Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.213
Filter
1.
J Environ Sci (China) ; 146: 149-162, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38969443

ABSTRACT

Industrial wastewater should be treated with caution due to its potential environmental risks. In this study, a polymerization-based cathode/Fe3+/peroxydisulfate (PDS) process was employed for the first time to treat a raw coking wastewater, which can achieve simultaneous organics abatement and recovery by converting organic contaminants into separable solid organic-polymers. The results confirm that several dominant organic contaminants in coking wastewater such as phenol, cresols, quinoline and indole can be induced to polymerize by self-coupling or cross-coupling. The total chemical oxygen demand (COD) abatement from coking wastewater is 46.8% and the separable organic-polymer formed from organic contaminants accounts for 62.8% of the abated COD. Dissolved organic carbon (DOC) abatement of 41.9% is achieved with about 89% less PDS consumption than conventional degradation-based process. Operating conditions such as PDS concentration, Fe3+ concentration and current density can affect the COD/DOC abatement and organic-polymer yield by regulating the generation of reactive radicals. ESI-MS result shows that some organic-polymers are substituted by inorganic ions such as Cl-, Br-, I-, NH4+, SCN- and CN-, suggesting that these inorganic ions may be involved in the polymerization. The specific consumption of this coking wastewater treatment is 27 kWh/kg COD and 95 kWh/kg DOC. The values are much lower than those of the degradation-based processes in treating the same coking wastewater, and also are lower than those of most processes previously reported for coking wastewater treatment.


Subject(s)
Coke , Polymerization , Waste Disposal, Fluid , Wastewater , Water Pollutants, Chemical , Wastewater/chemistry , Waste Disposal, Fluid/methods , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/analysis , Sulfates/chemistry , Polymers/chemistry , Biological Oxygen Demand Analysis , Electrochemical Techniques/methods
2.
J Hazard Mater ; 474: 134701, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38824774

ABSTRACT

Coking wastewater (CWW) treatment is difficult due to its complex composition and high biological toxicity. Iron-carbon mediators was used to enhance the treatment of CWW through iron-carbon microelectrolysis (ICME). The results indicated that the removal rate of COD and phenolic compounds were enhanced by 24.1 % and 23.5 %, while biogas production and methane content were promoted by 50 % and 7 %. Microbial community analysis indicated that iron-carbon mediators had a transformative impact on the reactor's performance and dependability by enriching microorganisms involved in direct and indirect electron transfer, such as Anaerolineae and Methanothrix. The mediator also produced noteworthy gains in LB-EPS and TB-EPS, increasing by roughly 109.3 % and 211.6 %, respectively. PICRISt analysis demonstrated that iron-carbon mediators effectively augment the abundance of functional genes associated with metabolism, Citrate cycle, and EET pathway. This study provides a new approach for CWW treatment.


Subject(s)
Bioreactors , Carbon , Coke , Iron , Wastewater , Wastewater/chemistry , Iron/metabolism , Iron/chemistry , Carbon/chemistry , Carbon/metabolism , Methane/metabolism , Waste Disposal, Fluid/methods , Biofuels , Biological Oxygen Demand Analysis , Industrial Waste , Water Pollutants, Chemical/metabolism , Phenols/metabolism , Bacteria/metabolism , Bacteria/genetics
3.
Bioresour Technol ; 405: 130907, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38810707

ABSTRACT

Coking wastewater contains high concentrations of toxic and low biodegradable organics, causing long hydraulic retention times for its biological treatment process. This study developed a pretreatment method for coking wastewater by using activated carbon fiber (ACF) activated peroxymonosulfate (PMS) to improve the treatment performance of subsequent biological post-treatment process, sequencing batch reactor (SBR). The results showed that, after optimization of treatment processes, the removal efficiency of chemical oxygen demand (COD), phenol, and chroma in coking wastewater reached to 76, 98, and 98%, respectively, with a significantly improved biodegradability. Compared with the sole SBR system without any pretreatment that could remove 73% of COD, the ACF/PMS+SBR system removed over 97% of COD in coking wastewater. Moreover, this pretreatment method facilitated the growth of functional bacteria for organics biodegradation, indicating its high potential as a highly efficacious pretreatment strategy to improve the overall treatment efficiency of coking wastewater.


Subject(s)
Biodegradation, Environmental , Biological Oxygen Demand Analysis , Bioreactors , Coke , Peroxides , Wastewater , Wastewater/chemistry , Charcoal/chemistry , Water Purification/methods , Carbon Fiber/chemistry , Carbon/chemistry , Water Pollutants, Chemical , Waste Disposal, Fluid/methods
4.
J Hazard Mater ; 473: 134664, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38788576

ABSTRACT

Epidemiological evidence indicates that exposure to polycyclic aromatic hydrocarbons (PAHs) is associated with certain metabolic diseases. However, the relationship between PAHs and serum lipid profiles in exposed subjects remain unknown. Herein, the associations of multiple (8) urinary hydroxylated PAHs (OH-PAHs) in workers of coking (n = 655) and non-ferrous smelting (n = 614) industries with serum lipid levels (marking lipid metabolism) were examined. Multivariable linear regression, Bayesian kernel machine regression, and quantile g-computation were used. Most urinary OH-PAHs were significantly higher (p < 0.001) in coking workers than in non-ferrous smelting workers. In workers of both industries, OH-PAH exposure was associated with elevated levels of serum total cholesterol, total triglyceride, and low-density lipoprotein, as well as reduced high-density lipoprotein levels. Specifically, urinary 4-hydroxyphenanthrene was significantly positively associated with serum total cholesterol, total triglyceride, and low-density lipoprotein levels in non-ferrous smelting workers; however, the completely opposite association of 4-hydroxyphenanthrene with these lipid levels was observed in coking workers. The results of this pioneering examination suggest that exposure to OH-PAHs may contribute to dyslipidemia in coking and non-ferrous smelting workers, and distinct patterns of change were observed. Further prospective studies involving larger sample sizes are needed to further validate the findings.


Subject(s)
Coke , Lipids , Metallurgy , Occupational Exposure , Polycyclic Aromatic Hydrocarbons , Humans , Occupational Exposure/analysis , Polycyclic Aromatic Hydrocarbons/blood , Polycyclic Aromatic Hydrocarbons/urine , Adult , Male , Lipids/blood , Middle Aged , Female , Air Pollutants, Occupational/blood , Air Pollutants, Occupational/analysis , Air Pollutants, Occupational/urine
5.
Chemosphere ; 361: 142476, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38815815

ABSTRACT

Organic contaminants such as polycyclic aromatic compounds (PACs) occurring in industrial effluents can not only persist in wastewater but transform into more toxic and mobile, substituted heterocyclic products during treatment. Thus, predicting the occurrence of PACs and their heterocyclic derivatives (HPACs) in coking wastewater is of utmost importance to reduce the environmental risks in water bodies that receive industrial effluents. Although HPACs can be monitored through sampling and analysis, the characterisation techniques used in their analyses are costly and time-consuming. In this study, we propose 3 distinct kernel-based machine learning (ML) models for predicting PACs including substituted HPACs and alkylated PACs occurring in coking wastewater. By using routinely measured wastewater quality data as input for our models, we predicted the occurrence of 14 HPACs in the final effluent of a coking wastewater treatment plant. Support Vector Machine based regression model (SVR) used for HPAC prediction showed the highest R2 of 0.83. Performance assessment of SVR model showed a mean absolute logarithmic error (MALE) of 0.46 and root mean square error (RMSE) of 0.073 ng/L. Comparatively, K-Nearest Neighbor and Random Forest models showed lower R2 of 0.75 and 0.76 respectively for HPAC prediction. Feature analysis attributed the superior predictability of SVR model likely to its higher weightage (81%) towards dissolved organic carbon and total ammonia as input variables. Both these variables could capture the underlying secondary PAC transformations likely occurring in the treatment plant. Partial dependence plots predicted that ammonia levels higher than 120 mg/L and DOC levels of 50-60 mg/L were likely linked to higher HPACs occurring in the final effluent. This work highlights the capability of kernel-based ML models in capturing nonlinear wastewater chemistry and offers a tool for monitoring trace organic contaminants released in coking effluents.


Subject(s)
Coke , Environmental Monitoring , Machine Learning , Polycyclic Aromatic Hydrocarbons , Wastewater , Water Pollutants, Chemical , Wastewater/chemistry , Polycyclic Aromatic Hydrocarbons/analysis , Water Pollutants, Chemical/analysis , Environmental Monitoring/methods , Waste Disposal, Fluid/methods , Industrial Waste/analysis
6.
Environ Sci Pollut Res Int ; 31(27): 39421-39431, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38819513

ABSTRACT

Activated coke is a type of commonly used adsorbent for benzene series VOCs such as toluene, but traditional microporous activated coke usually faces the challenge of poor regeneration performance. Herein, based on self-made activated cokes with typical pore configuration, we found that adsorption and regeneration of toluene can be simultaneously enhanced by constructing hierarchical pore in activated coke. Correlations of pore configuration with toluene adsorption capacity and regeneration efficiency reveal that micropore contributes for strong toluene adsorption; meso-macropore provides mass transfer channel for toluene desorption and regeneration process. Hierarchical porous activated coke prepared from Zhundong subbituminous coal not only achieves the highest toluene adsorption capacity of 340.92 mg·g-1, but also can retain more than 90% of initial adsorption capacity after five adsorption-regeneration cycles. By contrast, micropore-dominant activated cokes can only retain 70% of initial adsorption capacity. Adsorption kinetic modelling on adsorption breakthrough curves shows that hierarchical porous activated coke prepared from Zhundong subbituminous coal exhibits high adsorption and diffusion rate constants of 14.39 and 33.45 min-1, respectively, much higher than those of micropore-dominant activated cokes. Due to the accelerated surface adsorption and diffusion processes induced by meso-macropore, toluene adsorption and regeneration behavior can be simultaneously improved. Results from this work validated the role of pore hierarchy in toluene adsorption-regeneration process, providing guidance for designing high-performance activated coke with synergistically improved toluene adsorption capacity and regeneration performance.


Subject(s)
Coke , Toluene , Toluene/chemistry , Adsorption , Kinetics , Porosity
7.
Water Res ; 257: 121670, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38723347

ABSTRACT

In this study, the performance of a novel up-flow electrocatalytic hydrolytic acidification reactor (UEHAR) and anoxic/oxic (ANO2/O2) combined system (S2) was compared with that of a traditional anaerobic/anoxic/oxic (ANA/ANO1/O1) system (S1) for treating coking wastewater at different hydraulic retention time (HRT). The effluent non-compliance rates of chemical oxygen demand (COD) of S2 were 45 %, 35 %, 25 % and 55 % lower than S1 with HRT of 94, 76, 65 and 54 h. The removal efficiency of benzene, toluene, ethylbenzene and xylene (BTEX) in S2 was 10.6 ± 2.4 % higher than that in S1. The effluent concentration of volatile phenolic compounds (VPs) in S2 was lower than 0.3 mg/L. The dehydrogenase activity (DHA) and adenosine triphosphate (ATP) of O2 were enhanced by 67.2 ± 26.3 % and 40.6 ± 14.2 % compared with O1, respectively. Moreover, COD was used to reflect the mineralization index of organic matter, and the positive correlation between COD removal rate and microbial activity, VPs, and BTEX was determined. These results indicated that S2 had extraordinary microbial activity, stable pollutant removal ability, and transcendental effluent compliance rate.


Subject(s)
Bioreactors , Coke , Waste Disposal, Fluid , Wastewater , Wastewater/chemistry , Waste Disposal, Fluid/methods , Hydrolysis , Biological Oxygen Demand Analysis , Water Pollutants, Chemical , Anaerobiosis , Catalysis
8.
Water Res ; 257: 121741, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38744061

ABSTRACT

Biological treatment is commonly used in coking wastewater (CWW) treatment. Prokaryotic microbial communities in CWW treatment have been comprehensively studied. However, viruses, as the critical microorganisms affecting microbial processes and thus engineering parameters, still remain poorly understood in CWW treatment context. Employing viromics sequencing, the composition and function of the viral community in CWW treatment were discovered, revealing novel viral communities and key auxiliary metabolic functions. Caudovirales appeared to be the predominant viral order in the oxic-hydrolytic-oxic (OHO) CWW treatment combination, showing relative abundances of 62.47 %, 56.64 % and 92.20 % in bioreactors O1, H and O2, respectively. At the family level, Myoviridae, Podoviridae and Siphoviridae mainly prevailed in bioreactors O1 and H while Phycodnaviridae dominated in O2. A total of 56.23-92.24% of novel viral contigs defied family-level characterization in this distinct CWW habitat. The virus-host prediction results revealed most viruses infecting the specific functional taxa Pseudomonas, Acidovorax and Thauera in the entire OHO combination, demonstrating the viruses affecting bacterial physiology and pollutants removal from CWW. Viral auxiliary metabolic genes (AMGs) were screened, revealing their involvement in the metabolism of contaminants and toxicity tolerance. In the bioreactor O1, AMGs were enriched in detoxification and phosphorus ingestion, where glutathione S-transferase (GSTs) and beta-ketoadipyl CoA thiolase (fadA) participated in biodegradation of polycyclic aromatic hydrocarbons and phenols, respectively. In the bioreactors H and O2, the AMGs focused on cell division and epicyte formation of the hosts, where GDPmannose 4,6-dehydratase (gmd) related to lipopolysaccharides biosynthesis was considered to play an important role in the growth of nitrifiers. The diversities of viruses and AMGs decreased along the CWW treatment process, pointing to a reinforced virus-host adaptive strategy in stressful operation environments. In this study, the symbiotic virus-bacteria interaction patterns were proposed with a theoretical basis for promoting CWW biological treatment efficiency. The findings filled the gaps in the virus-bacteria interactions at the full-scale CWW treatment and provided great value for understanding the mechanism of biological toxicity and sludge activity in industrial wastewater treatment.


Subject(s)
Wastewater , Wastewater/virology , Bioreactors , Bacteria/metabolism , Waste Disposal, Fluid/methods , Coke , Viruses , Symbiosis
9.
J Environ Manage ; 357: 120760, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38581891

ABSTRACT

It is of great significance to solve the environmental problems caused by the unreasonable treatment of coal gasification slag. This study successfully produced Si-Fe-Al-Ca alloy from low-carbon fine slag with petroleum coke as reducing agent in a plasma furnace with an alternating current magnetic field, which solved the problem of the high reactivity requirement of carbon reductant for plasma smelting. The optimum carbon content of the mixed low-carbon fine slag and petroleum coke is 105% of the theoretical value. As the strength of the alternating current magnetic field increased (from 0% to 100% of the maximum power), the yield of the alloy (from 25.46% to 58.19%) and the recovery ratios of each element (Si, Fe, Al, Ca, Ti) increased. In addition, as the magnetic field strength increased, the pores inside the alloy became smaller, the composition of the alloy became more homogeneous, and a better separation of the alloy from the slag was observed. The main composition of the alloy at the strongest alternating current magnetic field is Si: 51.14 wt%, Fe: 28.41 wt%, Al: 9.14 wt%, Ca: 7.15 wt%, Ti: 2.03 wt%. We attribute the enhanced smelting effect of the alternating current magnetic field to the resistive heat and Lorentz force produced by the induced current. In addition, the skin effect concentrated the induced current on the surface of the oxide particles and carbon particles, which increased the temperature of the reaction interface and promoted the carbothermal reduction reaction.


Subject(s)
Coke , Petroleum , Coal , Alloys , Carbon
10.
Environ Sci Pollut Res Int ; 31(20): 29656-29668, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38587778

ABSTRACT

The substantial amount of mercury emissions from coal-fired flue gas causes severe environmental contamination. With the Minamata Convention now officially in force, it is critical to strengthen mercury pollution control. Existing activated carbon injection technologies suffer from poor desulfurization performance and risk secondary-release risks. Therefore, considering the potential industrial application of adsorbents, we selected cost-effective and readily available activated coke (AC) as the carrier in this study. Four metal selenides-copper, iron, manganese, and tin-were loaded onto the AC to overcome the application problems of existing technologies. After 120 min of adsorption, the CuSe/AC exhibited the highest efficiency in removing Hg0, surpassing 80% according to the experimental findings. In addition, the optimal adsorption temperature window was 30-120 °C, the maximum adsorption rate was 2.9 × 10-2 mg·g-1·h-1, and the effectiveness of CuSe/AC in capturing Hg0 only dropped by 5.2% in the sulfur-containing atmosphere. The physicochemical characterization results indicated that the AC surface had a uniform loading of CuSe with a nanosheet structure resembling polygon and that the Cu-to-Se atomic ratio was close to 1:1. Finally, two possible Hg0 reaction pathways on CuSe/AC were proposed. Moreover, it was elucidated that the highly selective binding of Hg0 with ligand-unsaturated Se- was the key factor in achieving high adsorption efficiency and sulfur resistance in the selenium-functionalized AC adsorbent. This finding offers substantial theoretical support for the industrial application of this adsorbent.


Subject(s)
Coal , Coke , Mercury , Selenium , Adsorption , Selenium/chemistry , Mercury/chemistry , Air Pollutants/chemistry
11.
Water Sci Technol ; 89(7): 1831-1845, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38619906

ABSTRACT

In this study, further treatment of coking wastewater treated in anoxic-oxic-membrane bioreactor (A2O-MBR) was investigated to meet the standards of the ministry by means of nanofiltration (NF) (with two different membranes and different pressures), microfiltration -powder activated carbon (MF-PAC) hybrid system and NF-PAC (with two different membranes and five different PAC concentrations) hybrid system. In addition to the parameters determined by the ministry, other parameters such as ammonium, thiocyanate (SCN-), hydrogen cyanide (HCN), dissolved organic carbon (DOC), dissolved inorganic carbon (DIC), color were also examined to evaluate the flux performance and treatment efficiency of the hybrid processes. According to the results, chemical oxygen demand (COD) in the NF process, COD and total cyanide (T-CN) in the MF-PAC process could not meet the discharge standards. As for the NF-PAC hybrid system, XN45 membrane met the discharge standards in all parameters (COD = 96±1.88 mg/L, T-CN =<0,02 mg/L, phenol =<0.05 mg/L), with a recovery rate of 78% at 0.5 g/L PAC concentration.


Subject(s)
Coke , Water Purification , Wastewater , Charcoal , Powders , Water Purification/methods , Membranes, Artificial , Bioreactors , Waste Disposal, Fluid/methods
12.
J Environ Manage ; 358: 120812, 2024 May.
Article in English | MEDLINE | ID: mdl-38615397

ABSTRACT

Coke wastewater is a complex industrial wastewater due to its high content of toxic compounds such as cyanides, thiocyanates, phenols, tar, oils, and fats. After a series of treatments, wastewater with a high ammonium content is obtained (around 4,150 mg·L-1). A stripping process is used to reduce it. Certain pollutants in the influent, such as tar, polycyclic aromatic hydrocarbons (PAHs), oils, fats and total suspended solids (TSS), interfere with stripping and therefore must be previously removed. In this study, the performance of a pilot-scale airlift sand filter was evaluated under real conditions for the reduction of the concentration of tar, PAHs, oils, fats and TSS, before stripping. Prior to the sand filter, a cationic flocculant was added to the influent (2 ppm). High (10 mm.min-1), medium (7.5 mm.min-1) and low sand speeds (1.9-2.6 mm.min-1) were assessed. The latter conditions gave the best results: a decrease of 98.2% in TSS, 99.7% in oils, fats and grease and 97.6% in PAHs. The final effluent (≤ 1.6 mg PAHs·L-1, ≤ 5 mg TSS·L-1 and ≤ 0.05 mg·L-1 of fats, oils and grease) was suitable for the stripping process.


Subject(s)
Ammonium Compounds , Coke , Filtration , Polycyclic Aromatic Hydrocarbons , Wastewater , Water Pollutants, Chemical , Wastewater/chemistry , Polycyclic Aromatic Hydrocarbons/analysis , Ammonium Compounds/analysis , Water Pollutants, Chemical/analysis , Waste Disposal, Fluid/methods , Fats/chemistry , Fats/analysis , Oils/chemistry
13.
Environ Pollut ; 349: 123856, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38556152

ABSTRACT

BACKGROUND: Polycyclic aromatic hydrocarbons (PAHs) are well-acknowledged pro-inflammatory chemicals, but their associations with blood cell-based inflammatory biomarkers need further investigation. Moreover, the effects and mechanisms of essential metals on PAH-related inflammation remain poorly understood. OBJECTS: To elucidate the associations of PAHs on inflammatory biomarkers, as well as the effects and mechanisms of essential metals on these associations. METHODS: A cross-sectional study was conducted on 1388 coke oven workers. We analyzed the modification effects of key essential metal(s) on PAHs-inflammatory biomarkers associations. To explore the possible mechanisms from an inflammation perspective, we performed a bioinformatic analysis on the genes of PAHs and essential metals obtained from the Comparative Toxicogenomics Database (CTD) and performed a mediation analysis. RESULTS: We observed associations of PAHs and essential metals with lymphocyte-to-monocyte ratio (LMR) (P < 0.05). PAH mixtures were inversely associated with LMR (ßQGC-index = -0.18, P < 0.001), with 1-hydroxypyrene (1-OH-Pyr) being the most prominent contributor (weight = 63.37%), whereas a positive association between essential metal mixtures and LMR was observed (ßQGC-index = 0.14, P < 0.001), with tin being the most significant contributor (weight = 51.61%). An inverse association of 1-OH-Pyr with LMR was weakened by increased tin exposure (P < 0.05). The CTD database showed that PAHs and tin compounds co-regulated 22 inflammation-associated genes, but they regulated most genes in opposite directions. Further identified the involvement of oxidative stress and mediation analysis showed that the mediation effect of 8-hydroxydeoxyguanosine (8-OHdG) on 1-OH-Pyr-LMR association presented heterogeneity between low and high tin tertile groups (I2 = 37.84%). CONCLUSION: 1-OH-Pyr and tin were significantly associated with LMR. Modification effects indicated that the inverse association of 1-OH-Pyr with LMR was mitigated with an increase in tin. The mediation effect of 8-OHdG on the inverse association of 1-OH-Pyr with LMR may be partially dependent on tin.


Subject(s)
Biomarkers , Inflammation , Occupational Exposure , Polycyclic Aromatic Hydrocarbons , Polycyclic Aromatic Hydrocarbons/toxicity , Humans , Biomarkers/blood , Cross-Sectional Studies , Adult , Male , Metals , Coke , Middle Aged
14.
Waste Manag ; 179: 163-174, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38479255

ABSTRACT

Catalytic tar cracking is a promising technique for hot syngas cleaning unit in gasification plants because it can preserve tars chemical energy, so increasing the syngas heating value. The cost associated with catalyst preparation is a key issue, together with its deactivation induced by coke deposition. Iron is a cheap and frequently used catalyst, which can also be found in some industrial wastes. The study aims to assess the catalytic efficiency for tar cracking of two waste-derived materials (red mud and sewage sludge) having high content of iron. The catalysts were supported on spheres of γ-Al2O3, and their efficiency was compared to that of a pure iron catalyst. The role of support was investigated by testing pure red mud, with and without the support. A series of long-term tests using naphthalene as tar model compound were carried out under different values of process temperatures (750 °C-800 °C) and steam concentrations (0 %-7.5 %). The waste derived catalysts showed lower hydrogen yields compared to pure iron catalyst, due to their lower content of iron. On the other hand, the conversion efficiencies of all the tested catalysts resulted rather similar, since the Alkali and Alkaline-Earth Metallic species present on the surface of waste-derived catalyst help in preventing coke deposition. The iron oxidation state appears to play an important role, with reduced iron more active than its oxidised form in the tar cracking reactions. This indicates the importance of tuning steam concentration to keep constant the reduced state of iron while limiting coke deposition.


Subject(s)
Coke , Steam , Hydrogen/analysis , Iron , Tars/chemistry , Biomass , Catalysis
15.
Environ Pollut ; 346: 123684, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38428790

ABSTRACT

Polycyclic aromatic hydrocarbons (PAHs), known for their health risks, are prevalent in the environment, with the coking industry being a major source of their emissions. To bridge the knowledge gap concerning the relationship between environmental and dietary PAH exposure, we explore this complex interplay by investigating the dietary exposure characteristics of 24 PAHs within a typical Chinese coking plant and their association with environmental pollution. Our research revealed Nap and Fle as primary dietary contaminants, emphasizing the significant influence of soil and atmospheric pollution on PAH exposure. We subjected our data to non-metric multidimensional scaling (NMDS), Spearman correlation analysis, Lasso regression, and Weighted Quantile Sum (WQS) regression to delve into this multifaceted phenomenon. NMDS reveals that dietary PAH exposure, especially within the high molecular weight (HMW) group, is common both within and around the coking plant. This suggests that meals prepared within the plant may be contaminated, posing health risks to coking plant workers. Furthermore, our assessment of dietary exposure risk highlights Nap and Fle as the primary dietary contaminants, with BaP and DahA raising concerns due to their higher carcinogenic potential. Our findings indicate that dietary exposure often exceeds acceptable limits, particularly for coking plant workers. Correlation analyses uncover the dominant roles of soil and atmospheric pollution in shaping dietary PAH exposure. Soil contamination significantly impacts specific PAHs, while atmospheric pollution contributes to others. Additionally, WQS regression emphasizes the substantial influence of soil and drinking water on dietary PAHs. In summary, our study sheds light on the dietary exposure characteristics of PAHs in a typical Chinese coking plant and their intricate interplay with environmental factors. These findings underscore the need for comprehensive strategies to mitigate PAH exposure so as to safeguard both human health and the environment in affected regions.


Subject(s)
Coke , Polycyclic Aromatic Hydrocarbons , Soil Pollutants , Humans , Coke/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Dietary Exposure/analysis , Environmental Monitoring , Soil Pollutants/analysis , Risk Assessment , Soil , China
16.
Bioresour Technol ; 397: 130498, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38432542

ABSTRACT

Bioaugmentation is an efficient method for improving the efficiency of coking wastewater removal. Nevertheless, how different immobilization approaches affect the efficiency of bioaugmentation remains unclear, as does the corresponding mechanism. With the assistance of immobilized bioaugmentation strain Rhodococcus biphenylivorans B403, the removal of synthetic coking wastewater was investigated (drying agent, alginate agent, and absorption agent). The reactor containing the absorption agent exhibited the highest average removal efficiency of phenol (99.74 %), chemical oxygen demand (93.09 %), and NH4+-N (98.18 %). Compared to other agents, the covered extracellular polymeric substance on the absorption agent surface enhanced electron transfer and quorum sensing, and the promoted quorum sensing benefited the activated sludge stability and microbial regulation. The phytotoxicity test revealed that the wastewater's toxicity was greatly decreased in the reactor with the absorption agent, especially under high phenol concentrations. These findings showed that the absorption agent was the most suitable for wastewater treatment bioaugmentation.


Subject(s)
Charcoal , Coke , Rhodococcus , Wastewater , Phenol , Ammonia , Up-Regulation , Quorum Sensing , Extracellular Polymeric Substance Matrix/chemistry , Electrons , Phenols , Sewage/chemistry , Coke/analysis
17.
Environ Res ; 247: 118359, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38320717

ABSTRACT

In this work, the Mn, Co, Ce co-doped corn cob biochar (MCCBC) as catalytic particle electrodes in a three-dimensional heterogeneous electro-Fenton-like (3D-HEFL) system for the efficient degradation of coking wastewater was investigated. Various characterization methods such as SEM, EDS, XRD, XPS and electrochemical analysis were employed for the prepared materials. The results showed that the MCCBC particle electrodes had excellent electrochemical degradation performances of COD in coking wastewater, and the COD removal and degradation rates of the 3D/HEFL system were 85.35% and 0.0563 min-1 respectively. RSM optimized conditions revealed higher COD removal rate at 89.23% after 31.6 min of electrolysis. The efficient degradability and wide adaptability of the 3D/HEFL system were due to its beneficial coupling mechanism, including the synergistic effect between the system factors (3D and HEFL) as well as the synergistic interactions between the ROS (dominated by •OH and supplemented by O2•-) in the system. Moreover, the COD removal rate of MCCBC could still remain at 81.41% after 5 cycles with a lower ion leaching and a specific energy consumption of 11.28 kWh kg-1 COD. The superior performance of MCCBC, as catalytic particle electrodes showed a great potential for engineering applications for the advanced treatment of coking wastewater.


Subject(s)
Charcoal , Cocaine , Coke , Water Pollutants, Chemical , Wastewater , Waste Disposal, Fluid/methods , Coke/analysis , Oxidation-Reduction , Electrodes , Cocaine/analysis , Water Pollutants, Chemical/analysis
18.
J Hazard Mater ; 468: 133802, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38377909

ABSTRACT

To investigate the environmental behavior of and carcinogenic risk posed by 16 priority-controlled polycyclic aromatic hydrocarbons (PAHs), soil samples and air samples from the coke oven top were collected in two prototype coking plants (named PF and JD). The PF soils contained more PAHs than the JD soils because the PF plant employed the side-charging technique and had a lower coke oven height. The soils from both plants contained enough PAHs to pose a carcinogenic risk, and this risk was higher in the PF plant. Data were collected on the source characteristic spectrum of stable carbon isotopic composition (δ13C) of PAHs emitted from the coke oven top (δ13C values of -36.02‰ to -32.05‰ for gaseous PAHs and -34.09‰ to -25.28‰ for particulate PAHs), and these data fill a research gap and may be referenced for isotopic-technology-based source apportionment. Diagnostic ratios and isotopic technology revealed that the coking plant soils were mainly influenced by the coking process, followed by vehicle exhaust; the soils near the boundary of each plant were slightly affected by C3 plant burning. For most PAHs [excluding fluoranthene, benzo(k)fluoranthene, indeno(1,2,3-c,d)pyrene, and dibenzo(a,h)anthracene], the dominant migration process was the net volatilization of PAHs from soil to air. In the PF plant, 13C was depleted in gaseous PAHs during volatilization.


Subject(s)
Coke , Polycyclic Aromatic Hydrocarbons , Soil Pollutants , Polycyclic Aromatic Hydrocarbons/analysis , Soil , Carbon Isotopes/analysis , Coke/analysis , Carbon/analysis , Carcinogens/analysis , China , Risk Assessment , Environmental Monitoring , Soil Pollutants/analysis
19.
Sci Total Environ ; 922: 171209, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38408657

ABSTRACT

The simultaneous application of in situ capping and electro-enhanced biodegradation may be a suitable method for ensuring the feasibility and safety of reusing abandoned coking sites. However, the capping layer type and applied electric field pattern may affect the efficiency of sequestering and removing pollutants. This study investigated changes in electric current, soil moisture content and pH, polycyclic aromatic hydrocarbon (PAH) concentration, bacterial number, and microbial community structure and metabolic function during soil remediation at abandoned coking plant sites under different applied electric field patterns and barrier types. The results indicated that polarity-reversal electric field was more conducive to maintaining electric current, soil properties, resulting in higher microbial number, community diversity, and functional gene abundance. At 21d, the mean PAH concentrations in contaminated soil, the capping layer's clean soil and barrier were 78.79, 7.56, and 1.57 mg kg-1 lower than those with a unidirectional electric field, respectively. The mean degradation rate of PAHs in the bio-barrier was 10.12 % higher than that in the C-Fe barrier. In the experiment combining a polarity-reversal electric field and a bio-barrier, the mean PAH concentrations in contaminated soil and the capping layer were 706.68 and 27.15 mg kg-1 lower than those in other experiments, respectively, and no PAHs were detected in the clean soil, demonstrating that the combination of the polarity-reversal electric field and the bio-barrier was effective in treating soil at abandoned coking plant sites. The established method of combining in situ capping with electro-enhanced biodegradation will provide technical support for the treatment and reuse of heavily PAH-contaminated soil at abandoned coking plant sites.


Subject(s)
Coke , Polycyclic Aromatic Hydrocarbons , Soil Pollutants , Polycyclic Aromatic Hydrocarbons/analysis , Soil Pollutants/analysis , Soil Microbiology , Biodegradation, Environmental , Soil/chemistry
20.
J Hazard Mater ; 467: 133646, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38330651

ABSTRACT

The exposure of terrestrial organisms to soils freshly contaminated by polycyclic aromatic compounds (PACs, including PAHs and polar-PACs) is known to cause significant toxicity effects. However, historically contaminated soils, such as former coking plant soils, usually induce a limited toxic impact, due to the "aging" phenomenon which is the result of several processes causing a reduction of PAC availability over time. For a better understanding of these behaviors, this study aimed to compare the toxic responses of terrestrial organisms exposed to aged contaminated soils and their counterparts submitted to a moderate heating process applied to increase PAC availability. Two aged "raw" soils (limited PAC availability) were selected for their representativeness of former industrial soils in terms of PAC contamination. These soils were submitted either to moderate heating (expected PAC availability increase) or solvent-extraction (expected PAC removal). Physico-chemical parameters, contamination levels and availability were determined for these three soil modalities. Additionally, standardized limit bioassays on plants and earthworms were performed to assess soil ecotoxicity. The findings demonstrated that historically contaminated soils exposed to moderate heating induced the highest ecotoxic responses from terrestrial organisms. Heating increased PAC (bio)availability, without modifying any other soil physico-chemical properties. These results pointed out the importance of considering the contamination availability parameter in risk evaluation and also provide a possible tool for protective long-term risk assessment.


Subject(s)
Coke , Polycyclic Aromatic Hydrocarbons , Polycyclic Compounds , Environmental Pollution , Polycyclic Aromatic Hydrocarbons/analysis , Soil/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...