Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.304
Filter
1.
Mol Biol Rep ; 51(1): 572, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38722394

ABSTRACT

BACKGROUND: Alzheimer's disease is a leading neurological disorder that gradually impairs memory and cognitive abilities, ultimately leading to the inability to perform even basic daily tasks. Teriflunomide is known to preserve neuronal activity and protect mitochondria in the brain slices exposed to oxidative stress. The current research was undertaken to investigate the teriflunomide's cognitive rescuing abilities against scopolamine-induced comorbid cognitive impairment and its influence on phosphatidylinositol-3-kinase (PI3K) inhibition-mediated behavior alteration in mice. METHODS: Swiss albino mice were divided into 7 groups; vehicle control, scopolamine, donepezil + scopolamine, teriflunomide (10 mg/kg) + scopolamine; teriflunomide (20 mg/kg) + scopolamine, LY294002 and LY294002 + teriflunomide (20 mg/kg). Mice underwent a nine-day protocol, receiving scopolamine injections (2 mg/kg) for the final three days to induce cognitive impairment. Donepezil, teriflunomide, and LY294002 treatments were given continuously for 9 days. MWM, Y-maze, OFT and rota-rod tests were conducted on days 7 and 9. On the last day, blood samples were collected for serum TNF-α analysis, after which the mice were sacrificed, and brain samples were harvested for oxidative stress analysis. RESULTS: Scopolamine administration for three consecutive days increased the time required to reach the platform in the MWM test, whereas, reduced the percentage of spontaneous alternations in the Y-maze, number of square crossing in OFT and retention time in the rota-rod test. In biochemical analysis, scopolamine downregulated the brain GSH level, whereas it upregulated the brain TBARS and serum TNF-α levels. Teriflunomide treatment effectively mitigated all the behavioral and biochemical alterations induced by scopolamine. Furthermore, LY294002 administration reduced the memory function and GSH level, whereas, uplifted the serum TNF-α levels. Teriflunomide abrogated the memory-impairing, GSH-lowering, and TNF-α-increasing effects of LY294002. CONCLUSION: Our results delineate that the improvement in memory, locomotion, and motor coordination might be attributed to the oxidative and inflammatory stress inhibitory potential of teriflunomide. Moreover, PI3K inhibition-induced memory impairment might be attributed to reduced GSH levels and increased TNF-α levels.


Subject(s)
Cognitive Dysfunction , Crotonates , Hydroxybutyrates , Nitriles , Oxidative Stress , Toluidines , Animals , Nitriles/pharmacology , Mice , Hydroxybutyrates/pharmacology , Crotonates/pharmacology , Toluidines/pharmacology , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/metabolism , Oxidative Stress/drug effects , Male , Disease Models, Animal , Maze Learning/drug effects , Behavior, Animal/drug effects , Phosphatidylinositol 3-Kinases/metabolism , Scopolamine/pharmacology , Chromones/pharmacology , Memory/drug effects , Cognition/drug effects , Brain/metabolism , Brain/drug effects , Morpholines/pharmacology , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Donepezil/pharmacology
2.
Commun Biol ; 7(1): 562, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38734709

ABSTRACT

MiRNAs in mesenchymal stem cells (MSCs)-derived exosome (MSCs-exo) play an important role in the treatment of sepsis. We explored the mechanism through which MSCs-exo influences cognitive impairment in sepsis-associated encephalopathy (SAE). Here, we show that miR-140-3p targeted Hmgb1. MSCs-exo plus miR-140-3p mimic (Exo) and antibiotic imipenem/cilastatin (ABX) improve survival, weight, and cognitive impairment in cecal ligation and puncture (CLP) mice. Exo and ABX inhibit high mobility group box 1 (HMGB1), IBA-1, interleukin (IL)-1ß, IL-6, iNOS, TNF-α, p65/p-p65, NLRP3, Caspase 1, and GSDMD-N levels. In addition, Exo upregulates S-lactoylglutathione levels in the hippocampus of CLP mice. Our data further demonstrates that Exo and S-lactoylglutathione increase GSH levels in LPS-induced HMC3 cells and decrease LD and GLO2 levels, inhibiting inflammatory responses and pyroptosis. These findings suggest that MSCs-exo-mediated delivery of miR-140-3p ameliorates cognitive impairment in mice with SAE by HMGB1 and S-lactoylglutathione metabolism, providing potential therapeutic targets for the clinical treatment of SAE.


Subject(s)
Cognitive Dysfunction , Exosomes , HMGB1 Protein , Mesenchymal Stem Cells , MicroRNAs , Sepsis-Associated Encephalopathy , MicroRNAs/genetics , MicroRNAs/metabolism , HMGB1 Protein/metabolism , HMGB1 Protein/genetics , Animals , Sepsis-Associated Encephalopathy/metabolism , Sepsis-Associated Encephalopathy/genetics , Mice , Exosomes/metabolism , Cognitive Dysfunction/etiology , Cognitive Dysfunction/genetics , Cognitive Dysfunction/metabolism , Male , Mesenchymal Stem Cells/metabolism , Humans , Mice, Inbred C57BL , Sepsis/genetics , Sepsis/metabolism , Sepsis/complications , Disease Models, Animal
3.
Cell Mol Life Sci ; 81(1): 215, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38739166

ABSTRACT

Down syndrome (DS) is a genetic disease characterized by a supernumerary chromosome 21. Intellectual deficiency (ID) is one of the most prominent features of DS. Central nervous system defects lead to learning disabilities, motor and language delays, and memory impairments. At present, a prenatal treatment for the ID in DS is lacking. Subcutaneous administration of synthetic preimplantation factor (sPIF, a peptide with a range of biological functions) in a model of severe brain damage has shown neuroprotective and anti-inflammatory properties by directly targeting neurons and microglia. Here, we evaluated the effect of PIF administration during gestation and until weaning on Dp(16)1Yey mice (a mouse model of DS). Possible effects at the juvenile stage were assessed using behavioral tests and molecular and histological analyses of the brain. To test the influence of perinatal sPIF treatment at the adult stage, hippocampus-dependent memory was evaluated on postnatal day 90. Dp(16)1Yey pups showed significant behavioral impairment, with impaired neurogenesis, microglial cell activation and a low microglial cell count, and the deregulated expression of genes linked to neuroinflammation and cell cycle regulation. Treatment with sPIF restored early postnatal hippocampal neurogenesis, with beneficial effects on astrocytes, microglia, inflammation, and cell cycle markers. Moreover, treatment with sPIF restored the level of DYRK1A, a protein that is involved in cognitive impairments in DS. In line with the beneficial effects on neurogenesis, perinatal treatment with sPIF was associated with an improvement in working memory in adult Dp(16)1Yey mice. Perinatal treatment with sPIF might be an option for mitigating cognitive impairments in people with DS.


Subject(s)
Disease Models, Animal , Down Syndrome , Neurogenesis , Animals , Down Syndrome/drug therapy , Down Syndrome/pathology , Down Syndrome/metabolism , Down Syndrome/complications , Down Syndrome/genetics , Neurogenesis/drug effects , Mice , Female , Pregnancy , Hippocampus/metabolism , Hippocampus/pathology , Hippocampus/drug effects , Microglia/metabolism , Microglia/drug effects , Microglia/pathology , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Protein-Tyrosine Kinases/metabolism , Protein-Tyrosine Kinases/genetics , Dyrk Kinases , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/metabolism , Cognitive Dysfunction/pathology , Male , Cognition Disorders/drug therapy , Cognition Disorders/pathology
4.
Cereb Cortex ; 34(5)2024 May 02.
Article in English | MEDLINE | ID: mdl-38715406

ABSTRACT

Presbycusis has been reported as related to cognitive decline, but its underlying neurophysiological mechanism is still unclear. This study aimed to investigate the relationship between metabolite levels, cognitive function, and node characteristics in presbycusis based on graph theory methods. Eighty-four elderly individuals with presbycusis and 63 age-matched normal hearing controls underwent magnetic resonance spectroscopy, functional magnetic resonance imaging scans, audiological assessment, and cognitive assessment. Compared with the normal hearing group, presbycusis patients exhibited reduced gamma-aminobutyric acid and glutamate levels in the auditory region, increased nodal characteristics in the temporal lobe and precuneus, as well as decreased nodal characteristics in the superior occipital gyrus and medial orbital. The right gamma-aminobutyric acid levels were negatively correlated with the degree centrality in the right precuneus and the executive function. Degree centrality in the right precuneus exhibited significant correlations with information processing speed and executive function, while degree centrality in the left medial orbital demonstrated a negative association with speech recognition ability. The degree centrality and node efficiency in the superior occipital gyrus exhibited a negative association with hearing loss and speech recognition ability, respectively. These observed changes indicate alterations in metabolite levels and reorganization patterns at the brain network level after auditory deprivation.


Subject(s)
Cognitive Dysfunction , Magnetic Resonance Imaging , Presbycusis , Humans , Male , Female , Presbycusis/diagnostic imaging , Presbycusis/metabolism , Presbycusis/physiopathology , Aged , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/metabolism , Cognitive Dysfunction/physiopathology , Magnetic Resonance Spectroscopy , Glutamic Acid/metabolism , gamma-Aminobutyric Acid/metabolism , Middle Aged , Brain/diagnostic imaging , Brain/metabolism
5.
Nat Commun ; 15(1): 3796, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38714706

ABSTRACT

The metabolic implications in Alzheimer's disease (AD) remain poorly understood. Here, we conducted a metabolomics study on a moderately aging Chinese Han cohort (n = 1397; mean age 66 years). Conjugated bile acids, branch-chain amino acids (BCAAs), and glutamate-related features exhibited strong correlations with cognitive impairment, clinical stage, and brain amyloid-ß deposition (n = 421). These features demonstrated synergistic performances across clinical stages and subpopulations and enhanced the differentiation of AD stages beyond demographics and Apolipoprotein E ε4 allele (APOE-ε4). We validated their performances in eight data sets (total n = 7685) obtained from Alzheimer's Disease Neuroimaging Initiative (ADNI) and Religious Orders Study and Memory and Aging Project (ROSMAP). Importantly, identified features are linked to blood ammonia homeostasis. We further confirmed the elevated ammonia level through AD development (n = 1060). Our findings highlight AD as a metabolic disease and emphasize the metabolite-mediated ammonia disturbance in AD and its potential as a signature and therapeutic target for AD.


Subject(s)
Alzheimer Disease , Ammonia , Metabolomics , Phenotype , Humans , Alzheimer Disease/metabolism , Alzheimer Disease/genetics , Ammonia/metabolism , Aged , Female , Male , Middle Aged , Brain/metabolism , Brain/diagnostic imaging , Cognitive Dysfunction/metabolism , Cognitive Dysfunction/genetics , Amyloid beta-Peptides/metabolism , Apolipoprotein E4/genetics , Apolipoprotein E4/metabolism , Bile Acids and Salts/metabolism , Aged, 80 and over , Cohort Studies
6.
Cell Mol Biol Lett ; 29(1): 79, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38783169

ABSTRACT

BACKGROUND: Postoperative cognitive dysfunction (POCD) is a common complication after anesthesia/surgery, especially among elderly patients, and poses a significant threat to their postoperative quality of life and overall well-being. While it is widely accepted that elderly patients may experience POCD following anesthesia/surgery, the exact mechanism behind this phenomenon remains unclear. Several studies have indicated that the interaction between silent mating type information regulation 2 homologue 1 (SIRT1) and brain-derived neurotrophic factor (BDNF) is crucial in controlling cognitive function and is strongly linked to neurodegenerative disorders. Hence, this research aims to explore how SIRT1/BDNF impacts cognitive decline caused by anesthesia/surgery in aged mice. METHODS: Open field test (OFT) was used to determine whether anesthesia/surgery affected the motor ability of mice, while the postoperative cognitive function of 18 months old mice was evaluated with Novel object recognition test (NORT), Object location test (OLT) and Fear condition test (FC). The expressions of SIRT1 and other molecules were analyzed by western blot and immunofluorescence staining. The hippocampal synaptic plasticity was detected by Golgi staining and Long-term potentiation (LTP). The effects of SIRT1 and BDNF overexpression as well as chemogenetic activation of glutamatergic neurons in hippocampal CA1 region of 18 months old vesicular glutamate transporter 1 (VGLUT1) mice on POCD were further investigated. RESULTS: The research results revealed that older mice exhibited cognitive impairment following intramedullary fixation of tibial fracture. Additionally, a notable decrease in the expression of SIRT1/BDNF and neuronal excitability in hippocampal CA1 glutamatergic neurons was observed. By increasing levels of SIRT1/BDNF or enhancing glutamatergic neuron excitability in the CA1 region, it was possible to effectively mitigate synaptic plasticity impairment and ameliorate postoperative cognitive dysfunction. CONCLUSIONS: The decline in SIRT1/BDNF levels leading to changes in synaptic plasticity and neuronal excitability in older mice could be a significant factor contributing to cognitive impairment after anesthesia/surgery.


Subject(s)
Brain-Derived Neurotrophic Factor , CA1 Region, Hippocampal , Down-Regulation , Neuronal Plasticity , Neurons , Postoperative Cognitive Complications , Sirtuin 1 , Animals , Sirtuin 1/metabolism , Sirtuin 1/genetics , Brain-Derived Neurotrophic Factor/metabolism , Brain-Derived Neurotrophic Factor/genetics , Mice , Neurons/metabolism , Postoperative Cognitive Complications/metabolism , Postoperative Cognitive Complications/etiology , CA1 Region, Hippocampal/metabolism , Male , Mice, Inbred C57BL , Long-Term Potentiation , Glutamic Acid/metabolism , Cognitive Dysfunction/etiology , Cognitive Dysfunction/metabolism , Cognitive Dysfunction/physiopathology
7.
Anal Chem ; 96(19): 7506-7515, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38690851

ABSTRACT

Alzheimer's disease (AD) is a progressive neurological disorder featuring abnormal protein aggregation in the brain, including the pathological hallmarks of amyloid plaques and hyperphosphorylated tau. Despite extensive research efforts, understanding the molecular intricacies driving AD development remains a formidable challenge. This study focuses on identifying key protein conformational changes associated with the progression of AD. To achieve this, we employed quantitative cross-linking mass spectrometry (XL-MS) to elucidate conformational changes in the protein networks in cerebrospinal fluid (CSF). By using isotopically labeled cross-linkers BS3d0 and BS3d4, we reveal a dynamic shift in protein interaction networks during AD progression. Our comprehensive analysis highlights distinct alterations in protein-protein interactions within mild cognitive impairment (MCI) states. This study accentuates the potential of cross-linked peptides as indicators of AD-related conformational changes, including previously unreported site-specific binding between α-1-antitrypsin (A1AT) and complement component 3 (CO3). Furthermore, this work enables detailed structural characterization of apolipoprotein E (ApoE) and reveals modifications within its helical domains, suggesting their involvement in MCI pathogenesis. The quantitative approach provides insights into site-specific interactions and changes in the abundance of cross-linked peptides, offering an improved understanding of the intricate protein-protein interactions underlying AD progression. These findings lay a foundation for the development of potential diagnostic or therapeutic strategies aimed at mitigating the negative impact of AD.


Subject(s)
Alzheimer Disease , Apolipoproteins E , Mass Spectrometry , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Alzheimer Disease/diagnosis , Humans , Apolipoproteins E/chemistry , Apolipoproteins E/metabolism , Cross-Linking Reagents/chemistry , Protein Conformation , alpha 1-Antitrypsin/chemistry , alpha 1-Antitrypsin/metabolism , Cognitive Dysfunction/metabolism
8.
J Neuroimmune Pharmacol ; 19(1): 24, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38780885

ABSTRACT

Cornuside has been discovered to improve learning and memory in AD mice, however, its underlying mechanism was not fully understood. In the present study, we established an AD mice model by intracerebroventricular injection of Aß1-42, which were treated with cornuside (3, 10, 30 mg/kg) for 2 weeks. Cornuside significantly ameliorated cognitive function of AD mice in series of behavioral tests, including Morris water maze test, nest building test, novel object recognition test and step-down test. Additionally, cornuside could attenuate neuronal injury, and promote cholinergic synaptic transmission by restoring the level of acetylcholine (ACh) via inhibiting acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE), as well as facilitating choline acetyltransferase (ChAT). Furthermore, cornuside inhibited oxidative stress levels amplified as decreased malondialdehyde (MDA), by inhibiting TXNIP expression, improving total anti-oxidative capacity (TAOC), raising activities of superoxide dismutase (SOD) and catalase (CAT). Cornuside also reduced the activation of microglia and astrocytes, decreased the level of proinflammatory factors TNF-α, IL-6, IL-1ß, iNOS and COX2 via interfering RAGE-mediated IKK-IκB-NF-κB phosphorylation. Similar anti-oxidative and anti-inflammatory effects were also found in LPS-stimulated BV2 cells via hampering RAGE-mediated TXNIP activation and NF-κB nuclear translocation. Virtual docking revealed that cornuside could interact with the active pocket of RAGE V domain directly. In conclusion, cornuside could bind to the RAGE directly impeding the interaction of Aß and RAGE, and cut down the expression of TXNIP inhibiting ROS production and oxidative stress, as well as hamper NF-κB p65 mediated the inflammation.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Cognitive Dysfunction , NF-kappa B , Peptide Fragments , Receptor for Advanced Glycation End Products , Signal Transduction , Animals , Mice , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Alzheimer Disease/chemically induced , Amyloid beta-Peptides/toxicity , Amyloid beta-Peptides/metabolism , Peptide Fragments/toxicity , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/metabolism , Cognitive Dysfunction/chemically induced , Signal Transduction/drug effects , Receptor for Advanced Glycation End Products/metabolism , NF-kappa B/metabolism , Male , Oxidative Stress/drug effects
9.
Cell Rep Med ; 5(5): 101543, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38697101

ABSTRACT

Cognitive impairment in the elderly is associated with alterations in bile acid (BA) metabolism. In this study, we observe elevated levels of serum conjugated primary bile acids (CPBAs) and ammonia in elderly individuals, mild cognitive impairment, Alzheimer's disease, and aging rodents, with a more pronounced change in females. These changes are correlated with increased expression of the ileal apical sodium-bile acid transporter (ASBT), hippocampal synapse loss, and elevated brain CPBA and ammonia levels in rodents. In vitro experiments confirm that a CPBA, taurocholic acid, and ammonia induced synaptic loss. Manipulating intestinal BA transport using ASBT activators or inhibitors demonstrates the impact on brain CPBA and ammonia levels as well as cognitive decline in rodents. Additionally, administration of an intestinal BA sequestrant, cholestyramine, alleviates cognitive impairment, normalizing CPBAs and ammonia in aging mice. These findings highlight the potential of targeting intestinal BA absorption as a therapeutic strategy for age-related cognitive impairment.


Subject(s)
Aging , Ammonia , Bile Acids and Salts , Cognitive Dysfunction , Intestinal Absorption , Animals , Bile Acids and Salts/metabolism , Cognitive Dysfunction/metabolism , Cognitive Dysfunction/pathology , Intestinal Absorption/drug effects , Male , Female , Humans , Mice , Aging/metabolism , Ammonia/metabolism , Aged , Mice, Inbred C57BL , Cholestyramine Resin/pharmacology , Symporters/metabolism , Organic Anion Transporters, Sodium-Dependent/metabolism , Organic Anion Transporters, Sodium-Dependent/genetics , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Hippocampus/metabolism , Hippocampus/pathology , Rats , Aged, 80 and over
10.
Neurobiol Dis ; 196: 106523, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38705491

ABSTRACT

Down syndrome (DS) is the most common condition with intellectual disability and is caused by trisomy of Homo sapiens chromosome 21 (HSA21). The increased dosage of genes on HSA21 is associated with early neurodevelopmental changes and subsequently at adult age with the development of Alzheimer-like cognitive decline. However, the molecular mechanisms promoting brain pathology along aging are still missing. The novel Ts66Yah model represents an evolution of the Ts65Dn, used in characterizing the progression of brain degeneration, and it manifest phenotypes closer to human DS condition. In this study we performed a longitudinal analysis (3-9 months) of adult Ts66Yah mice. Our data support the behavioural alterations occurring in Ts66Yah mice at older age with improvement in the detection of spatial memory defects and also a new anxiety-related phenotype. The evaluation of hippocampal molecular pathways in Ts66Yah mice, as effect of age, demonstrate the aberrant regulation of redox balance, proteostasis, stress response, metabolic pathways, programmed cell death and synaptic plasticity. Intriguingly, the genotype-driven changes observed in those pathways occur early promoting altered brain development and the onset of a condition of premature aging. In turn, aging may account for the subsequent hippocampal deterioration that fall in characteristic neuropathological features. Besides, the analysis of sex influence in the alteration of hippocampal mechanisms demonstrate only a mild effect. Overall, data collected in Ts66Yah provide novel and consolidated insights, concerning trisomy-driven processes that contribute to brain pathology in conjunction with aging. This, in turn, aids in bridging the existing gap in comprehending the intricate nature of DS phenotypes.


Subject(s)
Aging , Brain , Disease Models, Animal , Down Syndrome , Animals , Down Syndrome/genetics , Down Syndrome/pathology , Down Syndrome/metabolism , Aging/genetics , Aging/pathology , Aging/physiology , Mice , Male , Brain/metabolism , Brain/pathology , Female , Cognition/physiology , Hippocampus/metabolism , Hippocampus/pathology , Cognitive Dysfunction/genetics , Cognitive Dysfunction/metabolism , Cognitive Dysfunction/pathology , Mice, Transgenic
11.
Neurosci Lett ; 832: 137804, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38692559

ABSTRACT

The present study aimed to investigate the role of agmatine in the neurobiology underlying memory impairment during ethanol withdrawal in rats. Sprague-Dawley rats were subjected to a 21-day chronic ethanol exposure regimen (2.4 % w/v ethanol for 3 days, 4.8 % w/v for the next 4 days, and 7.2 % w/v for the following 14 days), followed by a withdrawal period. Memory impairment was assessed using the passive avoidance test (PAT) at 24, 48, and 72 h post-withdrawal. The ethanol-withdrawn rats displayed a significant decrease in step-through latency in the PAT, indicative of memory impairment at 72 h post-withdrawal. However, administration of agmatine (40 µg/rat) and its modulators (L-arginine, arcaine, and amino-guanidine) significantly increases the latency time in the ethanol-withdrawn rats, demonstrating the attenuation of memory impairment. Further, pretreatment with imidazoline receptor agonists enhances agmatine's effects, while antagonists block them, implicating imidazoline receptors in agmatine's actions. Neurochemical analysis in ethanol-withdrawn rats reveals dysregulated glutamate and GABA levels, which was attenuated by agmatine and its modulators. By examining the effects of agmatine administration and modulators of endogenous agmatine, the study aimed to shed light on the potential therapeutic implications of agmatinergic signaling in alcohol addiction and related cognitive deficits. Thus, the present findings suggest that agmatine administration and modulation of endogenous agmatine levels hold potential as therapeutic strategies for managing alcohol addiction and associated cognitive deficits. Understanding the neurobiology underlying these effects paves the way for the development of novel interventions targeting agmatinergic signaling in addiction treatment.


Subject(s)
Agmatine , Cognitive Dysfunction , Ethanol , Rats, Sprague-Dawley , Substance Withdrawal Syndrome , Animals , Agmatine/pharmacology , Agmatine/therapeutic use , Substance Withdrawal Syndrome/metabolism , Substance Withdrawal Syndrome/drug therapy , Substance Withdrawal Syndrome/psychology , Male , Cognitive Dysfunction/metabolism , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/etiology , Rats , Biguanides/pharmacology , Glutamic Acid/metabolism , Arginine/pharmacology , gamma-Aminobutyric Acid/metabolism , Imidazoline Receptors/metabolism , Imidazoline Receptors/agonists , Avoidance Learning/drug effects
12.
Zh Nevrol Psikhiatr Im S S Korsakova ; 124(4. Vyp. 2): 17-24, 2024.
Article in Russian | MEDLINE | ID: mdl-38696147

ABSTRACT

OBJECTIVE: To investigate the pattern and connections of neuropsychological and metabolic indices in patients with cognitive disorders of Alzheimer's and vascular (subcortical-cortical) types of different severity. MATERIAL AND METHODS: A total of 177 patients were examined, including 85 patients with Alzheimer's disease (AD) and 92 patients with vascular cognitive impairment (VCI). All patients underwent complex neuropsychological examination; 18F-FDG PET was performed in 17 patients with AD and 15 patients with VCI. RESULTS: The greatest changes in patients with AD were noted in the mnestic sphere, and the indicators significantly differed from the results of the study of patients with VCI already at the pre-dementia stage. Neurodynamic and dysregulatory disorders prevailed in patients with VCI. Patients with AD showed bilateral symmetrical reduction of metabolic activity in the cortex of parietal and temporal lobes, often in combination with marked hypometabolism in the hippocampal region. In patients with VCI, there were areas of decreased brain tissue metabolism of different localization and size, mainly in the projection of the basal ganglia and in the prefrontal and parietal cortex, as well as in the cingulate gyrus, which indirectly confirms the mechanism of disconnection of subcortical and cortical structures. In AD, impaired metabolic activity in the hippocampal region correlated with impaired temporal and spatial orientation (ρ=-0.54, p<0.05), memory impairment (ρ=-0.71, p<0.005). Hypometabolism of the parietal lobe cortex was associated with total MMSE score (ρ=-0.8, p<0.001), 10-word test (ρ=-0.89, p<0.001 and ρ=-0.82, p<0.001), visual-spatial impairment (ρ=-0.64, p<0.01), categorical association test (ρ=-0.73, p<0.005). In patients with VCI, dysregulatory disorders correlated with hypometabolism in the thalamic projection (ρ=-0.56, p<0.05), prefrontal cortex (ρ=-0.64, p<0.05) and in the cingulate gyrus (anterior regions) (ρ=-0.53, p<0.05). CONCLUSION: The results indicate the presence of differences in cognitive impairment and cerebral metabolism in patients with AD and VCI.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Fluorodeoxyglucose F18 , Neuropsychological Tests , Positron-Emission Tomography , Humans , Alzheimer Disease/metabolism , Alzheimer Disease/diagnostic imaging , Male , Female , Aged , Cognitive Dysfunction/metabolism , Cognitive Dysfunction/etiology , Cognitive Dysfunction/diagnostic imaging , Dementia, Vascular/diagnostic imaging , Dementia, Vascular/metabolism , Dementia, Vascular/physiopathology , Middle Aged , Brain/metabolism , Brain/diagnostic imaging , Aged, 80 and over
13.
Cell Death Dis ; 15(5): 350, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773070

ABSTRACT

Seipin is one key mediator of lipid metabolism that is highly expressed in adipose tissues as well as in the brain. Lack of Seipin gene, Bscl2, leads to not only severe lipid metabolic disorders but also cognitive impairments and motor disabilities. Myelin, composed mainly of lipids, facilitates nerve transmission and is important for motor coordination and learning. Whether Seipin deficiency-leaded defects in learning and motor coordination is underlined by lipid dysregulation and its consequent myelin abnormalities remains to be elucidated. In the present study, we verified the expression of Seipin in oligodendrocytes (OLs) and their precursors, oligodendrocyte precursor cells (OPCs), and demonstrated that Seipin deficiency compromised OPC differentiation, which led to decreased OL numbers, myelin protein, myelinated fiber proportion and thickness of myelin. Deficiency of Seipin resulted in impaired spatial cognition and motor coordination in mice. Mechanistically, Seipin deficiency suppressed sphingolipid metabolism-related genes in OPCs and caused morphological abnormalities in lipid droplets (LDs), which markedly impeded OPC differentiation. Importantly, rosiglitazone, one agonist of PPAR-gamma, substantially restored phenotypes resulting from Seipin deficiency, such as aberrant LDs, reduced sphingolipids, obstructed OPC differentiation, and neurobehavioral defects. Collectively, the present study elucidated how Seipin deficiency-induced lipid dysregulation leads to neurobehavioral deficits via impairing myelination, which may pave the way for developing novel intervention strategy for treating metabolism-involved neurological disorders.


Subject(s)
Cell Differentiation , Cognitive Dysfunction , GTP-Binding Protein gamma Subunits , Myelin Sheath , Oligodendrocyte Precursor Cells , Animals , GTP-Binding Protein gamma Subunits/metabolism , GTP-Binding Protein gamma Subunits/genetics , Mice , Oligodendrocyte Precursor Cells/metabolism , Myelin Sheath/metabolism , Cognitive Dysfunction/metabolism , Cognitive Dysfunction/pathology , Cognitive Dysfunction/genetics , Lipid Metabolism , Oligodendroglia/metabolism , Oligodendroglia/pathology , Mice, Inbred C57BL , PPAR gamma/metabolism , PPAR gamma/genetics , Mice, Knockout , Male , Rosiglitazone/pharmacology
14.
J Neuroinflammation ; 21(1): 125, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38730470

ABSTRACT

BACKGROUND: Understanding the molecular mechanisms of Alzheimer's disease (AD) has important clinical implications for guiding therapy. Impaired amyloid beta (Aß) clearance is critical in the pathogenesis of sporadic AD, and blood monocytes play an important role in Aß clearance in the periphery. However, the mechanism underlying the defective phagocytosis of Aß by monocytes in AD remains unclear. METHODS: Initially, we collected whole blood samples from sporadic AD patients and isolated the monocytes for RNA sequencing analysis. By establishing APP/PS1 transgenic model mice with monocyte-specific cystatin F overexpression, we assessed the influence of monocyte-derived cystatin F on AD development. We further used a nondenaturing gel to identify the structure of the secreted cystatin F in plasma. Flow cytometry, enzyme-linked immunosorbent assays and laser scanning confocal microscopy were used to analyse the internalization of Aß by monocytes. Pull down assays, bimolecular fluorescence complementation assays and total internal reflection fluorescence microscopy were used to determine the interactions and potential interactional amino acids between the cystatin F protein and Aß. Finally, the cystatin F protein was purified and injected via the tail vein into 5XFAD mice to assess AD pathology. RESULTS: Our results demonstrated that the expression of the cystatin F protein was specifically increased in the monocytes of AD patients. Monocyte-derived cystatin F increased Aß deposition and exacerbated cognitive deficits in APP/PS1 mice. Furthermore, secreted cystatin F in the plasma of AD patients has a dimeric structure that is closely related to clinical signs of AD. Moreover, we noted that the cystatin F dimer blocks the phagocytosis of Aß by monocytes. Mechanistically, the cystatin F dimer physically interacts with Aß to inhibit its recognition and internalization by monocytes through certain amino acid interactions between the cystatin F dimer and Aß. We found that high levels of the cystatin F dimer protein in blood contributed to amyloid pathology and cognitive deficits as a risk factor in 5XFAD mice. CONCLUSIONS: Our findings highlight that the cystatin F dimer plays a crucial role in regulating Aß metabolism via its peripheral clearance pathway, providing us with a potential biomarker for diagnosis and potential target for therapeutic intervention.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Mice, Transgenic , Monocytes , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Animals , Monocytes/metabolism , Mice , Humans , Amyloid beta-Peptides/metabolism , Male , Female , Cognitive Dysfunction/metabolism , Cognitive Dysfunction/pathology , Aged , Cystatins/metabolism , Cystatins/genetics , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Aged, 80 and over , Mice, Inbred C57BL
15.
CNS Neurosci Ther ; 30(5): e14758, 2024 May.
Article in English | MEDLINE | ID: mdl-38757390

ABSTRACT

AIMS: Sepsis-associated encephalopathy (SAE) is manifested as a spectrum of disturbed cerebral function ranging from mild delirium to coma. However, the pathogenesis of SAE has not been clearly elucidated. Astrocytes play important roles in maintaining the function and metabolism of the brain. Most recently, it has been demonstrated that disorders of lipid metabolism, especially lipid droplets (LDs) dyshomeostasis, are involved in a variety of neurodegenerative diseases. The aim of this study was to investigate whether LDs are involved in the underlying mechanism of SAE. METHODS: The open field test, Y-maze test, and contextual fear conditioning test (CFCT) were used to test cognitive function in SAE mice. Lipidomics was utilized to investigate alterations in hippocampal lipid metabolism in SAE mice. Western blotting and immunofluorescence labeling were applied for the observation of related proteins. RESULTS: In the current study, we found that SAE mice showed severe cognitive dysfunction, including spatial working and contextual memory. Meanwhile, we demonstrated that lipid metabolism was widely dysregulated in the hippocampus by using lipidomic analysis. Furthermore, western blotting and immunofluorescence confirmed that LDs accumulation in hippocampal astrocytes was involved in the pathological process of cognitive dysfunction in SAE mice. We verified that LDs can be inhibited by specifically suppress hypoxia-inducible lipid droplet-associated protein (HILPDA) in astrocytes. Meanwhile, cognitive dysfunction in SAE was ameliorated by reducing A1 astrocyte activation and inhibiting presynaptic membrane transmitter release. CONCLUSION: The accumulation of astrocytic lipid droplets plays a crucial role in the pathological process of SAE. HILPDA is an attractive therapeutic target for lipid metabolism regulation and cognitive improvement in septic patients.


Subject(s)
Astrocytes , Cognitive Dysfunction , Lipid Droplets , Mice, Inbred C57BL , Sepsis-Associated Encephalopathy , Animals , Lipid Droplets/metabolism , Sepsis-Associated Encephalopathy/metabolism , Astrocytes/metabolism , Cognitive Dysfunction/metabolism , Cognitive Dysfunction/etiology , Mice , Male , Hippocampus/metabolism , Lipid Metabolism/physiology , Maze Learning/physiology
16.
J Ethnopharmacol ; 330: 118205, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-38641079

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Ginseng is a valuable herb in traditional Chinese medicine. Modern research has shown that it has various benefits, including tonifying vital energy, nourishing and strengthening the body, calming the mind, improving cognitive function, regulating fluids, and returning blood pressure, etc. Rg1 is a primary active component of ginseng. It protects hippocampal neurons, improves synaptic plasticity, enhances cognitive function, and boosts immunity. Furthermore, it exhibits anti-aging and anti-fatigue properties and holds great potential for preventing and managing neurodegenerative diseases (NDDs). AIM OF THE STUDY: The objective of this study was to examine the role of Rg1 in treating chronic inflammatory NDDs and its molecular mechanisms. MATERIALS AND METHODS: In vivo, we investigated the protective effects of Rg1 against chronic neuroinflammation and cognitive deficits in mice induced by 200 µg/kg lipopolysaccharide (LPS) for 21 days using behavioral tests, pathological sections, Western blot, qPCR and immunostaining. In vitro experiments involved the stimulation of HT22 cells with 10 µg/ml of LPS, verification of the therapeutic effect of Rg1, and elucidation of its potential mechanism of action using H2DCFDA staining, BODIPY™ 581/591 C11, JC-1 staining, Western blot, and immunostaining. RESULTS: Firstly, it was found that Rg1 significantly improved chronic LPS-induced behavioral and cognitive dysfunction in mice. Further studies showed that Rg1 significantly attenuated LPS-induced neuronal damage by reducing levels of IL-6, IL-1ß and ROS, and inhibiting AIM2 inflammasome. Furthermore, chronic LPS exposure induced the onset of neuronal ferroptosis by increasing the lipid peroxidation product MDA and regulating the ferroptosis-associated proteins Gpx4, xCT, FSP1, DMT1 and TfR, which were reversed by Rg1 treatment. Additionally, Rg1 was found to activate Nrf2 and its downstream antioxidant enzymes, such as HO1 and NQO1, both in vivo and in vitro. In vitro studies also showed that the Nrf2 inhibitor ML385 could inhibit the anti-inflammatory, antioxidant, and anti-ferroptosis effects of Rg1. CONCLUSIONS: This study demonstrated that Rg1 administration ameliorated chronic LPS-induced cognitive deficits and neuronal ferroptosis in mice by inhibiting neuroinflammation and oxidative stress. The underlying mechanisms may be related to the inhibition of AIM2 inflammasome and activation of Nrf2 signaling. These findings provide valuable insights into the treatment of chronic neuroinflammation and associated NDDs.


Subject(s)
Cognitive Dysfunction , Ferroptosis , Ginsenosides , NF-E2-Related Factor 2 , Neurons , Signal Transduction , Animals , Ginsenosides/pharmacology , NF-E2-Related Factor 2/metabolism , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/metabolism , Signal Transduction/drug effects , Mice , Male , Ferroptosis/drug effects , Neurons/drug effects , Neurons/metabolism , Lipopolysaccharides/toxicity , Mice, Inbred C57BL , Inflammation/drug therapy , Inflammation/metabolism , Neuroinflammatory Diseases/drug therapy , Neuroinflammatory Diseases/metabolism , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Cell Line , Anti-Inflammatory Agents/pharmacology , DNA-Binding Proteins
17.
Sheng Li Xue Bao ; 76(2): 266-288, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38658376

ABSTRACT

Irisin, a peptide produced during exercise, is believed to play a role in regulating energy levels within the body. Moreover, Irisin has the ability to traverse the blood-brain barrier and engage in various pathophysiological processes within the central nervous system. An increasing body of research identifies Irisin as a significant therapeutic target for neurodegenerative diseases, indicating a strong link between Irisin and the development of cognitive impairments. In this paper, we present a concise review of effects of different types of exercise on Irisin production, and the mechanisms underlying the Irisin's intervention in various diseases including metabolic diseases, kidney injury and depression. Following this, we delve into an in-depth exploration of its role in modulating cognitive dysfunction among patients with Alzheimer's disease (AD), focusing on recent advancements in three critical areas: neuroinflammation, mitochondrial dysfunction, and protein misfolding. Finally, we put forth 3 hypotheses: (1) exercise-induced fibronectin type III domain containing protein 5 (FNDC5) stimulation and subsequent Irisin cleavage may be associated with the stress response in energy metabolism; (2) Irisin, as a myokine, likely plays a role in mitochondrial repair mechanisms to ameliorate cognitive impairment in AD patients; (3) Irisin is a homeostatic factor that maintains energy homeostasis and is closely related to the dynamic stability of the body's internal environment.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Exercise , Fibronectins , Humans , Alzheimer Disease/metabolism , Fibronectins/metabolism , Cognitive Dysfunction/etiology , Cognitive Dysfunction/metabolism , Cognitive Dysfunction/physiopathology , Exercise/physiology , Animals , Mitochondria/metabolism
18.
J Alzheimers Dis ; 99(1): 279-290, 2024.
Article in English | MEDLINE | ID: mdl-38669532

ABSTRACT

Background: Impaired glymphatic flow on the Alzheimer's disease (AD) spectrum may be evaluated using diffusion tensor image analysis along the perivascular space (DTI-ALPS). Objective: We aimed to validate impaired glymphatic flow and explore its association with gray matter volume, cognitive status, and cerebral amyloid deposition on the AD spectrum. Methods: 80 participants (mean age, 76.9±8.5 years; 57 women) with AD (n = 65) and cognitively normal (CN) (n = 15) who underwent 3T brain MRI including DTI and/or amyloid PET were included. After adjusting for age, sex, apolipoprotein E status, and burden of white matter hyperintensities, the ALPS-index was compared according to the AD spectrum. The association between the ALPS-index and gray matter volume, cognitive status, and quantitative amyloid from PET was assessed. Results: The ALPS-index in the AD was significantly lower (mean, 1.476; 95% CI, 1.395-1.556) than in the CN (1.784;1.615-1.952; p = 0.026). Volumes of the entorhinal cortex, hippocampus, temporal pole, and primary motor cortex showed significant associations with the ALPS-index (all, p < 0.05). There was a positive correlation between the ALPS-index and MMSE score (partial r = 0.435; p < 0.001), but there was no significant correlation between the ALPS-index and amyloid SUVRs (all, p > 0.05). Conclusions: Decreased glymphatic flow measured by DTI-ALPS in AD may serve as a marker of neurodegeneration correlating with structural atrophy and cognitive decline.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Diffusion Tensor Imaging , Glymphatic System , Gray Matter , Positron-Emission Tomography , Humans , Female , Male , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/pathology , Alzheimer Disease/metabolism , Aged , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/metabolism , Cognitive Dysfunction/pathology , Gray Matter/diagnostic imaging , Gray Matter/pathology , Gray Matter/metabolism , Glymphatic System/diagnostic imaging , Glymphatic System/pathology , Glymphatic System/metabolism , Aged, 80 and over , Brain/diagnostic imaging , Brain/pathology , Brain/metabolism
19.
J Alzheimers Dis ; 99(1): 417-427, 2024.
Article in English | MEDLINE | ID: mdl-38669550

ABSTRACT

Background: Within older Veterans, multiple factors may contribute to cognitive difficulties. Beyond Alzheimer's disease (AD), psychiatric (e.g., PTSD) and health comorbidities (e.g., TBI) may also impact cognition. Objective: This study aimed to derive subgroups based on objective cognition, subjective cognitive decline (SCD), and amyloid burden, and then compare subgroups on clinical characteristics, biomarkers, and longitudinal change in functioning and global cognition. Methods: Cluster analysis of neuropsychological measures, SCD, and amyloid PET was conducted on 228 predominately male Vietnam-Era Veterans from the Department of Defense-Alzheimer's Disease Neuroimaging Initiative. Cluster-derived subgroups were compared on baseline characteristics as well as 1-year changes in everyday functioning and global cognition. Results: The cluster analysis identified 3 groups. Group 1 (n = 128) had average-to-above average cognition with low amyloid burden. Group 2 (n = 72) had the lowest memory and language, highest SCD, and average amyloid burden; they also had the most severe PTSD, pain, and worst sleep quality. Group 3 (n = 28) had the lowest attention/executive functioning, slightly low memory and language, elevated amyloid and the worst AD biomarkers, and the fastest rate of everyday functioning and cognitive decline. CONCLUSIONS: Psychiatric and health factors likely contributed to Group 2's low memory and language performance. Group 3 was most consistent with biological AD, yet attention/executive function was the lowest score. The complexity of older Veterans' co-morbid conditions may interact with AD pathology to show attention/executive dysfunction (rather than memory) as a prominent early symptom. These results could have important implications for the implementation of AD-modifying drugs in older Veterans.


Subject(s)
Amyloid beta-Peptides , Cognition , Cognitive Dysfunction , Neuropsychological Tests , Veterans , Humans , Male , Veterans/psychology , Aged , Female , Longitudinal Studies , Cognitive Dysfunction/metabolism , Amyloid beta-Peptides/metabolism , Cognition/physiology , Positron-Emission Tomography , Phenotype , Cluster Analysis , Aged, 80 and over , Middle Aged
20.
Neuropharmacology ; 253: 109969, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38688422

ABSTRACT

This study aimed to develop polysorbate 80-coated chitosan nanoparticles (PS80/CS NPs) as a delivery system for improved brain targeting of α-Melanocyte Stimulating Hormone analog (NDP-MSH). Chitosan nanoparticles loaded with NDP-MSH were surface-modified with polysorbate 80 ([NDP-MSH]-PS80/CS NP), which formed a flattened layer on their surface. Nanoparticle preparation involved ionic gelation, followed by characterization using scanning electron microscopy (SEM) for morphology, dynamic light scattering (DLS) for colloidal properties, and ATR-FTIR spectroscopy for structure. Intraperitoneal injection of FITC-PS80/CS NPs and [NDP-MSH]-PS80/CS NP in rats demonstrated their ability to cross the blood-brain barrier, reach the brain, and accumulate in CA1 neurons of the dorsal hippocampus within 2 h. Two experimental models of neuroinflammation were employed with Male Wistar rats: a short-term model involving high-fat diet (HFD) consumption for 5 days followed by an immune stimulus with LPS, and a long-term model involving HFD consumption for 8 weeks. In both models, [NDP-MSH]-PS80/CS NPs could reverse the decreased expression of contextual fear memory induced by the diets. These findings suggest that [NDP-MSH]-PS80/CS NPs offer a promising strategy to overcome the limitations of NDP-MSH regarding pharmacokinetics and enzymatic stability. By facilitating NDP-MSH delivery to the hippocampus, these nanoparticles can potentially mitigate the cognitive impairments associated with HFD consumption and neuroinflammation.


Subject(s)
Brain , Chitosan , Cognitive Dysfunction , Diet, High-Fat , Nanoparticles , Polysorbates , Rats, Wistar , alpha-MSH , Animals , Chitosan/administration & dosage , Chitosan/chemistry , Male , alpha-MSH/administration & dosage , alpha-MSH/analogs & derivatives , Polysorbates/chemistry , Polysorbates/administration & dosage , Cognitive Dysfunction/metabolism , Cognitive Dysfunction/drug therapy , Nanoparticles/administration & dosage , Diet, High-Fat/adverse effects , Brain/metabolism , Brain/drug effects , Neuroinflammatory Diseases/metabolism , Neuroinflammatory Diseases/drug therapy , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...