Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 17.169
Filter
2.
Iran J Med Sci ; 49(5): 332-338, 2024 May.
Article in English | MEDLINE | ID: mdl-38751870

ABSTRACT

The present study aimed to investigate secondary bacterial infections among patients infected with severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Coagulase-negative Staphylococci can infect immunocompromised patients. Linezolid resistance among Staphylococcus epidermidis is one of the most critical issues. In 2019, 185 SARS-CoV-2-positive patients who were admitted to North Khorasan Province Hospital (Bojnurd, Iran), were investigated. Patients having positive SARS-CoV-2 reverse transcriptase real-time polymerase chain reaction (RT-PCR) test results, who had a history of intubation, mechanical ventilation, and were hospitalized for more than 48 hours were included. After microbiological evaluation of pulmonary samples, taken from intubated patients with clinical manifestation of pneumonia, co-infections were found in 11/185 patients (5.94%) with S. epidermidis, Staphylococcus aureus, and Acinetobacter baumani, respectively. Remarkably, seven out of nine S. epidermidis isolates were linezolid resistant. Selected isolates were characterized using antimicrobial resistance patterns and molecular methods, such as Staphylococcal cassette chromosome mec (SCCmec) typing, and gene detection for ica, methicillin resistance (mecA), vancomycin resistance (vanA), and chloramphenicol-florfenicol resistance (cfr) genes. All of the isolates were resistant to methicillin, and seven isolates were resistant to linezolid. Nine out of 11 isolated belonged to the SCCmec I, while two belonged to the SCCmec IV. It should be noted that all patients had the underlying disease, and six patients had already passed away. The increasing linezolid resistance in bacterial strains becomes a real threat to patients, and monitoring such infections, in conjunction with surveillance and infection prevention programs, is very critical for reducing the number of linezolid-resistant Staphylococcal strains. A preprint of this study was published at https://europepmc.org/article/ppr/ppr417742.


Subject(s)
COVID-19 , Linezolid , Staphylococcal Infections , Staphylococcus epidermidis , Humans , Linezolid/pharmacology , Linezolid/therapeutic use , Staphylococcus epidermidis/drug effects , Iran/epidemiology , COVID-19/epidemiology , Male , Female , Staphylococcal Infections/drug therapy , Staphylococcal Infections/epidemiology , Middle Aged , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Aged , Coinfection/epidemiology , Coinfection/drug therapy , Coinfection/microbiology , Drug Resistance, Bacterial/drug effects , Adult , SARS-CoV-2 , Microbial Sensitivity Tests/methods
3.
Bratisl Lek Listy ; 125(6): 360-364, 2024.
Article in English | MEDLINE | ID: mdl-38757592

ABSTRACT

Lyme disease. Our second goal was to identify bacterial and viral co-infections occurring concurrently with Lyme disease. Furthermore, it was our intention to also analyze the correlation of laboratory testing with the occurrence of erythema migrans (EM). BACKGROUND: The accuracy in diagnostic testing for Lyme disease in the early stages of infection is an important factor necessary for delivering proper treatment to patients. METHODS: A total of 173 individuals with confirmed Lyme disease or with laboratory testing underway participated in the quantitative survey. RESULTS: ELISA was the first test conducted in 51% of the respondents, 28% of whom yielded positive findings of both IgM and IgG antibody classes. The positivity of ELISA test findings was confirmed by Western blot in 100% of results. Negative results of ELISA were consistent with Western blot only in less than half of the patients. More than half of the respondents had not been tested for any bacterial or viral co-infections. The results of serological testing were not consistent with clinical findings in all cases, including those with clinically discernible skin manifestation of erythema migrans. CONCLUSION: The comparison of results obtained by ELISA and Western blot revealed significant discrepancies. Simultaneous infections by vectors with several pathogens were detected (Tab. 3, Fig. 2, Ref. 15).


Subject(s)
Blotting, Western , Enzyme-Linked Immunosorbent Assay , Lyme Disease , Humans , Lyme Disease/diagnosis , Female , Male , Adult , Middle Aged , Immunoglobulin M/blood , Coinfection/diagnosis , Surveys and Questionnaires , Antibodies, Bacterial/blood , Immunoglobulin G/blood , Adolescent , Young Adult , Aged , Child , Erythema Chronicum Migrans/diagnosis
4.
Commun Biol ; 7(1): 559, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38734859

ABSTRACT

In nature, parasite species often coinfect the same host. Yet, it is not clear what drives the natural dynamics of coinfection prevalence. The prevalence of coinfections might be affected by interactions among coinfecting species, or simply derive from parasite diversity. Identifying the relative impact of these parameters is crucial for understanding patterns of coinfections. We studied the occurrence and likelihood of coinfections in natural populations of water fleas (Daphnia magna). Coinfection prevalence was within the bounds expected by chance and parasite diversity had a strong positive effect on the likelihood of coinfections. Additionally, coinfection prevalence increased over the season and became as common as a single infection. Our results demonstrate how patterns of coinfection, and particularly their temporal variation, are affected by overlapping epidemics of different parasites. We suggest that monitoring parasite diversity can help predict where and when coinfection prevalence will be high, potentially leading to increased health risks to their hosts.


Subject(s)
Coinfection , Host-Parasite Interactions , Animals , Coinfection/epidemiology , Coinfection/parasitology , Daphnia/microbiology , Daphnia/parasitology , Prevalence , Seasons , Biodiversity , Siphonaptera
5.
J Prev Med Hyg ; 65(1): E11-E16, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38706768

ABSTRACT

Introduction: The 2021/2022 influenza season was not characterised by a well-defined incidence peak. As reported by the Italian National Institute of Health, a high value of incidence of influenza cases was recorded in week 13, but it was still lower than in other influenza seasons. This abnormal circulation was probably due to relaxation of the COVID-19 pandemic restriction measures, such as social distancing, smart-working, home leaning and the use of masks, which greatly reduced the circulation of respiratory-transmitted viruses, including human respiratory syncytial virus (HRSV). The symptoms of SARS-CoV-2 and influenza are quite similar, sharing the human-to-human transmission route via respiratory droplets. Methods: The aim of this study was to estimate the rate of coinfection with influenza viruses and/or HRSV in SARS-CoV-2-positive subjects (N = 940) in a population of central Italy during the 2021/2022 season. Results: A total of 54 cases of coinfection were detected during the study period, 51 cases (5.4%) of SARS-CoV-2 and influenza virus and three cases (0.3%) of SARS-CoV-2 and HRSV coinfection. Conclusions: These results highlight the importance of continuous monitoring of the circulation of influenza virus and other respiratory viruses in the context of the COVID-19 pandemic.


Subject(s)
COVID-19 , Coinfection , Influenza, Human , SARS-CoV-2 , Humans , Italy/epidemiology , COVID-19/epidemiology , Influenza, Human/epidemiology , Coinfection/epidemiology , Female , Adult , Male , Child , Middle Aged , Child, Preschool , Adolescent , Aged , Seasons , Infant , Young Adult , Incidence , Respiratory Syncytial Virus Infections/epidemiology
6.
PLoS Pathog ; 20(5): e1011675, 2024 May.
Article in English | MEDLINE | ID: mdl-38696531

ABSTRACT

Persons living with HIV are known to be at increased risk of developing tuberculosis (TB) disease upon infection with Mycobacterium tuberculosis (Mtb). However, it has remained unclear how HIV co-infection affects subsequent Mtb transmission from these patients. Here, we customized a Bayesian phylodynamic framework to estimate the effects of HIV co-infection on the Mtb transmission dynamics from sequence data. We applied our model to four Mtb genomic datasets collected in sub-Saharan African countries with a generalized HIV epidemic. Our results confirm that HIV co-infection is a strong risk factor for developing active TB. Additionally, we demonstrate that HIV co-infection is associated with a reduced effective reproductive number for TB. Stratifying the population by CD4+ T-cell count yielded similar results, suggesting that, in this context, CD4+ T-cell count is not a better predictor of Mtb transmissibility than HIV infection status alone. Together, our genome-based analyses complement observational household contact studies, and more firmly establish the negative association between HIV co-infection and Mtb transmissibility.


Subject(s)
Coinfection , HIV Infections , Mycobacterium tuberculosis , Tuberculosis , Humans , Africa South of the Sahara/epidemiology , HIV Infections/complications , HIV Infections/transmission , HIV Infections/epidemiology , Coinfection/microbiology , Coinfection/epidemiology , Tuberculosis/epidemiology , Tuberculosis/transmission , Tuberculosis/microbiology , Male , CD4 Lymphocyte Count , Female , Bayes Theorem , Adult , Risk Factors
7.
J Immunol Res ; 2024: 6343757, 2024.
Article in English | MEDLINE | ID: mdl-38715844

ABSTRACT

This study aims to explore the influence of coinfection with HCV and HIV on hepatic fibrosis. A coculture system was set up to actively replicate both viruses, incorporating CD4 T lymphocytes (Jurkat), hepatic stellate cells (LX-2), and hepatocytes (Huh7.5). LX-2 cells' susceptibility to HIV infection was assessed through measurements of HIV receptor expression, exposure to cell-free virus, and cell-to-cell contact with HIV-infected Jurkat cells. The study evaluated profibrotic parameters, including programed cell death, ROS imbalance, cytokines (IL-6, TGF-ß, and TNF-α), and extracellular matrix components (collagen, α-SMA, and MMP-9). The impact of HCV infection on LX-2/HIV-Jurkat was examined using soluble factors released from HCV-infected hepatocytes. Despite LX-2 cells being nonsusceptible to direct HIV infection, bystander effects were observed, leading to increased oxidative stress and dysregulated profibrotic cytokine release. Coculture with HIV-infected Jurkat cells intensified hepatic fibrosis, redox imbalance, expression of profibrotic cytokines, and extracellular matrix production. Conversely, HCV-infected Huh7.5 cells exhibited elevated profibrotic gene transcriptions but without measurable effects on the LX-2/HIV-Jurkat coculture. This study highlights how HIV-infected lymphocytes worsen hepatic fibrosis during HCV/HIV coinfection. They increase oxidative stress, profibrotic cytokine levels, and extracellular matrix production in hepatic stellate cells through direct contact and soluble factors. These insights offer valuable potential therapies for coinfected individuals.


Subject(s)
Bystander Effect , Coculture Techniques , Coinfection , Cytokines , HIV Infections , Hepacivirus , Hepatic Stellate Cells , Hepatitis C , Liver Cirrhosis , Humans , Hepatic Stellate Cells/metabolism , HIV Infections/complications , HIV Infections/metabolism , HIV Infections/virology , HIV Infections/immunology , Hepacivirus/physiology , Hepatitis C/metabolism , Hepatitis C/virology , Hepatitis C/complications , Hepatitis C/immunology , Jurkat Cells , Liver Cirrhosis/metabolism , Liver Cirrhosis/pathology , Liver Cirrhosis/virology , Liver Cirrhosis/etiology , Cytokines/metabolism , Hepatocytes/metabolism , Hepatocytes/virology , HIV/physiology , Oxidative Stress , Cell Communication , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , Extracellular Matrix/metabolism
8.
Front Immunol ; 15: 1361277, 2024.
Article in English | MEDLINE | ID: mdl-38711522

ABSTRACT

In the late stages of the COVID-19 pandemic, there's an increasing trend in opportunistic infections, including bacterial and fungal infections. This study discusses the treatment process of two cases of cryptococcal meningitis during the COVID-19 pandemic. It highlights the importance of laboratory testing for these co-infections and stresses the need for vigilance, early diagnosis, and proactive treatment to improve patient outcomes in the post-pandemic era.


Subject(s)
Antifungal Agents , COVID-19 , Meningitis, Cryptococcal , SARS-CoV-2 , Humans , Meningitis, Cryptococcal/drug therapy , Meningitis, Cryptococcal/diagnosis , COVID-19/complications , COVID-19/epidemiology , Male , Antifungal Agents/therapeutic use , Middle Aged , Female , Coinfection , Adult , Cryptococcus neoformans/isolation & purification , Treatment Outcome
9.
Sci Rep ; 14(1): 10660, 2024 05 09.
Article in English | MEDLINE | ID: mdl-38724525

ABSTRACT

Influenza Like Illness (ILI) and Severe Acute Respiratory Infection (SARI) cases are more prone to Influenza and SARS-CoV-2 infection. Accordingly, we genetically characterized Influenza and SARS-CoV-2 in 633 ILI and SARI cases by rRT-PCR and WGS. ILI and SARI cases showed H1N1pdm09 prevalence of 20.9% and 23.2% respectively. 135 (21.3%) H1N1pdm09 and 23 (3.6%) H3N2 and 5 coinfection (0.78%) of H1N1pdm09 and SARS-CoV-2 were detected. Phylogenetic analysis revealed H1N1pdm09 resemblance to clade 6B.1A.5a.2 and their genetic relatedness to InfA/Perth/34/2020, InfA/Victoria/88/2020 and InfA/Victoria/2570/2019. Pan 24 HA and 26 NA nonsynonymous mutations and novel HA (G6D, Y7F, Y78H, P212L, G339R, T508K and S523T) and NA (S229A) mutations were observed. S74R, N129D, N156K, S162N, K163Q and S164T alter HA Cb and Sa antibody recognizing site. Similarly, M19T, V13T substitution and multiple mutations in transmembrane and NA head domain drive antigenic drift. SARS-CoV-2 strains genetically characterized to Omicron BA.2.75 lineage containing thirty nonsynonymous spike mutations exhibited enhanced virulence and transmission rates. Coinfection although detected very minimal, the mutational changes in H1N1pdm09 and SARS-CoV-2 virus infected individuals could alter antibody receptor binding sites, allowing the viruses to escape immune response resulting in better adaptability and transmission. Thus continuous genomic surveillance is required to tackle any future outbreak.


Subject(s)
COVID-19 , Influenza A Virus, H1N1 Subtype , Influenza, Human , Phylogeny , SARS-CoV-2 , Humans , Influenza A Virus, H1N1 Subtype/genetics , SARS-CoV-2/genetics , Influenza, Human/virology , Influenza, Human/epidemiology , COVID-19/virology , COVID-19/epidemiology , Adult , Middle Aged , Male , Female , Adolescent , Young Adult , Genome, Viral/genetics , Aged , Coinfection/virology , Coinfection/epidemiology , Child , Child, Preschool , Severe Acute Respiratory Syndrome/virology , Severe Acute Respiratory Syndrome/epidemiology , Mutation , Infant
10.
Influenza Other Respir Viruses ; 18(5): e13310, 2024 May.
Article in English | MEDLINE | ID: mdl-38725276

ABSTRACT

BACKGROUND: A variety of viruses can cause acute respiratory infections (ARIs), resulting in a high disease burden worldwide. To explore the dominant viruses and their prevalence characteristics in children with ARIs, comprehensive surveillance was carried out in the Pudong New Area of Shanghai. METHODS: Between January 2013 and December 2022, the basic and clinical information, and respiratory tract specimens of 0-14 years old children with ARIs were collected in five sentinel hospitals in Shanghai Pudong. Each specimen was tested for eight respiratory viruses, and the positive rates of different age groups, case types (inpatient or outpatient) were analyzed. RESULTS: In our study, 30.67% (1294/4219) children with ARIs were positive for at least one virus. Influenza virus (IFV) was the most commonly detected respiratory virus (349/4219, 8.27%), followed by respiratory syncytial virus (RSV) (217/4219, 5.14%), para-influenza virus (PIV) (215/4219, 5.10%), and human coronavirus (HCoV, including 229E, OC43, NL63, and HKU1) (184/4219, 4.36%). IFV was the leading respiratory virus in outpatients aged 5-14 years (201/1673, 12.01%); RSV was the most prevalent respiratory virus in both inpatients (61/238, 25.63%) and outpatients (4/50, 8.00%) for ARI patients aged <6 months old. For PIV, HMPV, HCoV, and HRV, the risk of infection usually was higher among young children. Co-infection with more than two viruses was seen in 3.25% (137/4219). CONCLUSIONS: IFV and RSV played important roles in ARIs among children, but the risk populations were different. There are needs for targeted diagnosis and treatment and necessary immunization and non-pharmaceutical interventions.


Subject(s)
Respiratory Tract Infections , Humans , China/epidemiology , Child, Preschool , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/virology , Child , Infant , Male , Adolescent , Female , Prevalence , Infant, Newborn , Viruses/isolation & purification , Viruses/classification , Virus Diseases/epidemiology , Virus Diseases/virology , Coinfection/epidemiology , Coinfection/virology , Respiratory Syncytial Virus Infections/epidemiology , Respiratory Syncytial Virus Infections/virology , Acute Disease/epidemiology
11.
BMC Infect Dis ; 24(1): 460, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38693473

ABSTRACT

BACKGROUND: Existing research in Ethiopia has primarily focused on the individual epidemiology of HIV and HBV, often overlooking the intricate dynamics of co-infection. This study aims to address this gap by comprehensively exploring the prevalence of HBV and HIV co-infection and the associated factors influencing co-infection rates within the specific context of ART clinics. The existing study provides limited insights into the unique challenges posed by this dual infection in the Ethiopian population receiving ART. METHODS: An institutional-based cross-sectional study was conducted among people living with HIV aged 18 years and above attending ART clinics in northeast Ethiopia from April to May 2022. A sample size of 350(97% response rate) participants was selected by using a systematic random sampling method. Data were collected using a pre-tested interviewer-administered structured questionnaire. Data was entered into Epi Data version software and was exported to SPSS version 25 for further analysis. Descriptive statistics using Frequency, proportion, and summary measures were done. Binary logistic regressions were done to identify independent variables associated with HBV infection among HIV patients. A P-value less than 0.05 and adjusted odds ratio with a 95% confidence interval non-inclusive of one was considered statistically significant. RESULTS: The prevalence of Hepatitis B Surface Antigen (HBsAg) was identified constituting 7.14% of the study population. Females [AOR] 0.14; 95% Confidence Interval [CI] [0.041-0.478]). Participants with an educational status of only reading and writing (AOR 8.7; 95% CI [1.143-66.5]). Single individuals (AOR 2.04; 95% CI [1.346-28.6]) were associated factors. Moreover, participants with a viral load exceeding 1000 copies/ml were 6.5 times more likely to be infected with HBV compared to those with undetectable viral loads (AOR 6.53, 95% CI [1.87-22.72]). Additionally, individuals with a CD4 count ranging from 351 to 500 cells/ml were 1.2 times more likely to be infected with HBV compared to those with a CD4 count of 500 cells/ml or above (AOR 10.4, 95% CI [1.28-85]). CONCLUSION: The prevalence of HBV infection was found to be intermediate in HIV-infected patients in the study area. Being male, marital status of single and divorced, educational level was only read and written, current viral load of > 1000 copies/ml &<1000 copies/ml, and current CD4 < 250 cells/ml were found statistically associated factors for HBV infection. Thus, we recommend the provision of routine screening for HBsAg and appropriate treatment with accurate information on risk factors for HBV to improve quality of life and reduce morbidity.


Subject(s)
Coinfection , HIV Infections , Hepatitis B , Humans , Ethiopia/epidemiology , Female , HIV Infections/epidemiology , HIV Infections/drug therapy , HIV Infections/complications , Male , Adult , Cross-Sectional Studies , Hepatitis B/epidemiology , Coinfection/epidemiology , Coinfection/virology , Prevalence , Middle Aged , Young Adult , Adolescent , Risk Factors , Hepatitis B Surface Antigens/blood , Hepatitis B virus
12.
BMC Public Health ; 24(1): 1208, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38693499

ABSTRACT

The recalcitrance of Mycobacterium tuberculosis (MTB) to eradication was related to achieving a nonreplicating (dormant) state and the increasing global burden of HIV coinfection. Consequently, understanding the knowledge and perception of the population at risk of tuberculosis-HIV infection is essential to designing a strategy of intervention embraced by the target population. A cross-sectional study was conducted among Nomads in Adamawa State, Nigeria. A multistage sampling technique was employed to recruit consented participants. Self-administered questionnaires were used to gather the required information from 4 nomadic schoolteachers in each selected school. Data were entered into a Microsoft Excel sheet where trends and tables of collated data were developed. The findings show that only 13.5% of the participants expressed the correct perceptions of the complementary relationship between HIV and TB. More people in government employment (35%) understand the coexisting relationship of TB-HIV infections. At the same time, cattle herders and crop farmers who practice the prevalent occupation lack knowledge of TB-HIV relatedness. Across gender, only a proportion of males (14.8%) than females (10.5%) were more likely to show an understanding of the complementary association of HIV and TB, and this difference showed statistical significance (p = 0.0001). In conclusion, male gender, education at a degree or professional level, and employment with the government are factors associated with positive perceptions of TB/HIV relatedness. Thus, there is a need to intensify communication to educate Nomads on HIV and TB-related issues.


Subject(s)
HIV Infections , Health Knowledge, Attitudes, Practice , Tuberculosis , Humans , Nigeria/epidemiology , Male , Female , HIV Infections/epidemiology , HIV Infections/psychology , Cross-Sectional Studies , Adult , Tuberculosis/epidemiology , Tuberculosis/psychology , Middle Aged , Young Adult , Surveys and Questionnaires , Comorbidity , Coinfection/epidemiology , Adolescent
13.
HIV Res Clin Pract ; 25(1): 2348935, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38701396

ABSTRACT

BACKGROUND: Tuberculosis (TB) poses a significant risk to people with HIV (PWH), with heightened incidence and prevalence rates, especially in countries with a high TB burden. This study assesses the prevalence and incidence rates of TB among PWH during the COVID-19 pandemic, and on treatment outcomes in TB-HIV co-infections. METHODS: A retrospective study was conducted at Suddhavej Hospital, Faculty of Medicine, Mahasarakham University, Maha Sarakham, Thailand, from January 2020 to September 2023, involving newly diagnosed adult PWH. Data were collected on TB prevalence and incidence rates, with TB cases categorized as definite or possible. The primary outcomes were TB prevalence and incidence rates per 100,000 person-years of follow-up. RESULTS: Among 171 newly diagnosed PWH, the prevalence of TB was 5.85%, with an incidence rate of 4,568.71 per 100,000 person-years. All but one TB cases were diagnosed before antiretroviral therapy (ART) initiation. There was no incident TB during the follow-up period during ART. Nearly half of the TB cases required therapeutic trials without microbiological confirmation. CONCLUSIONS: The study revealed a high prevalence and incidence rate of TB among PWH during the COVID-19 pandemic, comparable to pre-pandemic rates in Thailand. The findings highlight the necessity of comprehensive TB screening prior to ART initiation and the cautious implementation of universal TB preventive therapy. The use of molecular diagnostics, in addition to symptom screening, can enhance TB diagnosis among PWH, though accessibility remains an issue in many regions.


Subject(s)
COVID-19 , Coinfection , HIV Infections , SARS-CoV-2 , Tuberculosis , Humans , Retrospective Studies , Thailand/epidemiology , Incidence , COVID-19/epidemiology , Male , Female , HIV Infections/epidemiology , HIV Infections/complications , Adult , Prevalence , Tuberculosis/epidemiology , Middle Aged , Coinfection/epidemiology
14.
Rev Assoc Med Bras (1992) ; 70(4): e20230972, 2024.
Article in English | MEDLINE | ID: mdl-38716934

ABSTRACT

OBJECTIVE: Our objective was to determine the frequency of rotavirus, adenovirus, and rota-adenovirus co-infections and investigate the fecal leukocyte rate associated with these infections in patients with gastroenteritis. METHODS: This is a retrospective study. We identified patients who were admitted to the pediatric emergency department with acute gastroenteritis and had their stool samples tested for rotavirus and/or adenovirus antigens. Among them, we determined the individuals who underwent stool microscopy tests on the same day and recorded their results. RESULTS: A total of 1,577 patients who underwent testing for rotavirus and/or adenovirus antigens in their stool samples were identified. Among these patients, 583 individuals had concurrent fecal microscopy results. The prevalence of solely rotavirus antigen positivity was 16.4%, solely adenovirus antigen positivity was 2.9%, and rota-adenovirus co-infections were detected in 1.8% of the children. The fecal leukocyte rates in children infected with rotavirus, adenovirus, and rota-adenovirus co-infections were 4.8, 13.3, and 88.9%, respectively. CONCLUSION: The presence of fecal leukocytes was detected at a high rate in cases of viral gastroenteritis, especially in rota-adenovirus co-infections. Therefore, clinicians should not consider only bacterial pathogens in the presence of fecal leukocytes.


Subject(s)
Coinfection , Feces , Gastroenteritis , Rotavirus Infections , Humans , Gastroenteritis/virology , Gastroenteritis/epidemiology , Retrospective Studies , Feces/virology , Female , Male , Child, Preschool , Infant , Rotavirus Infections/epidemiology , Acute Disease , Coinfection/epidemiology , Child , Leukocyte Count , Adenovirus Infections, Human/epidemiology , Adenoviridae Infections/epidemiology , Leukocytes , Rotavirus/isolation & purification , Rotavirus/immunology , Adenoviridae/isolation & purification
15.
Front Cell Infect Microbiol ; 14: 1395239, 2024.
Article in English | MEDLINE | ID: mdl-38774626

ABSTRACT

Background: Traditional microbiological detection methods used to detect pulmonary infections in people living with HIV (PLHIV) are usually time-consuming and have low sensitivity, leading to delayed treatment. We aimed to evaluate the diagnostic value of metagenomics next-generation sequencing (mNGS) for microbial diagnosis of suspected pulmonary infections in PLHIV. Methods: We retrospectively analyzed PLHIV who were hospitalized due to suspected pulmonary infections at the sixth people hospital of Zhengzhou from November 1, 2021 to June 30, 2022. Bronchoalveolar lavage fluid (BALF) samples of PLHIV were collected and subjected to routine microbiological examination and mNGS detection. The diagnostic performance of the two methods was compared to evaluate the diagnostic value of mNGS for unknown pathogens. Results: This study included a total of 36 PLHIV with suspected pulmonary infections, of which 31 were male. The reporting period of mNGS is significantly shorter than that of CMTs. The mNGS positive rate of BALF samples in PLHIV was 83.33%, which was significantly higher than that of smear and culture (44.4%, P<0.001). In addition, 11 patients showed consistent results between the two methods. Futhermore, mNGS showed excellent performance in identifying multi-infections in PLHIV, and 27 pathogens were detected in the BALF of 30 PLHIV by mNGS, among which 15 PLHIV were found to have multiple microbial infections (at least 3 pathogens). Pneumocystis jirovecii, human herpesvirus type 5, and human herpesvirus type 4 were the most common pathogen types. Conclusions: For PLHIV with suspected pulmonary infections, mNGS is capable of rapidly and accurately identifying the pathogen causing the pulmonary infection, which contributes to implement timely and accurate anti-infective treatment.


Subject(s)
Bronchoalveolar Lavage Fluid , HIV Infections , High-Throughput Nucleotide Sequencing , Metagenomics , Humans , High-Throughput Nucleotide Sequencing/methods , Metagenomics/methods , Male , Female , HIV Infections/complications , HIV Infections/virology , Retrospective Studies , Bronchoalveolar Lavage Fluid/microbiology , Bronchoalveolar Lavage Fluid/virology , Adult , Middle Aged , China , Coinfection/diagnosis , Coinfection/microbiology , Coinfection/virology , Respiratory Tract Infections/diagnosis , Respiratory Tract Infections/virology , Respiratory Tract Infections/microbiology
16.
Emerg Infect Dis ; 30(6): 1088-1095, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38781685

ABSTRACT

The characteristics of severe human parainfluenza virus (HPIV)-associated pneumonia in adults have not been well evaluated. We investigated epidemiologic and clinical characteristics of 143 patients with severe HPIV-associated pneumonia during 2010-2019. HPIV was the most common cause (25.2%) of severe virus-associated hospital-acquired pneumonia and the third most common cause (15.7%) of severe virus-associated community-acquired pneumonia. Hematologic malignancy (35.0%), diabetes mellitus (23.8%), and structural lung disease (21.0%) were common underlying conditions. Co-infections occurred in 54.5% of patients admitted to an intensive care unit. The 90-day mortality rate for HPIV-associated pneumonia was comparable to that for severe influenza virus-associated pneumonia (55.2% vs. 48.4%; p = 0.22). Ribavirin treatment was not associated with lower mortality rates. Fungal co-infections were associated with 82.4% of deaths. Clinicians should consider the possibility of pathogenic co-infections in patients with HPIV-associated pneumonia. Contact precautions and environmental cleaning are crucial to prevent HPIV transmission in hospital settings.


Subject(s)
Community-Acquired Infections , Tertiary Care Centers , Humans , Male , Female , Middle Aged , Community-Acquired Infections/epidemiology , Community-Acquired Infections/virology , Republic of Korea/epidemiology , Aged , Adult , Healthcare-Associated Pneumonia/epidemiology , Pneumonia, Viral/epidemiology , Pneumonia, Viral/mortality , Coinfection/epidemiology , Paramyxoviridae Infections/epidemiology , Paramyxoviridae Infections/mortality , History, 21st Century , Cross Infection/epidemiology , Young Adult , Aged, 80 and over
17.
PLoS Negl Trop Dis ; 18(5): e0012136, 2024 May.
Article in English | MEDLINE | ID: mdl-38739637

ABSTRACT

BACKGROUND: Tuberculosis (TB) and COVID-19 co-infection poses a significant global health challenge with increased fatality rates and adverse outcomes. However, the existing evidence on the epidemiology and treatment of TB-COVID co-infection remains limited. METHODS: This updated systematic review aimed to investigate the prevalence, fatality rates, and treatment outcomes of TB-COVID co-infection. A comprehensive search across six electronic databases spanning November 1, 2019, to January 24, 2023, was conducted. The Joanna Briggs Institute Critical Appraisal Checklist assessed risk of bias of included studies, and meta-analysis estimated co-infection fatality rates and relative risk. RESULTS: From 5,095 studies screened, 17 were included. TB-COVID co-infection prevalence was reported in 38 countries or regions, spanning both high and low TB prevalence areas. Prevalence estimates were approximately 0.06% in West Cape Province, South Africa, and 0.02% in California, USA. Treatment approaches for TB-COVID co-infection displayed minimal evolution since 2021. Converging findings from diverse studies underscored increased hospitalization risks, extended recovery periods, and accelerated mortality compared to single COVID-19 cases. The pooled fatality rate among co-infected patients was 7.1% (95%CI: 4.0% ~ 10.8%), slightly lower than previous estimates. In-hospital co-infected patients faced a mean fatality rate of 11.4% (95%CI: 5.6% ~ 18.8%). The pooled relative risk of in-hospital fatality was 0.8 (95% CI, 0.18-3.68) for TB-COVID patients versus single COVID patients. CONCLUSION: TB-COVID co-infection is increasingly prevalent worldwide, with fatality rates gradually declining but remaining higher than COVID-19 alone. This underscores the urgency of continued research to understand and address the challenges posed by TB-COVID co-infection.


Subject(s)
COVID-19 , Coinfection , SARS-CoV-2 , Tuberculosis , Humans , COVID-19/mortality , COVID-19/epidemiology , COVID-19/complications , Coinfection/epidemiology , Coinfection/mortality , Tuberculosis/mortality , Tuberculosis/epidemiology , Tuberculosis/complications , Prevalence
18.
Virulence ; 15(1): 2356680, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38767562

ABSTRACT

The incidence rate of pyogenic liver abscess caused by multidrug-resistant bacteria has increased in recent years. This study aimed to identify the clinical characteristics and risk factors for pyogenic liver abscess caused by multidrug-resistant bacteria. We conducted a retrospective analysis of the clinical features, laboratory test results, and causes of pyogenic liver abscesses in 239 patients admitted to a tertiary hospital. Multivariable logistic regression was used to identify risk factors for multidrug resistance. Among patients with pyogenic liver abscesses, the rate of infection caused by multidrug-resistant organisms was observed to be 23.0% (55/239), with a polymicrobial infection rate of 14.6% (35/239). Additionally, 71 cases (29.7%) were associated with biliary tract disease. Patients with pyogenic liver abscesses caused by multidrug-resistant organisms had a significantly higher likelihood of polymicrobial infection and increased mortality (7/44 [15.9%] vs. 3/131 [2.3%]; p = .003). The Charlson Comorbidity Index (adjusted odds ratio [aOR]: 1.32, 95% confidence interval [CI]: 1.06-1.68), hospitalization (aOR: 10.34, 95% CI: 1.86-60.3) or an invasive procedure (aOR: 9.62; 95% CI: 1.66-71.7) within the past 6 months, and gas in the liver on imaging (aOR: 26.0; 95% CI: 3.29-261.3) were independent risk factors for pyogenic liver abscess caused by multidrug-resistant bacteria. A nomogram was constructed based on the risk factors identified. The nomogram showed high diagnostic accuracy (specificity, 0.878; sensitivity 0.940). Multidrug-resistant organisms causing pyogenic liver abscesses have specific characteristics. Early identification of patients at high risk of infection with multidrug-resistant organisms could help improve their management and enable personalized treatment.


Subject(s)
Drug Resistance, Multiple, Bacterial , Liver Abscess, Pyogenic , Humans , Liver Abscess, Pyogenic/microbiology , Liver Abscess, Pyogenic/epidemiology , Retrospective Studies , Male , Female , Risk Factors , Middle Aged , Aged , Adult , Anti-Bacterial Agents/therapeutic use , Anti-Bacterial Agents/pharmacology , Bacteria/isolation & purification , Bacteria/drug effects , Bacteria/classification , Coinfection/microbiology , Coinfection/epidemiology , Aged, 80 and over , Tertiary Care Centers/statistics & numerical data
19.
Exp Clin Transplant ; 22(4): 300-306, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38742321

ABSTRACT

OBJECTIVES: In this study, we analyzed the effects of carbapenem-resistant Pseudomonas aeruginosa infection and mixed infection on the perioperative prognosis of lung transplant recipients and studied statistics on antibiotic resistance in P aeruginosa. MATERIALS AND METHODS: This was a retrospective casecontrol study. We collected data on lung transplant recipients with combined lower respiratory tract P aeruginosa infection within 48 hours after lung transplant at the China-Japan Friendship Hospital from August 2018 to April 2022. We grouped recipients according to P aeruginosa resistance to carbapenem antibiotics and summarized the clinical characteristics of carbapenem-resistant P aeruginosa infection. We analyzed the effects of carbapenemresistant P aeruginosa infection and mixed infections on all-cause mortality 30 days after lung transplant by Cox regression. We used the Kaplan-Meier method to plot survival curves. RESULTS: Patients in the carbapenem-resistant P aeruginosa group had a higher all-cause mortality rate than those in the carbapenem-sensitive P aeruginosa group at both 7 days (6 patients [22.3%] vs 2 patients [4.5%]; P = .022) and 30 days (12 patients [44.4%] vs 7 patients [15.9%]; P = .003) after lung transplant. In multivariate analysis, both carbapenemresistant P aeruginosa infection and P aeruginosa combined with bacterial infection were independent risk factors for death 30 days after transplant in lung transplant recipients (P < .05). In subgroup analysis, carbapenem-resistant P aeruginosa combined with bacterial infection increased the risk of death 30 days after transplant in lung transplant recipients compared with carbapenem-sensitive P aeruginosa combined with bacterial infection (12 patients [60%] vs 6 patients [19.4%]; P < .001). CONCLUSIONS: Combined lower respiratory tract carbapenem-resistant P aeruginosa infection and P aeruginosa combined with bacterial infection early after lung transplant increased the risk of 30-day mortality after lung transplant.


Subject(s)
Anti-Bacterial Agents , Carbapenems , Coinfection , Lung Transplantation , Pseudomonas Infections , Pseudomonas aeruginosa , Humans , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/isolation & purification , Retrospective Studies , Pseudomonas Infections/mortality , Pseudomonas Infections/microbiology , Pseudomonas Infections/diagnosis , Pseudomonas Infections/drug therapy , Risk Factors , Lung Transplantation/adverse effects , Lung Transplantation/mortality , Carbapenems/pharmacology , Female , Male , Middle Aged , Time Factors , Anti-Bacterial Agents/therapeutic use , Adult , Treatment Outcome , Risk Assessment , beta-Lactam Resistance
20.
Int J Mycobacteriol ; 13(1): 28-33, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38771276

ABSTRACT

BACKGROUND: The coinfection of Mycobacterium tuberculosis and SARS-CoV-2 is called tuberculosis and COVID-19 coinfection (TB-COVID-19). We aimed to share the clinical, radiological, and laboratory findings and treatment processes of our patients with TB-COVID-19 coinfection in our tertiary reference hospital. METHODS: Patients aged 18 years and over and hospitalized in the tuberculosis service between March 2020 and September 2022 were included. All coinfected patients whose COVID-19 polymerase chain reaction results were positive while receiving tuberculosis treatment or who were diagnosed with tuberculosis while receiving treatment for COVID-19 were included. RESULTS: The number of patients was 39; 61.6% of males; the mean age was 52 ± 17.1 years; 20% were foreign nationals; 92.5% were Asian; 69.5% had a bacteriological diagnosis; 84.6% had pulmonary tuberculosis; 10% had received antituberculosis treatment before; and 87.5% were sensitive to the first-line antituberculosis drugs. The most common comorbidities were diabetes and hypertension. 87.5% of the patients were diagnosed with tuberculosis and were superinfected with COVID-19 while receiving tuberculosis treatment. 49.5% of patients had received at least one dose of COVID-19 vaccine. The most common presenting symptom was cough and sputum; the prominent laboratory parameter was C-reactive protein increase, and thorax computed tomography finding was consolidation, tree-in-bud, and cavitation. While 45.9% of the patients were still under treatment, 1 (2.5%) patient also resulted in mortality. CONCLUSION: In this study, attention was drawn to two infectious diseases seen with respiratory tract symptoms. The mortality rate was found to be low. Neither disease was found to be a factor aggravating the course of each other.


Subject(s)
COVID-19 , Coinfection , SARS-CoV-2 , Humans , Male , COVID-19/epidemiology , COVID-19/complications , Middle Aged , Female , Coinfection/epidemiology , Coinfection/microbiology , Adult , Aged , Tuberculosis/epidemiology , Tuberculosis/drug therapy , Tuberculosis/complications , Antitubercular Agents/therapeutic use , Tuberculosis, Pulmonary/epidemiology , Tuberculosis, Pulmonary/drug therapy , Tuberculosis, Pulmonary/complications , Comorbidity , Mycobacterium tuberculosis/isolation & purification , Pandemics
SELECTION OF CITATIONS
SEARCH DETAIL
...