutation pressure and dinucleotide abundance shape the codon usage bias of Omicron, with natural selection being more significant on BA.2 than the other sub-lineages of Omicron. The codon usage pattern of Omicron variant that we explored provides valid information for a clearer understanding of Omicron and its sub-lineages, which could find application in vaccine development and optimization.


Subject(s)
COVID-19 , Codon Usage , Humans , Codon Usage/genetics , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , COVID-19/genetics , Mutation
9.
Adv Sci (Weinh) ; 10(23): e2205445, 2023 08.
Article in English | MEDLINE | ID: mdl-37267926

ABSTRACT

The spread of coronavirus disease 2019 (COVID-19), caused by severe respiratory syndrome coronavirus 2 (SARS-CoV-2), has progressed into a global pandemic. To date, thousands of genetic variants have been identified among SARS-CoV-2 isolates collected from patients. Sequence analysis reveals that the codon adaptation index (CAI) values of viral sequences have decreased over time but with occasional fluctuations. Through evolution modeling, it is found that this phenomenon may result from the virus's mutation preference during transmission. Using dual-luciferase assays, it is further discovered that the deoptimization of codons in the viral sequence may weaken protein expression during virus evolution, indicating that codon usage may play an important role in virus fitness. Finally, given the importance of codon usage in protein expression and particularly for mRNA vaccines, it is designed several codon-optimized Omicron BA.2.12.1, BA.4/5, and XBB.1.5 spike mRNA vaccine candidates and experimentally validated their high levels of expression. This study highlights the importance of codon usage in virus evolution and provides guidelines for codon optimization in mRNA and DNA vaccine development.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/prevention & control , COVID-19/genetics , Codon/genetics , Codon Usage/genetics , Mutation/genetics
10.
Genes (Basel) ; 14(5)2023 05 19.
Article in English | MEDLINE | ID: mdl-37239470

ABSTRACT

The Dalbergia plants are widely distributed across more than 130 tropical and subtropical countries and have significant economic and medicinal value. Codon usage bias (CUB) is a critical feature for studying gene function and evolution, which can provide a better understanding of biological gene regulation. In this study, we comprehensively analyzed the CUB patterns of the nuclear genome, chloroplast genome, and gene expression, as well as systematic evolution of Dalbergia species. Our results showed that the synonymous and optimal codons in the coding regions of both nuclear and chloroplast genome of Dalbergia preferred ending with A/U at the third codon base. Natural selection was the primary factor affecting the CUB features. Furthermore, in highly expressed genes of Dalbergia odorifera, we found that genes with stronger CUB exhibited higher expression levels, and these highly expressed genes tended to favor the use of G/C-ending codons. In addition, the branching patterns of the protein-coding sequences and the chloroplast genome sequences were very similar in the systematic tree, and different with the cluster from the CUB of the chloroplast genome. This study highlights the CUB patterns and features of Dalbergia species in different genomes, explores the correlation between CUB preferences and gene expression, and further investigates the systematic evolution of Dalbergia, providing new insights into codon biology and the evolution of Dalbergia plants.


Subject(s)
Dalbergia , Fabaceae , Genome, Chloroplast , Magnoliopsida , Codon Usage/genetics , Dalbergia/genetics , Fabaceae/genetics , Codon/genetics , Magnoliopsida/genetics
11.
Genes (Basel) ; 13(11)2022 11 18.
Article in English | MEDLINE | ID: mdl-36421830

ABSTRACT

Quercus (oak) is an important economic and ecological tree species in the world, and it is the necessary feed for oak silkworm feeding. Chloroplasts play an important role in green plants but the codon usage of oak chloroplast genomes is not fully studied. We examined the codon usage of the oak chloroplast genomes in detail to facilitate the understanding of their biology and evolution. We downloaded all the protein coding genes of 26 non-redundant chloroplast reference genomes, removed short ones and those containing internal stop codons, and finally retained 50 genes shared by all genomes for comparative analyses. The base composition, codon bias, and codon preference are not significantly different between genomes but are significantly different among genes within these genomes. Oak chloroplast genomes prefer T/A-ending codons and avoid C/G-ending codons, and the psbA gene has the same preference except for the codons encoding amino acid Phe. Complex factors such as context-dependent mutations are the major factors affecting codon usage in these genomes, while selection plays an important role on the psbA gene. Our study provided an important understanding of codon usage in the oak chloroplast genomes and found that the psbA gene has nearly the same codon usage preference as other genes in the oak chloroplasts.


Subject(s)
Genome, Chloroplast , Quercus , Codon Usage/genetics , Quercus/genetics , Codon/genetics , Chloroplasts/genetics , Chloroplasts/metabolism
12.
Cells ; 11(20)2022 10 12.
Article in English | MEDLINE | ID: mdl-36291071

ABSTRACT

Autophagy plays an intricate role in paradigmatic human pathologies such as cancer, and neurodegenerative, cardiovascular, and autoimmune disorders. Autophagy regulation is performed by a set of autophagy-related (ATG) genes, first recognized in yeast genome and subsequently identified in other species, including humans. Several other genes have been identified to be involved in the process of autophagy either directly or indirectly. Studying the codon usage bias (CUB) of genes is crucial for understanding their genome biology and molecular evolution. Here, we examined the usage pattern of nucleotide and synonymous codons and the influence of evolutionary forces in genes involved in human autophagy. The coding sequences (CDS) of the protein coding human autophagy genes were retrieved from the NCBI nucleotide database and analyzed using various web tools and software to understand their nucleotide composition and codon usage pattern. The effective number of codons (ENC) in all genes involved in human autophagy ranges between 33.26 and 54.6 with a mean value of 45.05, indicating an overall low CUB. The nucleotide composition analysis of the autophagy genes revealed that the genes were marginally rich in GC content that significantly influenced the codon usage pattern. The relative synonymous codon usage (RSCU) revealed 3 over-represented and 10 under-represented codons. Both natural selection and mutational pressure were the key forces influencing the codon usage pattern of the genes involved in human autophagy.


Subject(s)
Autophagy , Codon Usage , Selection, Genetic , Humans , Autophagy/genetics , Codon/genetics , Codon Usage/genetics , Nucleotides/genetics
13.
Plant J ; 112(4): 919-945, 2022 11.
Article in English | MEDLINE | ID: mdl-36071273

ABSTRACT

Chloroplasts possess a considerably reduced genome that is decoded via an almost minimal set of tRNAs. These features make an excellent platform for gaining insights into fundamental mechanisms that govern protein expression. Here, we present a comprehensive and revised perspective of the mechanisms that drive codon selection in the chloroplast of Chlamydomonas reinhardtii and the functional consequences for protein expression. In order to extract this information, we applied several codon usage descriptors to genes with different expression levels. We show that highly expressed genes strongly favor translationally optimal codons, while genes with lower functional importance are rather affected by directional mutational bias. We demonstrate that codon optimality can be deduced from codon-anticodon pairing affinity and, for a small number of amino acids (leucine, arginine, serine, and isoleucine), tRNA concentrations. Finally, we review, analyze, and expand on the impact of codon usage on protein yield, secondary structures of mRNA, translation initiation and termination, and amino acid composition of proteins, as well as cotranslational protein folding. The comprehensive analysis of codon choice provides crucial insights into heterologous gene expression in the chloroplast of C. reinhardtii, which may also be applicable to other chloroplast-containing organisms and bacteria.


Subject(s)
Chlamydomonas reinhardtii , Chlamydomonas reinhardtii/genetics , Chlamydomonas reinhardtii/metabolism , Codon Usage/genetics , Chloroplasts/genetics , Chloroplasts/metabolism , Codon/genetics , RNA, Transfer/genetics , RNA, Transfer/metabolism , Protein Biosynthesis/genetics
14.
J Mol Evol ; 90(6): 438-451, 2022 12.
Article in English | MEDLINE | ID: mdl-36156124

ABSTRACT

Codon usage is the outcome of different evolutionary processes and can inform us about the conditions in which organisms live and evolve. Here, we present R_ENC', which is an improvement to the original S index developed by dos Reis et al. (2004). Our index is less sensitive to G+C content, which greatly affects synonymous codon usage in prokaryotes, making it better suited to detect selection acting on codon usage. We used R_ENC' to estimate the extent of selected codon usage bias in 1800 genomes representing 26 prokaryotic phyla. We found that Gammaproteobacteria, Betaproteobacteria, Actinobacteria, and Firmicutes are the phyla/subphyla showing more genomes with selected codon usage bias. In particular, we found that several lineages within Gammaproteobacteria and Firmicutes show a similar set of functional terms enriched in genes under selected codon usage bias, indicating convergent evolution. We also show that selected codon usage bias tends to evolve in genes coding for the translation machinery before other functional GO terms. Finally, we discuss the possibility to use R_ENC' to predict whether lineages evolved in copiotrophic or oligotrophic environments.


Subject(s)
Bacteria , Codon Usage , Codon Usage/genetics , Codon/genetics , Base Composition , Bacteria/genetics , Selection, Genetic , Evolution, Molecular
15.
Arch Virol ; 167(12): 2677-2688, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36166106

ABSTRACT

SARS-CoV-2 infection, which is the cause of the COVID-19 pandemic, has expanded across various animal hosts, and the virus can be transmitted particularly efficiently in minks. It is still not clear how SARS-CoV-2 is selected and evolves in its hosts, or how mutations affect viral fitness. In this report, sequences of SARS-CoV-2 isolated from human and animal hosts were analyzed, and the binding energy and capacity of the spike protein to bind human ACE2 and the mink receptor were compared. Codon adaptation index (CAI) analysis indicated the optimization of viral codons in some animals such as bats and minks, and a neutrality plot demonstrated that natural selection had a greater influence on some SARS-CoV-2 sequences than mutational pressure. Molecular dynamics simulation results showed that the mutations Y453F and N501T in mink SARS-CoV-2 could enhance the binding of the viral spike to the mink receptor, indicating the involvement of these mutations in natural selection and viral fitness. Receptor binding analysis revealed that the mink SARS-CoV-2 spike interacted more strongly with the mink receptor than the human receptor. Tracking the variations and codon bias of SARS-CoV-2 is helpful for understanding the fitness of the virus in virus transmission, pathogenesis, and immune evasion.


Subject(s)
Codon Usage , Host Adaptation , SARS-CoV-2 , Animals , Humans , Chiroptera/genetics , COVID-19/virology , Host Adaptation/genetics , Mink/genetics , Pandemics , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , Selection, Genetic/genetics , Spike Glycoprotein, Coronavirus/metabolism , Codon Usage/genetics
16.
Biosystems ; 220: 104734, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35842072

ABSTRACT

Codon usage bias is a well recognized phenomenon but the relative influence of its major causes: G+C content, mutational biases, and selection, are often difficult to disentangle. This paper presents methods to calculate modified effective codon numbers that allow the investigation of the sources of codon bias and how genes or organisms have their codon biases shaped. In particular, it demonstrates that variation in codon usage bias across organisms is likely driven more by likely mutational forces while the variation in codon usage bias within genomes is likely driven by codon selectional forces.


Subject(s)
Codon Usage , Base Composition , Codon/genetics , Codon Usage/genetics , Mutation
17.
PLoS Genet ; 18(6): e1010256, 2022 06.
Article in English | MEDLINE | ID: mdl-35714134

ABSTRACT

Patterns of non-uniform usage of synonymous codons vary across genes in an organism and between species across all domains of life. This codon usage bias (CUB) is due to a combination of non-adaptive (e.g. mutation biases) and adaptive (e.g. natural selection for translation efficiency/accuracy) evolutionary forces. Most models quantify the effects of mutation bias and selection on CUB assuming uniform mutational and other non-adaptive forces across the genome. However, non-adaptive nucleotide biases can vary within a genome due to processes such as biased gene conversion (BGC), potentially obfuscating signals of selection on codon usage. Moreover, genome-wide estimates of non-adaptive nucleotide biases are lacking for non-model organisms. We combine an unsupervised learning method with a population genetics model of synonymous coding sequence evolution to assess the impact of intragenomic variation in non-adaptive nucleotide bias on quantification of natural selection on synonymous codon usage across 49 Saccharomycotina yeasts. We find that in the absence of a priori information, unsupervised learning can be used to identify genes evolving under different non-adaptive nucleotide biases. We find that the impact of intragenomic variation in non-adaptive nucleotide bias varies widely, even among closely-related species. We show that the overall strength and direction of translational selection can be underestimated by failing to account for intragenomic variation in non-adaptive nucleotide biases. Interestingly, genes falling into clusters identified by machine learning are also physically clustered across chromosomes. Our results indicate the need for more nuanced models of sequence evolution that systematically incorporate the effects of variable non-adaptive nucleotide biases on codon frequencies.


Subject(s)
Codon Usage , Nucleotides , Bias , Codon/genetics , Codon Usage/genetics , Evolution, Molecular , Mutation , Nucleotides/genetics , Selection, Genetic
18.
Biochim Biophys Acta Gene Regul Mech ; 1865(6): 194826, 2022 08.
Article in English | MEDLINE | ID: mdl-35605953

ABSTRACT

Multiple synonymous codons code for the same amino acid, resulting in the degeneracy of the genetic code and in the preferred used of some codons called codon bias usage (CBU). We performed a large-scale analysis of codon usage bias analysing the distribution of the codon adaptation index (CAI) and the codon relative adaptiveness index (RA) in 4868 bacterial genomes. We found that CAI values differ significantly between protein functional domains and part of the protein outside domains and show how CAI, GC content and preferred usage of polymerase III alpha subunits are related. Additionally, we give evidence of the association between CAI and bacterial phenotypes.


Subject(s)
Codon Usage , Genome, Bacterial , Bacteria/genetics , Base Composition , Codon/genetics , Codon Usage/genetics , Genome, Bacterial/genetics , Phenotype
19.
Genes (Basel) ; 13(4)2022 03 22.
Article in English | MEDLINE | ID: mdl-35456366

ABSTRACT

The genus Malus is rich in species and many of its plastid genomes have been released. However, limited resources and few markers are not conducive to the comparison of differences among species and resource identification and evaluation. In this study, the complete chloroplast genome of Malus zhaojiaoensis was studied by NGS sequencing, with a total length of 159998 bp. It consists of four regions, LSC (88,070 bp), IRB (26,359 bp), SSC (19,210 bp) and IRA (26,359 bp). M. zhaojiaoensis cp genome contained a total of 111 genes made up of three classes: 78 coding sequences, 29 tRNA genes, and four rRNA genes. In addition, a total of 91 SSRs and 43 INEs were found in the M. zhaojiaoensis cp genome, which was slightly different from M. baccata and M. hupehensis in number. The analysis of codon usage and RNA editing showed that high-frequency codons tended to end at A/U bases and RNA editing mainly occurred at the second codon. Comparative genome analysis suggested that the cp genomes of eight Malus species had higher overall similarity, but there were more variation hotspots (rps16_trnK-UUU, trnG-UCC_atpA, atpH_atpF, trnT-GGU_psbD, etc.) in the LSC region. By building evolutionary trees, it can be clearly observed that M. zhaojiaoensis formed a large group with eight species of Malus, but was relatively independent in differentiation. In conclusion, this study provides high-quality chloroplast genome resources of M. zhaojiaoensis and discusses the genetic variation characteristics of Malus genus. The findings of this study will provide a good reference for plastid genome assembly and interspecific comparison in the future.


Subject(s)
Genome, Chloroplast , Malus , Codon/genetics , Codon Usage/genetics , Genome, Chloroplast/genetics , Phylogeny
20.
BMC Plant Biol ; 22(1): 65, 2022 Feb 05.
Article in English | MEDLINE | ID: mdl-35123393

ABSTRACT

BACKGROUND: Codon usage bias (CUB) analysis is an effective method for studying specificity, evolutionary relationships, and mRNA translation and discovering new genes among various species. In general, CUB analysis is mainly performed within one species or between closely related species and no such study has been applied among species with distant genetic relationships. Here, seven Rosales species with high economic value were selected to conduct CUB analysis. RESULTS: The results showed that the average GC1, GC2 and GC3 contents were 51.08, 40.52 and 43.12%, respectively, indicating that the A/T content is more abundant and the Rosales species prefer A/T as the last codon. Neutrality plot and ENc plot analysis revealed that natural selection was the main factor leading to CUB during the evolution of Rosales species. All 7 Rosales species contained three high-frequency codons, AGA, GTT and TTG, encoding Arg, Val and Leu, respectively. The 7 Rosales species differed in high-frequency codon pairs and the distribution of GC3, though the usage patterns of closely related species were more consistent. The results of the biclustering heat map among 7 Rosales species and 20 other species were basically consistent with the results of genome data, suggesting that CUB analysis is an effective method for revealing evolutionary relationships among species at the family or order level. In addition, chlorophytes prefer using G/C as ending codon, while monocotyledonous and dicotyledonous plants prefer using A/T as ending codon. CONCLUSIONS: The CUB pattern among Rosales species was mainly affected by natural selection. This work is the first to highlight the CUB patterns and characteristics of Rosales species and provides a new perspective for studying genetic relationships across a wide range of species.


Subject(s)
Codon Usage/genetics , Crops, Agricultural/genetics , Evolution, Molecular , Genetic Variation , Rosales/genetics , Species Specificity , Genotype , Plants
SELECTION OF CITATIONS
SEARCH DETAIL
...