Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 13.704
Filter
1.
Proc Natl Acad Sci U S A ; 121(23): e2318641121, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38814872

ABSTRACT

A balanced excitation-inhibition ratio (E/I ratio) is critical for healthy brain function. Normative development of cortex-wide E/I ratio remains unknown. Here, we noninvasively estimate a putative marker of whole-cortex E/I ratio by fitting a large-scale biophysically plausible circuit model to resting-state functional MRI (fMRI) data. We first confirm that our model generates realistic brain dynamics in the Human Connectome Project. Next, we show that the estimated E/I ratio marker is sensitive to the gamma-aminobutyric acid (GABA) agonist benzodiazepine alprazolam during fMRI. Alprazolam-induced E/I changes are spatially consistent with positron emission tomography measurement of benzodiazepine receptor density. We then investigate the relationship between the E/I ratio marker and neurodevelopment. We find that the E/I ratio marker declines heterogeneously across the cerebral cortex during youth, with the greatest reduction occurring in sensorimotor systems relative to association systems. Importantly, among children with the same chronological age, a lower E/I ratio marker (especially in the association cortex) is linked to better cognitive performance. This result is replicated across North American (8.2 to 23.0 y old) and Asian (7.2 to 7.9 y old) cohorts, suggesting that a more mature E/I ratio indexes improved cognition during normative development. Overall, our findings open the door to studying how disrupted E/I trajectories may lead to cognitive dysfunction in psychopathology that emerges during youth.


Subject(s)
Cerebral Cortex , Cognition , Magnetic Resonance Imaging , Humans , Cognition/physiology , Cognition/drug effects , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/growth & development , Cerebral Cortex/metabolism , Cerebral Cortex/drug effects , Cerebral Cortex/physiology , Male , Magnetic Resonance Imaging/methods , Female , Adolescent , Child , Connectome/methods , Alprazolam/pharmacology , Receptors, GABA-A/metabolism , Young Adult
2.
Aging (Albany NY) ; 16(9): 7856-7869, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38700503

ABSTRACT

Vitamin B12 and folic acid could reduce blood homocysteine levels, which was thought to slow down the progression of Alzheimer's disease (AD), but previous studies regarding the effect of vitamin B12 and folic acid in treatment of AD have not reached conclusive results. We searched PubMed and Embase until January 12, 2023. Only randomized control trials involving participants clearly diagnosed with AD and who received vitamin B12 and folic acid were enrolled. Five studies that met the criteria were selected for inclusion in the meta-analysis. Changes in cognitive function were measured based on either the Mini-Mental State Examination (MMSE) or the Alzheimer's Disease Assessment Scale-Cognitive Subscale (ADAS-Cog). Changes in daily life function and the level of blood homocysteine were also investigated. After a 6-month treatment, administration of vitamin B12 and folic acid improved the MMSE scores more than placebo did (SMD = 0.21, 95% CI = 0.01 to 0.32, p = 0.04) but did not significantly affect ADAS-Cog scores (SMD = 0.06, 95% CI = -0.22 to 0.33, p = 0.68) or measures of daily life function. Blood homocysteine levels were significantly decreased after vitamin B12 and folic acid treatment. Participants with AD who received 6 months of vitamin B12 and folic acid supplementation had better MMSE scores but had no difference in ADAS-Cog scores. Daily life function did not improve after treatment.


Subject(s)
Alzheimer Disease , Folic Acid , Homocysteine , Randomized Controlled Trials as Topic , Vitamin B 12 , Humans , Folic Acid/therapeutic use , Alzheimer Disease/drug therapy , Alzheimer Disease/blood , Vitamin B 12/therapeutic use , Vitamin B 12/blood , Homocysteine/blood , Cognition/drug effects
3.
Mol Biol Rep ; 51(1): 572, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38722394

ABSTRACT

BACKGROUND: Alzheimer's disease is a leading neurological disorder that gradually impairs memory and cognitive abilities, ultimately leading to the inability to perform even basic daily tasks. Teriflunomide is known to preserve neuronal activity and protect mitochondria in the brain slices exposed to oxidative stress. The current research was undertaken to investigate the teriflunomide's cognitive rescuing abilities against scopolamine-induced comorbid cognitive impairment and its influence on phosphatidylinositol-3-kinase (PI3K) inhibition-mediated behavior alteration in mice. METHODS: Swiss albino mice were divided into 7 groups; vehicle control, scopolamine, donepezil + scopolamine, teriflunomide (10 mg/kg) + scopolamine; teriflunomide (20 mg/kg) + scopolamine, LY294002 and LY294002 + teriflunomide (20 mg/kg). Mice underwent a nine-day protocol, receiving scopolamine injections (2 mg/kg) for the final three days to induce cognitive impairment. Donepezil, teriflunomide, and LY294002 treatments were given continuously for 9 days. MWM, Y-maze, OFT and rota-rod tests were conducted on days 7 and 9. On the last day, blood samples were collected for serum TNF-α analysis, after which the mice were sacrificed, and brain samples were harvested for oxidative stress analysis. RESULTS: Scopolamine administration for three consecutive days increased the time required to reach the platform in the MWM test, whereas, reduced the percentage of spontaneous alternations in the Y-maze, number of square crossing in OFT and retention time in the rota-rod test. In biochemical analysis, scopolamine downregulated the brain GSH level, whereas it upregulated the brain TBARS and serum TNF-α levels. Teriflunomide treatment effectively mitigated all the behavioral and biochemical alterations induced by scopolamine. Furthermore, LY294002 administration reduced the memory function and GSH level, whereas, uplifted the serum TNF-α levels. Teriflunomide abrogated the memory-impairing, GSH-lowering, and TNF-α-increasing effects of LY294002. CONCLUSION: Our results delineate that the improvement in memory, locomotion, and motor coordination might be attributed to the oxidative and inflammatory stress inhibitory potential of teriflunomide. Moreover, PI3K inhibition-induced memory impairment might be attributed to reduced GSH levels and increased TNF-α levels.


Subject(s)
Cognitive Dysfunction , Crotonates , Hydroxybutyrates , Nitriles , Oxidative Stress , Toluidines , Animals , Nitriles/pharmacology , Mice , Hydroxybutyrates/pharmacology , Crotonates/pharmacology , Toluidines/pharmacology , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/metabolism , Oxidative Stress/drug effects , Male , Disease Models, Animal , Maze Learning/drug effects , Behavior, Animal/drug effects , Phosphatidylinositol 3-Kinases/metabolism , Scopolamine/pharmacology , Chromones/pharmacology , Memory/drug effects , Cognition/drug effects , Brain/metabolism , Brain/drug effects , Morpholines/pharmacology , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Donepezil/pharmacology
5.
Proc Natl Acad Sci U S A ; 121(22): e2316149121, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38768342

ABSTRACT

Speech impediments are a prominent yet understudied symptom of Parkinson's disease (PD). While the subthalamic nucleus (STN) is an established clinical target for treating motor symptoms, these interventions can lead to further worsening of speech. The interplay between dopaminergic medication, STN circuitry, and their downstream effects on speech in PD is not yet fully understood. Here, we investigate the effect of dopaminergic medication on STN circuitry and probe its association with speech and cognitive functions in PD patients. We found that changes in intrinsic functional connectivity of the STN were associated with alterations in speech functions in PD. Interestingly, this relationship was characterized by altered functional connectivity of the dorsolateral and ventromedial subdivisions of the STN with the language network. Crucially, medication-induced changes in functional connectivity between the STN's dorsolateral subdivision and key regions in the language network, including the left inferior frontal cortex and the left superior temporal gyrus, correlated with alterations on a standardized neuropsychological test requiring oral responses. This relation was not observed in the written version of the same test. Furthermore, changes in functional connectivity between STN and language regions predicted the medication's downstream effects on speech-related cognitive performance. These findings reveal a previously unidentified brain mechanism through which dopaminergic medication influences speech function in PD. Our study sheds light into the subcortical-cortical circuit mechanisms underlying impaired speech control in PD. The insights gained here could inform treatment strategies aimed at mitigating speech deficits in PD and enhancing the quality of life for affected individuals.


Subject(s)
Language , Parkinson Disease , Speech , Subthalamic Nucleus , Humans , Parkinson Disease/physiopathology , Parkinson Disease/drug therapy , Subthalamic Nucleus/physiopathology , Subthalamic Nucleus/drug effects , Male , Speech/physiology , Speech/drug effects , Female , Middle Aged , Aged , Magnetic Resonance Imaging , Dopamine/metabolism , Nerve Net/drug effects , Nerve Net/physiopathology , Cognition/drug effects , Dopamine Agents/pharmacology , Dopamine Agents/therapeutic use
6.
J Med Invest ; 71(1.2): 23-28, 2024.
Article in English | MEDLINE | ID: mdl-38735721

ABSTRACT

Pyrroloquinoline quinone disodium salt (PQQ) is a red trihydrate crystal that was approved as a new food ingredient by FDA in 2008. Now, it is approved as a food in Japan and the EU. PQQ has redox properties and exerts antioxidant, neuroprotective, and mitochondrial biogenesis effects. The baseline intake level of PQQ is considered to be 20 mg/day. PQQ ingestion lowers blood lipid peroxide levels in humans, suggesting antioxidant activity. In the field of cognitive function, double-blind, placebo-controlled trials have been conducted. Various improvements have been reported regarding general memory, verbal memory, working memory, and attention. Furthermore, a stratified analysis of a population with a wide range of ages revealed unique effects in young people (20-40 years old) that were not observed in older adults (41-65 years old). Specifically, cognitive flexibility and executive speed improved more rapidly in young people at 8 weeks. Co-administration of PQQ and coenzyme Q10 further enhanced these effects. In an open-label trial, PQQ was shown to improve sleep and mood. Additionally, PQQ was found to suppress skin moisture loss and increase PGC-1α expression. Overall, PQQ is a food with various functions, including brain health benefits. J. Med. Invest. 71 : 23-28, February, 2024.


Subject(s)
Brain , Cognition , PQQ Cofactor , Humans , PQQ Cofactor/pharmacology , PQQ Cofactor/administration & dosage , Cognition/drug effects , Brain/drug effects , Brain/metabolism , Antioxidants/pharmacology , Antioxidants/administration & dosage
7.
J Int Soc Sports Nutr ; 21(1): 2352779, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38725238

ABSTRACT

RATIONALE: Intense exercise promotes fatigue and can impair cognitive function, particularly toward the end of competition when decision-making is often critical for success. For this reason, athletes often ingest caffeinated energy drinks prior to or during exercise to help them maintain focus, reaction time, and cognitive function during competition. However, caffeine habituation and genetic sensitivity to caffeine (CA) limit efficacy. Paraxanthine (PX) is a metabolite of caffeine reported to possess nootropic properties. This study examined whether ingestion of PX with and without CA affects pre- or post-exercise cognitive function. METHODS: 12 trained runners were randomly assigned to consume in a double-blind, randomized, and crossover manner 400 mg of a placebo (PL); 200 mg of PL + 200 mg of CA; 200 mg of PL + 200 mg of PX (ENFINITY®, Ingenious Ingredients); or 200 mg PX + 200 mg of CA (PX+CA) with a 7-14-day washout between treatments. Participants donated fasting blood samples and completed pre-supplementation (PRE) side effects questionnaires, the Berg-Wisconsin Card Sorting Test (BCST), and the Psychomotor Vigilance Task Test (PVTT). Participants then ingested the assigned treatment and rested for 60 minutes, repeated tests (PRE-EX), performed a 10-km run on a treadmill at a competition pace, and then repeated tests (POST-EX). Data were analyzed using General Linear Model (GLM) univariate analyses with repeated measures and percent changes from baseline with 95% confidence intervals. RESULTS: BCST correct responses in the PX treatment increased from PRE-EX to POST-EX (6.8% [1.5, 12.1], p = 0.012). The error rate in the PL (23.5 [-2.8, 49.8] %, p = 0.078) and CA treatment (31.5 [5.2, 57.8] %, p = 0.02) increased from PRE-EX values with POST-EX errors tending to be lower with PX treatment compared to CA (-35.7 [-72.9, 1.4] %, p = 0.059). POST-EX perseverative errors with PAR rules were significantly lower with PX treatment than with CA (-26.9 [-50.5, -3.4] %, p = 0.026). Vigilance analysis revealed a significant interaction effect in Trial #2 mean reaction time values (p = 0.049, ηp2 = 0.134, moderate to large effect) with POST-EX reaction times tending to be faster with PX and CA treatment. POST-EX mean reaction time of all trials with PX treatment was significantly faster than PL (-23.2 [-43.4, -2.4] %, p = 0.029) and PX+CA (-29.6 [-50.3, -8.80] %, p = 0.006) treatments. There was no evidence that PX ingestion adversely affected ratings of side effects associated with stimulant intake or clinical blood markers. CONCLUSIONS: Results provide some evidence that pre-exercise PX ingestion improves prefrontal cortex function, attenuates attentional decline, mitigates cognitive fatigue, and improves reaction time and vigilance. Adding CA to PX did not provide additional benefits. Therefore, PX ingestion may serve as a nootropic alternative to CA.


Subject(s)
Caffeine , Cognition , Cross-Over Studies , Running , Humans , Caffeine/administration & dosage , Caffeine/pharmacology , Double-Blind Method , Cognition/drug effects , Running/physiology , Male , Adult , Theophylline/pharmacology , Theophylline/administration & dosage , Female , Reaction Time/drug effects , Young Adult , Performance-Enhancing Substances/administration & dosage , Performance-Enhancing Substances/pharmacology
8.
Am J Ther ; 31(3): e219-e228, 2024.
Article in English | MEDLINE | ID: mdl-38691662

ABSTRACT

BACKGROUND: Patients with schizophrenia often face challenges related to cognitive function, affecting their daily functioning and overall quality of life. The choice of antipsychotic treatment may play a crucial role in determining cognitive outcomes. STUDY QUESTION: Our study aimed to investigate whether there was a difference in cognitive ability between the patients with schizophrenia receiving oral antipsychotics (OAP) versus long-acting injectable antipsychotics (LAI-APs). STUDY DESIGN: We conducted a cross-sectional study using analytical methods between January 1, 2020, and January 1, 2022. Participants were divided into 2 groups: patients undergoing treatment with OAP and patients undergoing treatment with LAI-AP. All participants underwent version A of Brief Assessment of Cognition in Schizophrenia (BACS). MEASURES AND OUTCOMES: The primary objective was to compare cognitive function in patients with schizophrenia treated with LAI antipsychotics versus OAP using BACS. Primary outcome measures include overall BACS score, with secondary measures focusing on specific cognitive domains. This study contributes to the understanding of the cognitive effects of different antipsychotic formulations in schizophrenia treatment. RESULTS: Although there was a slightly higher intelligence quotient in the LAI-AP group (102.2 vs. 101.32, P = 0.5401), it was not statistically significant. Olanzapine was the most commonly prescribed antipsychotic, with 48% of patients in the LAI-AP group and 40% in the OAP group. The LAI-AP group outperformed in all BACS evaluations. The most notable difference was in the token motor task (57.78 ± 17.03 vs. 50.04 ± 18.82, P = 0.0335), while the Tower of London test showed the smallest difference (17.26 ± 2.61 vs. 15.48 ± 3.47, P = 0.0046). Regression analysis revealed no significant variance in intelligence quotient scores; however, a significant discrepancy in BACS scores was evident, favoring the LAI treatment for better cognitive outcomes. CONCLUSIONS: The use of long-acting antipsychotic treatment in individuals with schizophrenia offers promising advantages in preserving cognitive function.


Subject(s)
Antipsychotic Agents , Cognition , Delayed-Action Preparations , Schizophrenia , Humans , Antipsychotic Agents/administration & dosage , Antipsychotic Agents/therapeutic use , Schizophrenia/drug therapy , Male , Female , Cross-Sectional Studies , Adult , Administration, Oral , Cognition/drug effects , Middle Aged , Injections , Schizophrenic Psychology , Quality of Life , Olanzapine/administration & dosage , Olanzapine/therapeutic use
9.
CNS Neurosci Ther ; 30(5): e14719, 2024 May.
Article in English | MEDLINE | ID: mdl-38783536

ABSTRACT

BACKGROUND: Methamphetamine (METH) is a psychostimulant substance with highly addictive and neurotoxic effects, but no ideal treatment option exists to improve METH-induced neurocognitive deficits. Recently, mesenchymal stem cells (MSCs)-derived exosomes have raised many hopes for treating neurodegenerative sequela of brain disorders. This study aimed to determine the therapeutic potential of MSCs-derived exosomes on cognitive function and neurogenesis of METH-addicted rodents. METHODS: Male BALB/c mice were subjected to chronic METH addiction, followed by intravenous administration of bone marrow MSCs-derived exosomes. Then, the spatial memory and recognition memory of animals were assessed by the Barnes maze and the novel object recognition test (NORT). The neurogenesis-related factors, including NeuN and DCX, and the expression of Iba-1, a microglial activation marker, were assessed in the hippocampus by immunofluorescence staining. Also, the expression of inflammatory cytokines, including TNF-α and NF-κB, were evaluated by western blotting. RESULTS: The results showed that BMSCs-exosomes improved the time spent in the target quadrant and correct-to-wrong relative time in the Barnes maze. Also, NORT's discrimination index (DI) and recognition index (RI) were improved following exosome therapy. Additionally, exosome therapy significantly increased the expression of NeuN and DCX in the hippocampus while decreasing the expression of inflammatory cytokines, including TNF-α and NF-κB. Besides, BMSC-exosomes down-regulated the expression of Iba-1. CONCLUSION: Our findings indicate that BMSC-exosomes mitigated METH-caused cognitive dysfunction by improving neurogenesis and inhibiting neuroinflammation in the hippocampus.


Subject(s)
Amphetamine-Related Disorders , Doublecortin Protein , Exosomes , Hippocampus , Mesenchymal Stem Cells , Methamphetamine , Mice, Inbred BALB C , Neurogenesis , Animals , Exosomes/metabolism , Male , Neurogenesis/drug effects , Neurogenesis/physiology , Mice , Methamphetamine/toxicity , Amphetamine-Related Disorders/therapy , Amphetamine-Related Disorders/psychology , Amphetamine-Related Disorders/metabolism , Hippocampus/metabolism , Hippocampus/drug effects , Cognition/drug effects , Cognition/physiology , Maze Learning/drug effects , Maze Learning/physiology , Recognition, Psychology/drug effects , Recognition, Psychology/physiology , Nerve Tissue Proteins/metabolism , Central Nervous System Stimulants/toxicity , Spatial Memory/drug effects , Spatial Memory/physiology , Microfilament Proteins/metabolism , Mesenchymal Stem Cell Transplantation/methods , Calcium-Binding Proteins , DNA-Binding Proteins
10.
Sci Rep ; 14(1): 11396, 2024 05 18.
Article in English | MEDLINE | ID: mdl-38762495

ABSTRACT

Acute liver injury, there is a risky neurological condition known as hepatic encephalopathy (HE). Herbacetin is a glycosylated flavonoid with many pharmacological characteristics. The purpose of this study was to assess the ability of herbacetin to protect against the cognitive deficits associated with thioacetamide (TAA) rat model and delineate the underlying behavioral and pharmacological mechanisms. Rats were pretreated with herbacetin (20 and 40 mg/kg) for 30days. On 30th day, the rats were injected with TAA (i.p. 350 mg/kg) in a single dose. In addition to a histpathological studies, ultra-structural architecture of the brain, liver functions, oxidative stress biomarkers, and behavioral tests were evaluated. Compared to the TAA-intoxicated group, herbacetin improved the locomotor and cognitive deficits, serum hepatotoxicity indices and ammonia levels. Herbacetin reduced brain levels of malodialdeyde, glutamine synthetase (GS), tumor necrosis factor- alpha (TNF-α), interleukin 1 B (IL-1ß), annexin v, and increased brain GSH, Sirtuin 1 (SIRT1), and AMP-activated kinase (AMPK) expression levels. Also, herbacetin improve the histopathological changes and ultra- structure of brain tissue via attenuating the number of inflammatory and apoptotic cells. Herbacetin treatment significantly reduced the toxicity caused by TAA. These findings suggest that herbacetin might be taken into account as a possible neuroprotective and cognitive enhancing agent due to its ability to reduce oxidative stress, inflammation and apoptosis associated with TAA.


Subject(s)
AMP-Activated Protein Kinases , Hepatic Encephalopathy , Neuroprotective Agents , Signal Transduction , Sirtuin 1 , Thioacetamide , Animals , Sirtuin 1/metabolism , Hepatic Encephalopathy/drug therapy , Hepatic Encephalopathy/metabolism , Hepatic Encephalopathy/chemically induced , Rats , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Signal Transduction/drug effects , AMP-Activated Protein Kinases/metabolism , Male , Oxidative Stress/drug effects , Up-Regulation/drug effects , Cognition/drug effects , Brain/metabolism , Brain/drug effects , Brain/pathology , Rats, Wistar , Liver/drug effects , Liver/metabolism , Liver/pathology , Disease Models, Animal
11.
Zhen Ci Yan Jiu ; 49(5): 506-511, 2024 May 25.
Article in English, Chinese | MEDLINE | ID: mdl-38764122

ABSTRACT

OBJECTIVES: To observe the effect of scalp-abdominal acupuncture combined with donepezil hydrochloride on cognition and life ability of patients with Alzheimer's disease (AD), so as to evaluate its clinical efficacy. METHODS: Sixty AD patients were collected and randomly divided into control group (30 cases) and observation group (30 cases). Patients in the control group were treated with oral donepezil hydrochloride (5 mg, once daily). Patients in the observation group were treated with scalp-abdominal acupuncture at Baihui (GV20), Yintang (GV24+), Sishencong (EX-HN1), "emotional area", Shenting (GV24), "abdominal area 1""abdominal area 8", and bilateral Fengchi (GB20), Taixi (KI3), Xuanzhong (GB39), Zusanli (ST36) on the basis of control group, and electroacupuncture (10 Hz/50 Hz, 0.5 to 5.0 mA) was applied to EX-HN1, "emotional area""abdominal area 1" and "abdominal area 8", once daily, 30 min each time. Four weeks as a course of treatment, both the two groups were treated for two consecutive courses. Before and after treatment, the mini-mental state examination (MMSE), AD assessmennt scale-cognitive subscale (ADAS-Cog) and activity of daily living scale (ADL) were evaluated. The clinical efficacy index was calculated and safety was evaluated. RESULTS: After treatment, the MMSE and ADL scores were higher (P<0.05) and the ADAS-Cog score was lower (P<0.05) than those before treatment in both groups. Compared with the control group, the MMSE and ADL scores were increased (P<0.05) and ADAS-Cog score was decreased (P<0.05) in the observation group. The total effective rate of the observation group (26/30, 86.67%) was higher (P<0.05) than that of the control group (23/30, 76.67%). No adverse reactions occurred in both groups during the treatment. CONCLUSIONS: Scalp-abdominal acupuncture combined with donepezil hydrochloride can effectively improve the cognitive ability and daily living ability of AD patients, and the efficacy is better than that of oral donepezil hydrochloride alone.


Subject(s)
Acupuncture Points , Acupuncture Therapy , Alzheimer Disease , Donepezil , Scalp , Humans , Donepezil/therapeutic use , Alzheimer Disease/therapy , Alzheimer Disease/drug therapy , Alzheimer Disease/psychology , Female , Male , Aged , Abdomen , Middle Aged , Cognition/drug effects , Treatment Outcome , Piperidines/therapeutic use , Combined Modality Therapy , Aged, 80 and over , Indans/therapeutic use
12.
Vopr Pitan ; 93(2): 6-18, 2024.
Article in Russian | MEDLINE | ID: mdl-38809795

ABSTRACT

ω-3 polyunsaturated fatty acids (PUFAs) are incorporated in cell membranes and play an important role in the development and functioning of organs. Consolidation of data on the role of ω-3 PUFAs in child development may increase the professional's awareness, help to plan clinical studies, and develop recommendations for supplementation. The aim of the research was to analyze literature data on the effect of ω-3 PUFAs on the central nervous system, immune system, and vision in children. Material and methods. 86 literature sources have been analyzed, a keyword search was carried out in the PubMed, Scopus, Elsevier, eLibrary and Google Scholar databases. Results. ω-3 PUFAs (alpha-linolenic, docosahexaenoic and eicosapentaenoic acids) are not synthesized in the human organism, and should be obtained from food. The need for ω-3 PUFAs is especially high during periods of rapid growth (the first years of life and adolescence). ω-3 PUFAs play an important role in the anatomical and functional development of the brain, affecting the maturation and functioning of neurons, participating in the processes of neurogenesis, migration, synaptogenesis, and neurotransmission. The results of clinical studies on the effect of ω-3 PUFAs on the cognitive functions of healthy children and patients with attention deficit hyperactivity disorder are contradictory, which requ ires further research. PUFAs are substrates for the synthesis of bioactive compounds and take part in the control of acute and chronic inflammation, and also have a regulatory effect on immune cells. ω-3 PUFAs supplementation decreases the frequency and duration of acute respiratory viral infections in children. This indicates the potential effectiveness of ω-3 PUFAs in the prevention of acute respiratory viral infections. Сlinical studies demonstrated positive effects of ω-3 PUFAs on retinal development in premature infants. Conclusion. Adequate intake of ω-3 PUFAs is essential for the development and functioning of the central nervous system, immune system and vision in children. The body content of ω-3 PUFAs is closely related to the nutrition. In the Russian Federation, consumption of fish and other products containing ω-3 PUFAs is traditionally low. The majority of the Russian population has a deficiency in ω-3 PUFA consumption. With an unbalanced diet, supplementation of ω-3 PUFAs is necessary.


Subject(s)
Child Development , Fatty Acids, Omega-3 , Humans , Fatty Acids, Omega-3/therapeutic use , Fatty Acids, Omega-3/pharmacology , Child , Child, Preschool , Dietary Supplements , Adolescent , Attention Deficit Disorder with Hyperactivity , Infant , Cognition/drug effects , Female , Brain/growth & development , Brain/metabolism , Brain/drug effects
13.
J Gerontol Nurs ; 50(6): 44-52, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38815222

ABSTRACT

PURPOSE: Medication adherence in adults with H-type hypertension plays a crucial role in lowering blood pressure and treating complications. Cognitive function has been identified as a significant influencing factor for medication adherence, whereas excessive levels of homocysteine can impair cognitive function. Metamemory, which is influenced by cognitive function, also affects medication adherence. However, the complex relationship among these factors remains poorly understood among adults with H-type hypertension. Therefore, we hypothesize that metamemory serves as a mediator for the impact of cognitive function on medication adherence. METHOD: A total of 232 adults with H-type hypertension were enrolled to provide cognitive function scores, metamemory scores, and medication adherence rates. RESULTS: A pairwise correlation exists among cognitive function, metamemory, and medication adherence. Metamemory partially mediates (57.5%) the relationship between cognitive function and medication adherence. CONCLUSION: Our findings suggest that interventions targeting improvements in metamemory may enhance medication adherence among individuals with H-type hypertension. [Journal of Gerontological Nursing, 50(6), 44-52.].


Subject(s)
Antihypertensive Agents , Cognition , Hypertension , Medication Adherence , Humans , Hypertension/drug therapy , Hypertension/psychology , Aged , Medication Adherence/psychology , Medication Adherence/statistics & numerical data , Male , Female , Cognition/drug effects , Antihypertensive Agents/therapeutic use , Middle Aged , Aged, 80 and over
14.
Int J Mol Sci ; 25(9)2024 May 02.
Article in English | MEDLINE | ID: mdl-38732190

ABSTRACT

Since we aim to test new options to find medication for cognitive disorders, we have begun to assess the effect of semaglutide and to conduct a review gathering studies that have attempted this purpose. This systematic review focuses on the cognitive effects of semaglutide, a glucagon-like peptide 1 receptor agonist (GLP-1 RA), in the context of neurological and cognitive impairment. Semaglutide, a synthetic GLP-1 analog, showcased neuroprotective effects beyond metabolic regulation. It mitigated apoptosis and improved cognitive dysfunction in cerebrovascular disease, suggesting broader implications for neurological well-being. Also, studies highlighted GLP-1 RAs' positive impact on olfactory function in obese individuals with type 2 diabetes, on neurodegenerative disorders, multiple sclerosis, and endotoxemia. In order to analyze current studies that assess the impact of semaglutide on cognitive function, a literature search was conducted up to February 2024 on two online databases, MEDLINE (via PubMed) and Web of Science Core Collection, as well as various websites. Fifteen studies on mice populations and two studies on cell lines were included, analyzed, and assessed with bias-specific tools. The neuroprotective and anti-apoptotic properties of GLP-1 and its analogs were emphasized, with animal models and cell line studies demonstrating enhanced cognitive function. While promising, limitations include fewer studies, highlighting the need for extensive research, particularly in the human population. Even though this medication seems promising, there are significant limitations, one of which is the lack of studies on human subjects. Therefore, this review aims to gather current evidence.


Subject(s)
Cognition , Glucagon-Like Peptides , Animals , Glucagon-Like Peptides/pharmacology , Glucagon-Like Peptides/therapeutic use , Cognition/drug effects , Humans , Disease Models, Animal , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Glucagon-Like Peptide-1 Receptor/agonists , Glucagon-Like Peptide-1 Receptor/metabolism , Mice , Cell Line , Cognitive Dysfunction/drug therapy
15.
Nutrients ; 16(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38732605

ABSTRACT

Healthy dietary patterns rich in flavonoids may benefit cognitive performance over time. Among socioeconomically disadvantaged groups, the association between flavonoid intake and measures of cognition is unclear. This study sought to identify associations between flavonoid intake and cognitive performance among Healthy Aging in Neighborhoods of Diversity across the Life Span (HANDLS) study participants (n = 1947) across three study visits. Flavonoid intakes were assessed via two 24-h dietary recalls. Cognitive performance was assessed via the Trail Making Test (TMT)-A and TMT-B, which provide measures of attention and executive function, respectively. Mixed effects linear regression was used to model TMT scores over three study visits against visit 1 (v1) flavonoid intake, time (years from v1), and the interaction between v1 flavonoid intake and time, capturing both the cross-sectional association between flavonoid intake and time at v1 as well as the longitudinal association between v1 flavonoid intake and the change in TMT scores over time. Prior to adjustment, inverse cross-sectional associations at v1 were observed between (1) anthocyanidin intake and TMT-A scores for the overall sample and (2) total flavonoid, anthocyanidin, flavan-3-ol, flavone, and flavonol intake and TMT-B scores for the overall sample and among White adults. Only the association between anthocyanidin intake and TMT-B at v1 among White adults persisted after adjustment (for demographic characteristics such as age). One possible explanation for the few significant associations is universally low flavonoid intakes resulting from the consumption of an unhealthy dietary pattern.


Subject(s)
Black or African American , Cognition , Executive Function , Flavonoids , Healthy Aging , White People , Humans , Male , Female , Flavonoids/administration & dosage , Cognition/drug effects , Middle Aged , Executive Function/drug effects , Aged , Cross-Sectional Studies , Diet/statistics & numerical data , Anthocyanins/administration & dosage , Residence Characteristics
16.
Braz J Med Biol Res ; 57: e13437, 2024.
Article in English | MEDLINE | ID: mdl-38808889

ABSTRACT

Clinical studies have found that neonatal sevoflurane exposure can increase the risk of cognitive dysfunction. However, recent studies have found that it can exhibit neuroprotective effects in some situations. In this study, we aimed to explore the effects of sevoflurane neonatal exposure in rats. A total of 144 rat pups (72 males and 72 females) were assigned to six groups and separately according to sevoflurane exposure of different times on the seventh day after birth. Blood gas analysis and western blot detection in the hippocampus were conducted after exposure. The Morris water maze test was conducted on the 32nd to 38th days after birth. The expression of PSD95 and synaptophysin in the hippocampus was detected after the Morris water maze test. We found that neonatal exposure to sevoflurane promoted apoptosis in the hippocampus, and Bax and caspase-3 were increased in a dose-dependent manner. The 2-h exposure had the greatest effects on cognitive dysfunction. However, with the extension of exposure time to 6 h, the effects on cognitive function were partly compensated. In addition, sevoflurane exposure decreased synaptogenesis in the hippocampus. However, as the exposure time was extended, the suppression of synaptogenesis was attenuated. In conclusion, neonatal sevoflurane exposure exhibited duration-dependent effects on cognitive function via Bax-caspase-3-dependent apoptosis and bidirectional effects on synaptogenesis in rats.


Subject(s)
Animals, Newborn , Cognition , Hippocampus , Sevoflurane , Sevoflurane/pharmacology , Animals , Female , Male , Hippocampus/drug effects , Hippocampus/metabolism , Rats , Cognition/drug effects , Time Factors , Maze Learning/drug effects , Anesthetics, Inhalation/pharmacology , Anesthetics, Inhalation/adverse effects , Apoptosis/drug effects , Sex Factors , Rats, Sprague-Dawley , Methyl Ethers/pharmacology , Blotting, Western , Blood Gas Analysis , Cognitive Dysfunction/chemically induced
17.
Zhongguo Zhong Yao Za Zhi ; 49(8): 2147-2157, 2024 Apr.
Article in Chinese | MEDLINE | ID: mdl-38812230

ABSTRACT

The fecal metabolomics method was employed to investigate the cognitive improvement mechanism of Polygoni Multiflori Radix in Alzheimer's disease(AD) and examine the effects of different degrees of steaming and sunning on cognitive function in AD model mice. Additionally, the processing principle of Polygoni Multiflori Radix was discussed. Forty-eight 5-month-old APP/PS1 mice were randomly assigned to the following groups: model group, positive group, raw product group, three-steaming and three-sunning product group, six-steaming and six-sunning product group, and nine-steaming and nine-sunning product group. Seven negative control mice from the same litter were included as the blank group. After 150 days of intragastric administration, the learning and memory abilities of mice in each group were assessed by using the Barnes maze and dark avoidance tests. Fecal samples were collected for extensive targeted metabolomics testing. Principal component analysis(PCA), orthogonal partial least squares discriminant analysis(OPLS-DA), and other multivariate statistical methods were utilized to analyze metabolites in mouse feces. Comparison of behavioral results between the model group and different product groups demonstrated that the six-steaming and six-sunning product group exhibited significantly reduced latency in the Barnes maze positioning and navigation test(P<0.05), as well as a notable decrease in the number of errors in the space exploration experiment(P<0.05). Moreover, the latency of mice entering the dark box for the first time in the dark avoidance experiment was significantly prolonged(P<0.05), indicating the best overall improvement in the learning and memory ability of AD model mice. Metabolomics results revealed that compared with the model group, the differential metabolites in other groups in descending order were as follows: six-steaming and six-sunning product group > nine-steaming and nine-sunning product group > raw product group > three-steaming and three-sunning product group, encompassing 146, 120, 95, and 81 potential biomarkers, respectively. Among them, 16 differential metabolites were related to AD disease. Further comparisons based on the degree of processing indicated that the six-steaming and six-sunning product group exhibited the most significant adjustments in total metabolic pathways, particularly regulating the interconversion of pentose and glucuronic acid, as well as amino acid anabolism and other pathways. In summary, the mechanism of Polygoni Multiflori Radix after processing in enhancing the learning and memory ability of APP/PS1 mice may be associated with improved amino acid metabolism and increased energy metabolism in the body. The six-steaming and six-sunning yielded the best outcomes.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Drugs, Chinese Herbal , Feces , Metabolomics , Polygonum , Animals , Alzheimer Disease/metabolism , Alzheimer Disease/drug therapy , Mice , Feces/chemistry , Drugs, Chinese Herbal/administration & dosage , Drugs, Chinese Herbal/pharmacology , Cognitive Dysfunction/metabolism , Cognitive Dysfunction/drug therapy , Male , Polygonum/chemistry , Humans , Disease Models, Animal , Female , Cognition/drug effects
18.
Zhongguo Zhong Yao Za Zhi ; 49(8): 2262-2272, 2024 Apr.
Article in Chinese | MEDLINE | ID: mdl-38812240

ABSTRACT

To investigate the effect of epimedium total flavone capsules on post-stroke cognitive impairment(PSCI) in rats. The transient middle cerebral artery occlusion(tMCAO) model was constructed on selected rats, and rats with impaired neurological function were randomly divided into the model group, low, middle, and high dose groups of epimedium total flavone capsules, and nimodipine tablet group. The cognitive function of rats was measured after administration. Pathological changes in brain tissue were observed after hematoxylin-eosin staining(HE). Neuronal nuclei(NeuN) and glial fibrillary acidic protein(GFAP) distribution in brain tissue were tested by immunofluorescent staining. The level of amyloid beta 1-42(Aß_(1-42)), neuron specific enolase(NSE), acetylcholine(ACH), dopamine(DA), 5-hydroxytryptamine(5-HT), norepinephrine(NE), interleukin-1ß(IL-1ß), tumor necrosis factor-α(TNF-α), and hypersensitive C-reactive protein(hs-CRP) in rat serum was tested. Moreover, Western blot was utilized to test the expression of nuclear factor-kappaB(NF-κB), p-NF-κB, alpha inhibitor of NF-κB(IκBα) protein, and p-IκBα protein in the hippocampus. The experimental results showed that epimedium total flavone capsules can improve the cognitive function of model rats, and the mechanism may be related to the regulation of the expression of p-IκBα and p-NF-κB proteins, so as to inhibit inflammatory response induced by ischemia-reperfusion.


Subject(s)
Capsules , Cognitive Dysfunction , Drugs, Chinese Herbal , Epimedium , Flavones , Rats, Sprague-Dawley , Stroke , Animals , Rats , Epimedium/chemistry , Male , Flavones/administration & dosage , Flavones/pharmacology , Flavones/chemistry , Drugs, Chinese Herbal/administration & dosage , Drugs, Chinese Herbal/pharmacology , Stroke/drug therapy , Stroke/complications , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/etiology , Humans , Amyloid beta-Peptides/metabolism , NF-kappa B/metabolism , NF-kappa B/genetics , Interleukin-1beta/genetics , Interleukin-1beta/metabolism , Cognition/drug effects
19.
Cell Mol Biol (Noisy-le-grand) ; 70(5): 220-225, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38814212

ABSTRACT

This study explored the impact of penehyclidine hydrochloride on cognitive function in rats with brain injury. Sprague-Dawley rats (n=36) were randomly assigned to sham-operation, model, and penehyclidine hydrochloride groups. Rats in the sham-operation group underwent craniotomy, while the model and penehyclidine hydrochloride groups received brain injury models and interventions with normal saline and penehyclidine hydrochloride, respectively. Specimens were obtained two weeks post-intervention. Neurological deficits were evaluated using Zea-Longa scores, and memory was assessed with the Morris water maze test. ELISA determined brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) content. mRNA expressions of BDNF and NGF were assessed via qPCR, and phosphorylated CREB (p-CREB) protein expression was measured by Western blotting. Compared to the sham-operation group, both model and penehyclidine hydrochloride groups showed increased Zea-Longa scores. Escape latencies were longer and platform crossings were fewer in model and penehyclidine hydrochloride groups compared to the sham-operation group, but penehyclidine hydrochloride demonstrated a shorter latency and more platform crossings than the model group. BDNF and NGF content decreased in model and penehyclidine hydrochloride groups compared to the sham-operation group, with an increase in the penehyclidine hydrochloride group compared to the model group. mRNA expression levels declined in model and penehyclidine hydrochloride groups but were higher in the latter. p-CREB protein expression was lower in model and penehyclidine hydrochloride groups compared to the sham-operation group but higher in the penehyclidine hydrochloride group than the model group. Penehyclidine hydrochloride exhibited neuroprotective effects by upregulating the cAMP/CREB signaling pathway, improving cognitive function in rats with brain injury.


Subject(s)
Brain Injuries , Brain-Derived Neurotrophic Factor , Cognition , Cyclic AMP Response Element-Binding Protein , Cyclic AMP , Quinuclidines , Rats, Sprague-Dawley , Signal Transduction , Animals , Signal Transduction/drug effects , Cyclic AMP Response Element-Binding Protein/metabolism , Brain-Derived Neurotrophic Factor/metabolism , Brain-Derived Neurotrophic Factor/genetics , Quinuclidines/pharmacology , Quinuclidines/therapeutic use , Cognition/drug effects , Male , Brain Injuries/drug therapy , Brain Injuries/metabolism , Cyclic AMP/metabolism , Rats , Nerve Growth Factor/metabolism , Nerve Growth Factor/genetics , Phosphorylation/drug effects , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Disease Models, Animal
20.
Clin Nutr ; 43(6): 1635-1642, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38772070

ABSTRACT

BACKGROUND & AIMS: Aquatic food is rich in nutrients which benefit the human brain and cognitive health; however, concerns about heavy metal accumulation in aquatic food remain. This study evaluated the associations between aquatic food consumption, long-chain n-3 polyunsaturated fatty acids (LC n-3 PUFAs) intake, and blood mercury levels with cognition in middle-aged and older adults. METHODS: This cross-sectional study used baseline data from the Lifestyle and Healthy Aging of Chinese Square Dancer Study. Aquatic food consumption and LC n-3 PUFAs intake were obtained from a food frequency questionnaire. Blood mercury levels were measured using inductively coupled plasma mass spectrometry. A composite z-score was developed to represent global cognition by averaging the z-scores for each cognitive domain. Participants with mild cognitive impairment (MCI) were diagnosed according to Petersen's criteria. Multivariate linear and logistic regression models were used to examine the association between the exposure factors and cognitive performance including cognitive scores and MCI. RESULTS: Of 2621 middle-aged and older adults, the mean (SD) age was 63.71 (5.15) years, and 85.73% were females. Compared with the lowest quartile, those in the highest quartile for aquatic food consumption were associated with higher composite z-scores (ß = 0.156, 95% CI: 0.088-0.225) and lower MCI odds (OR = 0.598, 95% CI: 0.425-0.841). A similar positive relationship between LC n-3 PUFAs intake and composite z-score and an inverse association between LC n-3 PUFAs intake and MCI were also observed. In addition, the participants in the highest quartile for blood mercury levels had higher composite z-scores than those in the lowest quartile. CONCLUSIONS: In this cross-sectional study, higher aquatic food consumption, LC n-3 PUFAs intake, and blood mercury levels were related to better cognitive function. Further studies in Chinese populations are required to confirm these findings.


Subject(s)
Cognition , Cognitive Dysfunction , Fatty Acids, Omega-3 , Mercury , Humans , Female , Male , Mercury/blood , Cross-Sectional Studies , Middle Aged , Fatty Acids, Omega-3/blood , Cognition/drug effects , Cognition/physiology , Aged , China , Cognitive Dysfunction/blood , Seafood , Diet/statistics & numerical data , Diet/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...