Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 417
Filter
1.
Respir Investig ; 62(3): 455-461, 2024 May.
Article in English | MEDLINE | ID: mdl-38547757

ABSTRACT

BACKGROUND: Many disease-causing variants in the Cystic Fibrosis Transmembrane conductance Regulator (CFTR) gene remain uncharacterized and untreated. Restoring the function of the impaired CFTR protein is the goal of personalized medicine, particularly in patients carrying rare CFTR variants. In this study, functional defects related to the rare R334W variant were evaluated after treatment with CFTR modulators or Roflumilast, a phosphodiesterase-4 inhibitor (PDE4i). METHODS: Rectal organoids from subjects with R334W/2184insA and R334W/2183AA > G genotypes were used to perform the Forskolin-induced swelling (FIS) assay. Organoids were left drug-untreated or treated with modulators VX-770 (I), VX-445 (E), and VX-661 (T) mixed, and their combination (ETI). Roflumilast (R) was used alone or as a combination of I + R. RESULTS: Our data show a significant increase in FIS rate following treatment with I alone. The combined use of modulators, such as ETI, did not increase further swelling than I alone, nor in protein maturation. Treatment with R shows an increase in FIS response similar to those of I, and the combination R + I significantly increases the rescue of CFTR activity. CONCLUSIONS: Equivalent I and ETI treatment efficacy was observed for both genotypes. Furthermore, significant organoid swelling was observed with combined I + R used that supports the recently published data describing a potentiating effect of only I in patients carrying the variant R334W and, at the same time, corroborating the role of strategies that include PDE4 inhibitors further to potentiate the effect of I for this variant.


Subject(s)
Aminopyridines , Benzamides , Cystic Fibrosis , Phosphodiesterase 4 Inhibitors , Humans , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/pharmacology , Cystic Fibrosis/genetics , Cystic Fibrosis/metabolism , Phosphodiesterase 4 Inhibitors/pharmacology , Phosphodiesterase 4 Inhibitors/metabolism , Colforsin/metabolism , Colforsin/pharmacology , Organoids/metabolism , Mutation , Cyclopropanes
2.
J Toxicol Sci ; 49(2): 69-77, 2024.
Article in English | MEDLINE | ID: mdl-38296531

ABSTRACT

Placental dysfunction can disrupt pregnancy. However, few studies have assessed the effects of chemical-induced toxicity on placental function. Here, we examined the effects of valproic acid (VPA) as a model chemical on production of hormones and on glucose uptake in human choriocarcinoma cell line BeWo. Cells were treated with forskolin to differentiate into syncytiotrophoblasts, which were then treated with VPA for 72 hr. Real-time RT-PCR analysis showed that VPA significantly increased the mRNA expression of chorionic gonadotropin ß (CGB), a hormone that is produced by the placenta in the first trimester of pregnancy, relative to that in the forskolin-only group. It also suppressed the increase in intracellular glucose uptake and GLUT1 level observed in the forskolin-only group. RNA-seq analysis and pathway database analysis revealed that VPA consistently decreased the level of HIF-1α protein and expression of its downstream target genes HK2 and ADM in the hypoxia pathway. Cobalt chloride, a HIF-1α inducer, inhibited CGB upregulation in VPA-treated cells and rescued VPA-induced suppression of glucose uptake and GLUT1 level. Thus, HIF-1α-mediated elevation of CGB expression and suppression of glucose uptake by VPA is a novel mechanism of placental dysfunction.


Subject(s)
Placenta , Valproic Acid , Pregnancy , Female , Humans , Valproic Acid/toxicity , Placenta/metabolism , Colforsin/metabolism , Glucose Transporter Type 1/genetics , Glucose Transporter Type 1/metabolism , Glucose/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Cell Line, Tumor
3.
Transl Res ; 263: 45-52, 2024 01.
Article in English | MEDLINE | ID: mdl-37678755

ABSTRACT

Cyclic nucleotide elevation in intestinal epithelial cells is the key pathology causing intestinal fluid loss in secretory diarrheas such as cholera. Current secretory diarrhea treatment is primarily supportive, and oral rehydration solution is the mainstay of cholera treatment. There is an unmet need for safe, simple and effective diarrhea treatments. By promoting cAMP hydrolysis, extracellular calcium-sensing receptor (CaSR) is a regulator of intestinal fluid transport. We studied the antidiarrheal mechanisms of FDA-approved CaSR activator cinacalcet and tested its efficacy in clinically relevant human cell, mouse and intestinal organoid models of secretory diarrhea. By using selective inhibitors, we found that cAMP agonists-induced secretory short-circuit currents (Isc) in human intestinal T84 cells are mediated by collective actions of apical membrane cystic fibrosis transmembrane conductance regulator (CFTR) and Clc-2 Cl- channels, and basolateral membrane K+ channels. 30 µM cinacalcet pretreatment inhibited all 3 components of forskolin and cholera toxin-induced secretory Isc by ∼75%. In mouse jejunal mucosa, cinacalcet inhibited forskolin-induced secretory Isc by ∼60% in wild type mice, with no antisecretory effect in intestinal epithelia-specific Casr knockout mice (Casr-flox; Vil1-cre). In suckling mouse model of cholera induced by oral cholera toxin, single dose (30 mg/kg) oral cinacalcet treatment reduced intestinal fluid accumulation by ∼55% at 20 hours. Lastly, cinacalcet inhibited forskolin-induced secretory Isc by ∼75% in human colonic and ileal organoids. Our findings suggest that CaSR activator cinacalcet has antidiarrheal efficacy in distinct human cell, organoid and mouse models of secretory diarrhea. Considering its excellent clinical safety profile, cinacalcet can be repurposed as a treatment for cyclic nucleotide-mediated secretory diarrheas including cholera.


Subject(s)
Antidiarrheals , Cholera , Mice , Humans , Animals , Antidiarrheals/metabolism , Antidiarrheals/pharmacology , Antidiarrheals/therapeutic use , Cholera/drug therapy , Cholera/metabolism , Cholera/pathology , Cholera Toxin/metabolism , Cholera Toxin/pharmacology , Cholera Toxin/therapeutic use , Cinacalcet/pharmacology , Cinacalcet/therapeutic use , Cinacalcet/metabolism , Receptors, Calcium-Sensing/metabolism , Receptors, Calcium-Sensing/therapeutic use , Nucleotides, Cyclic/metabolism , Nucleotides, Cyclic/pharmacology , Nucleotides, Cyclic/therapeutic use , Colforsin/metabolism , Colforsin/pharmacology , Colforsin/therapeutic use , Diarrhea/drug therapy , Diarrhea/metabolism , Intestinal Mucosa/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/therapeutic use , Mice, Knockout
4.
Arch Med Res ; 55(1): 102925, 2024 01.
Article in English | MEDLINE | ID: mdl-38042031

ABSTRACT

BACKGROUND AND AIM: Gestational diabetes mellitus (GDM) is one of the most common metabolic disorders in pregnancy, and a novel association of maternal lipid profile has been suggested to play an important role. However, the molecular mechanism is not clear. METHODS: Bio-analyzed combined with placental metabonomics and single-cell RNA-sequencing (scRNA-seq) successfully identified a potentially important molecule: α-ß hydrolase domain-containing protein 5 (ABHD5). The syncytiotrophoblast (SCT) cell model was adopted as a fusion of BeWo cells in response to forskolin. On this basis, the high glucose-stimulated cell experiment was carried out. 15 women with GDM and 15 normal pregnant women were recruited for validation experiments. RESULTS: ABHD5 was mainly expressed in the trophoblast cells, especially in SCT cells, and significantly decreased in the GDM placenta. After stimulation by high glucose, the expression of ABHD5 was downregulated in a time-dependent manner in BeWo cells treated with forskolin. At the same time, lipid droplets (LDs) were increased in the SCT. LD storage was also increased in the SCT with siABHD5, while it was significantly reduced in SCT cells with high ABHD5 expression. However, this effect could be attenuated by downregulated carnitine palmitoyltransferase 1B (CPT1B). CONCLUSIONS: ABHD5-CPT1B is confirmed as an important regulator of placental lipid metabolism.


Subject(s)
Diabetes, Gestational , Placenta , Female , Humans , Pregnancy , 1-Acylglycerol-3-Phosphate O-Acyltransferase/genetics , 1-Acylglycerol-3-Phosphate O-Acyltransferase/metabolism , Carnitine O-Palmitoyltransferase/metabolism , Colforsin/pharmacology , Colforsin/metabolism , Diabetes, Gestational/genetics , Diabetes, Gestational/metabolism , Glucose/metabolism , Lipid Metabolism , Placenta/metabolism
5.
J Periodontol ; 95(3): 281-295, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37932872

ABSTRACT

BACKGROUND: Various stimuli, that is, mechanical stresses or inflammation, induce the release of adenosine triphosphate (ATP) by human periodontal ligament cells (HPDLCs). Extracellular adenosine triphosphate (eATP) affects HPDLCs' functions such as immunosuppressive action and inflammatory responses. Lipopolysaccharide (LPS) is the key factor involved in periodontal inflammation. However, the possible correlation and detailed mechanism of inflammation-mediated eATP by LPS and inflammatory cascade formation in HPDLCs is unclarified. This study aims to examine the role of eATP on the HPDLCs' responses concerning inflammatory actions after LPS treatment. METHODS: HPDLCs were stimulated with Porphyromonas gingivalis LPS and polyinosinic:polycytidylic acid (poly I:C). The amount of ATP release was measured at different time points using a bioluminescence assay. HPDLCs were treated with eATP. The expression of pro-inflammatory and anti-inflammatory genes was determined. Specific P2X purinoreceptor 7 (P2X7) inhibitors (brilliant blue G [BBG] and KN62), a specific P2Y purinoreceptor 1 (P2Y1) inhibitors (MRS2179), calcium chelator (EGTA), protein kinase C (PKC) inhibitors, nuclear factor kappa-light-chain-enhancer of activated B cells (NF𝜅B) activation inhibitors, and cyclic adenosine monophosphate (cAMP)-dependent protein kinase A (PKA) inhibitors (H89 dihydrochloride) and activators (forskolin) were used to dissect the mechanism of eATP-induced HPDLCs' inflammatory responses. RESULTS: LPS and poly I:C induced ATP release. A low concentration of eATP (50 µM) increased pro-inflammatory genes (COX2, IL1B, IL6, IL8, IL12, and TNFA), while a high concentration (500 µM) enhanced anti-inflammatory genes (IL4 and IL10). BBG, KN62, and NF𝜅B activation inhibitors impeded eATP-induced pro-inflammatory genes. MRS2179 and H89 markedly suppressed eATP-induced anti-inflammatory genes. Forskolin induced IL4 and IL10. CONCLUSION: HPDLCs respond to LPS by releasing ATP. eATP has dose-dependent dual functions on HPDLCs' inflammatory responses via different pathways. As regulation of inflammation is important in regeneration, eATP may help to limit inflammation and trigger periodontal regeneration.


Subject(s)
Adenosine Triphosphate , Isoquinolines , Periodontal Ligament , Sulfonamides , Humans , Adenosine Triphosphate/pharmacology , Adenosine Triphosphate/metabolism , Lipopolysaccharides/pharmacology , Lipopolysaccharides/metabolism , Colforsin/metabolism , Interleukin-10/metabolism , Interleukin-4/metabolism , Inflammation , Anti-Inflammatory Agents/pharmacology , Cells, Cultured , Poly I/metabolism
6.
Biochim Biophys Acta Gen Subj ; 1867(11): 130449, 2023 11.
Article in English | MEDLINE | ID: mdl-37748662

ABSTRACT

Nanodomains are a biological membrane phenomenon which have a large impact on various cellular processes. They are often analysed by looking at the lateral dynamics of membrane lipids or proteins. The localization of the plasma membrane protein aquaporin-2 in nanodomains has so far been unknown. In this study, we use total internal reflection fluorescence microscopy to image Madin-Darby Canine Kidney (MDCK) cells expressing aquaporin-2 tagged with mEos 3.2. Then, image mean squared displacement (iMSD) approach was used to analyse the diffusion of aquaporin-2, revealing that aquaporin-2 is confined within membrane nanodomains. Using iMSD analysis, we found that the addition of the drug forskolin increases the diffusion of aquaporin-2 within the confined domains, which is in line with previous studies. Finally, we observed an increase in the size of the membrane domains and the extent of trapping of aquaporin-2 after stimulation with forskolin.


Subject(s)
Aquaporin 2 , Animals , Dogs , Aquaporin 2/metabolism , Colforsin/pharmacology , Colforsin/metabolism , Diffusion , Cell Membrane/metabolism , Madin Darby Canine Kidney Cells
7.
J Hypertens ; 41(12): 2095-2106, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37728094

ABSTRACT

OBJECTIVE: Syncytiotrophoblasts form via mononuclear cytotrophoblast fusion during placentation and play a critical role in maternal-fetal communication. Impaired syncytialization inevitably leads to pregnancy-associated complications, including preeclampsia. Endoplasmic reticulum stress (ERS) is reportedly linked with preeclampsia, but little is known about its association with syncytialization. High temperature requirement factor A4 (HtrA4), a placental-specific protease, is responsible for protein quality control and placental syncytialization. This study aimed to investigate the relationship among HtrA4, ERS, and trophoblast syncytialization in the development of early-onset preeclampsia (EO-PE). METHODS: HtrA4 expression and ERS in preeclamptic placentas and control placentas were analyzed by Western blotting and qRT-PCR. HtrA4 and ERS localization in placentas was determined by immunohistochemistry and immunofluorescence. BeWo cells were used to stimulate the effects of HtrA4 and ERS on syncytialization. RESULTS: HtrA4 expression was upregulated in EO-PE and positively correlated with ERS. HtrA4 activity was increased in preeclampsia. Under normoxia, HtrA4 overexpression in BeWo cells did not alter the ERS level. In addition, treatment with hypoxia/reoxygenation (H/R) or an ERS inducer increased HtrA4 expression. HtrA4 upregulation suppressed the levels of syncytin-2 and ß-HCG in the presence of forskolin (FSK), and this change was exaggerated after ERS activation. In addition, treatment with an ERS inhibitor markedly suppressed FSK-treated cell fusion in a manner related to downregulation of HtrA4 expression. CONCLUSION: Our results suggest that ERS enables syncytialization of placental development by upregulating HtrA4, but that excessive HtrA4 expression and preexisting ERS impair syncytialization and cause EO-PE.


Subject(s)
Pre-Eclampsia , Trophoblasts , Humans , Pregnancy , Female , Trophoblasts/metabolism , Placenta/metabolism , Pre-Eclampsia/metabolism , Up-Regulation , Transcriptional Activation , Colforsin/metabolism , Serine Proteases/genetics , Serine Proteases/metabolism
8.
Anim Reprod Sci ; 257: 107327, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37696223

ABSTRACT

This study investigated the effects of cyclic adenosine monophosphate modulating during cumulus-oocyte complexes (COCs) pre-maturation and the role of melatonin on in vitro maturation (IVM) of bovine COCs. In experiment one, COCs were pre-matured for 8 h in control medium or with 3-isobutyl-1-methylxanthine (IBMX) and forskolin, IBMX and C-type natriuretic peptide, c-type natriuretic peptide and forskolin or IBMX, forskolin and c-type natriuretic peptide. Then, meiotic progression was evaluated. In experiment two, COCs were pre-matured, followed by IVM in control medium alone or with 10-6, 10-7 or 10-8 M melatonin. After IVM, chromatin configuration, transzonal projections (TZPs), reactive oxygen species, mitochondrial distribution, ultrastructure and mRNA expression for antioxidant enzymes were evaluated. In experiment 1, COCs pre-matured with both C-type natriuretic peptide and forskolin or C-type natriuretic peptide, forskolin and IBMX had lower meiotic resumption rate when compared to control. Considering that IBMX had not an additional effect to potentiate inhibition of meiotic resumption, a combination of C-type natriuretic peptide and forskolin was chosen. In experiment 2, COCs matured with 10-8 M melatonin had greater rates of meiotic resumption when compared to the other treatments (P < 0.05). The COCs matured with 10-7 or 10-8 M melatonin had greater mitochondrial activity (P < 0.05), while those matured with 10-6 or 10-8 M of melatonin had greater levels of TZPs. Ultrastructure of oocyte and cumulus cells after IVM with melatonin was relatively well preserved. COCs matured with 10-8 M melatonin increased mRNA expression for superoxide dismutase (SOD) and catalase (CAT) (P < 0.05), when compared to non-cultured and pre-matured COCs, respectively. In conclusion, bovine COC pre-maturation with C-type natriuretic peptide and forskolin, followed by IVM with 10-8 M melatonin improves meiotic resumption rates, TZPs, mitochondrial distribution and mRNA expression for SOD and CAT.


Subject(s)
Melatonin , Animals , Cattle , Female , Melatonin/pharmacology , Melatonin/metabolism , 1-Methyl-3-isobutylxanthine/pharmacology , In Vitro Oocyte Maturation Techniques/veterinary , Natriuretic Peptide, C-Type/pharmacology , Colforsin/pharmacology , Colforsin/metabolism , Oocytes/physiology , Cyclic AMP/metabolism , RNA, Messenger/metabolism , Superoxide Dismutase/metabolism , Adenosine Monophosphate/metabolism , Adenosine Monophosphate/pharmacology , Cumulus Cells
9.
Reprod Toxicol ; 120: 108452, 2023 09.
Article in English | MEDLINE | ID: mdl-37536456

ABSTRACT

Di(2-ethylhexyl) phthalate (DEHP) is an endocrine disruptor that exerts anti-steroidogenic effects in human granulosa cells; however, the extent of this effect depends on the concentration of DEHP and granulosa cell models used for exposure. The objective of this study was to identify the effects of low- and high-dose DEHP exposure in human granulosa cells. We exposed human granulosa cell line HGrC1 to 3 nM and 25 µM DEHP for 48 h. The whole genome transcriptome was analyzed using the DNBSEQ sequencing platform and bioinformatics tools. The results revealed that 3 nM DEHP did not affect global gene expression, whereas 25 µM DEHP affected the expression of only nine genes in HGrC1 cells: ABCA1, SREBF1, MYLIP, TUBB3, CENPT, NUPR1, ASS1, PCK2, and CTSD. We confirmed the downregulation of ABCA1 mRNA and SREBP-1 protein (encoded by the SREBF1 gene), both involved in cholesterol homeostasis. Despite these changes, progesterone production remained unaffected in low- and high-dose DEHP-exposed HGrC1 cells. The high concentration of DEHP decreased the levels of ABC1A mRNA and SREBP-1 protein and prevented the upregulation of STAR, a protein involved in progesterone synthesis, in forskolin-stimulated HGrC1 cells; however, the observed changes were not sufficient to alter progesterone production in forskolin-stimulated HGrC1 cells. Overall, this study suggests that acute exposure to low concentration of DEHP does not compromise the function of HGrC1 cells, whereas high concentration causes only subtle effects. The identified nine novel targets of high-dose DEHP require further investigation to determine their role and importance in DEHP-exposed human granulosa cells.


Subject(s)
Diethylhexyl Phthalate , Progesterone , Female , Humans , Progesterone/metabolism , Diethylhexyl Phthalate/toxicity , Sterol Regulatory Element Binding Protein 1 , Colforsin/metabolism , Colforsin/pharmacology , Granulosa Cells , Gene Expression Profiling , RNA, Messenger/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/pharmacology
10.
Zygote ; 31(5): 498-506, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37485669

ABSTRACT

Placental trophoblastic cells play important roles in placental development and fetal health. However, the mechanism of trophoblastic cell fusion is still not entirely clear. The level of Tspan5 in the embryo culture medium was detected using enzyme-linked immunosorbent assay (ELISA). Fusion of BeWo cells was observed by immunofluorescence. Cell fusion-related factors and EMT-related factors were identified by qRT-PCR and western blotting. Notch protein repressor DAPT was used to verify the role of Tspan5 in BeWo cells. The expression of Tspan5 was significantly increased in embryo culture medium. The fusion of BeWo cells was observed after treatment with forskolin (FSK). Cell fusion-related factors (i.e. ß-hCG and syncytin 1/2) and Tspan5 were significantly increased after FSK treatment. In addition, FSK treatment promoted EMT-related protein expression in BeWo cells. Knockdown of Tspan5 inhibited cell fusion and EMT-related protein levels. Notch-1 and Jagged-1 protein levels were significantly upregulated, and the EMT process was activated by overexpression of Tspan5 in FSK-treated BeWo cells. Interestingly, blocking the Notch pathway by the repressor DAPT had the opposite results. These results indicated that Tspan5 could promote the EMT process by activating the Notch pathway, thereby causing cell fusion. These findings contribute to a better understanding of trophoblast cell syncytialization and embryonic development. Tspan5 may be used as a therapeutic target for normal placental development.


Subject(s)
Platelet Aggregation Inhibitors , Trophoblasts , Humans , Female , Pregnancy , Platelet Aggregation Inhibitors/metabolism , Cell Line, Tumor , Placenta , Signal Transduction , Colforsin/metabolism , Colforsin/pharmacology , Cell Fusion/methods
11.
Chem Res Toxicol ; 36(6): 882-899, 2023 06 19.
Article in English | MEDLINE | ID: mdl-37162359

ABSTRACT

Syncytialization, the fusion of cytotrophoblasts into an epithelial barrier that constitutes the maternal-fetal interface, is a crucial event of placentation. This process is characterized by distinct changes to amino acid and energy metabolism. A metabolite of the industrial solvent trichloroethylene (TCE), S-(1,2-dichlorovinyl)-l-cysteine (DCVC), modifies energy metabolism and amino acid abundance in HTR-8/SVneo extravillous trophoblasts. In the current study, we investigated DCVC-induced changes to energy metabolism and amino acids during forskolin-stimulated syncytialization in BeWo cells, a human villous trophoblastic cell line that models syncytialization in vitro. BeWo cells were exposed to forskolin at 100 µM for 48 h to stimulate syncytialization. During syncytialization, BeWo cells were also treated with DCVC at 0 (control), 10, or 20 µM. Following treatment, the targeted metabolomics platform, "Tricarboxylic Acid Plus", was used to identify changes in energy metabolism and amino acids. DCVC treatment during syncytialization decreased oleic acid, aspartate, proline, uridine diphosphate (UDP), UDP-d-glucose, uridine monophosphate, and cytidine monophosphate relative to forskolin-only treatment controls, but did not increase any measured metabolite. Notable changes stimulated by syncytialization in the absence of DCVC included increased adenosine monophosphate and guanosine monophosphate, as well as decreased aspartate and glutamate. Pathway analysis revealed multiple pathways in amino acid and sugar metabolisms that were altered with forskolin-stimulated syncytialization alone and DCVC treatment during syncytialization. Analysis of ratios of metabolites within the pathways revealed that DCVC exposure during syncytialization changed metabolite ratios in the same or different direction compared to syncytialization alone. Building off our oleic acid findings, we found that extracellular matrix metalloproteinase-2, which is downstream in oleic acid signaling, underwent the same changes as oleic acid. Together, the metabolic changes stimulated by DCVC treatment during syncytialization suggest changes in energy metabolism and amino acid abundance as potential mechanisms by which DCVC could impact syncytialization and pregnancy.


Subject(s)
Cysteine , Trichloroethylene , Female , Humans , Pregnancy , Amino Acids/metabolism , Aspartic Acid/metabolism , Colforsin/metabolism , Cysteine/metabolism , Matrix Metalloproteinase 2/metabolism , Oleic Acids/metabolism , Placenta , Trichloroethylene/metabolism , Trophoblasts
12.
J. physiol. biochem ; 79(2): 415-425, may. 2023.
Article in English | IBECS | ID: ibc-222552

ABSTRACT

The antidepressant drug opipramol has been reported to exert antilipolytic effect in human adipocytes, suggesting that alongside its neuropharmacological properties, this agent might modulate lipid utilization by peripheral tissues. However, patients treated for depression or anxiety disorders by this tricyclic compound do not exhibit the body weight gain or the glucose tolerance alterations observed with various other antidepressant or antipsychotic agents such as amitriptyline and olanzapine, respectively. To examine whether opipramol reproduces or impairs other actions of insulin, its direct effects on glucose transport, lipogenesis and lipolysis were investigated in adipocytes while its influence on insulin secretion was studied in pancreatic islets. In mouse and rat adipocytes, opipramol did not activate triglyceride breakdown, but partially inhibited the lipolytic action of isoprenaline or forskolin, especially in the 10–100 μM range. At 100 μM, opipramol also inhibited the glucose incorporation into lipids without limiting the glucose transport in mouse adipocytes. In pancreatic islets, opipramol acutely impaired the stimulation of insulin secretion by various activators (high glucose, high potassium, forskolin...). Similar inhibitory effects were observed in mouse and rat pancreatic islets and were reproduced with 100 μM haloperidol, in a manner that was independent from alpha2-adrenoceptor activation but sensitive to Ca2+ release. All these results indicated that the anxiolytic drug opipramol is not only active in central nervous system but also in multiple peripheral tissues and endocrine organs. Due to its capacity to modulate the lipid and carbohydrate metabolisms, opipramol deserves further studies in order to explore its therapeutic potential for the treatment of obese and diabetic states. (AU)


Subject(s)
Animals , Mice , Rats , Anti-Anxiety Agents/metabolism , Anti-Anxiety Agents/pharmacokinetics , Opipramol/metabolism , Opipramol/pharmacology , Islets of Langerhans/metabolism , Colforsin/metabolism , Colforsin/pharmacology , Adipocytes/metabolism , Glucose/metabolism , Insulin Secretion , Insulin/metabolism , Lipids/pharmacology
13.
Reprod Sci ; 30(9): 2680-2691, 2023 09.
Article in English | MEDLINE | ID: mdl-37046153

ABSTRACT

Impairment of decidualization of eutopic human endometrial stromal cells (hESCs) may cause an increase in cell survival of endometrial tissue in the peritoneal cavity constituting a precondition for endometriosis development. Decidualization is a physiological process involving progesterone action and cAMP signaling. We here evaluated the effect of 8-Br-cAMP, the adenylate cyclase activator forskolin and of the progestin progesterone and medroxyprogesterone acetate (MPA) alone and in combination on decidualization induction using prolactin ELISA, and on cell size, cell granularity, and cell survival via flow cytometry in hESCs of patients with and without endometriosis. While progestins alone did not induce functional decidualization in hESCs, 8-Br-cAMP and forskolin induced decidualization in hESCs from both cohorts, whereas the induction of FOXO1 transcription and prolactin secretion by forskolin was significantly lower than by 8-Br-cAMP. 8-Br-cAMP- and forskolin-induced prolactin secretion was significantly enhanced by MPA, but not by progesterone. Decidualization entailed a decrease in cell size and in cell granularity. In general, hESCs from women with mild (ASRM I/II) as well as severe (ASRM III/IV) endometriosis in trend displayed a higher granularity, whereas mainly hESCs from severe endometriosis showed a stronger resistance to the induction of cell death after decidualization induction. In both cohorts, the amount of the decidual marker protein prolactin rather exhibited an anti-proportional correlation to cell death induction during six day treatment. This study contributes to widen our understanding of the connection of decidualization and cell death in endometriosis.


Subject(s)
Endometriosis , Progesterone , Humans , Female , Progesterone/metabolism , Endometrium/metabolism , Decidua/metabolism , Prolactin/metabolism , Endometriosis/metabolism , Colforsin/metabolism , Colforsin/pharmacology , Progestins/pharmacology , Medroxyprogesterone Acetate/pharmacology , Stromal Cells/metabolism , Cells, Cultured
14.
Front Endocrinol (Lausanne) ; 14: 1075030, 2023.
Article in English | MEDLINE | ID: mdl-36923228

ABSTRACT

Prostaglandin E2 (PGE2) is considered as a luteoprotective factor, influencing the corpus luteum during the early pregnant period in the bovine species. Cyclic AMP (cAMP) is activated in response to PGE2 and plays a role in many physiological processes. The maternal recognition signal, interferon τ (IFNT), induces PGE2 secretion from the endometrial epithelial cells, the function of which in stroma cells has not been completely understood. In this study, PGE2 was found to activate cAMP in the bovine endometrial stromal cells (STRs). STRs were then treated with forskolin to activate the cAMP signaling, from which RNA extracted was subjected to global expression analysis. Transcripts related to transcription regulatory region nucleic acid binding of molecular function, nucleus of cellular component, and mitotic spindle organization of biological processes were up-regulated in cAMP-activated bovine STRs. An increase in the transcription factors, NFIL3, CEBPA, and HIF1A via the cAMP/PKA/CREB signaling pathway in the bovine STRs was also found by qPCR. Knockdown of NFIL3, CEBPA, or HIF1A blocked forskolin-induced PTGS1/2 and IGFBP1/3 expression. Moreover, NFIL3 and CEBPA were localized in endometrial stroma on pregnant day 17 (day 0 = estrous cycle), but not on cyclic day 17. These observations indicated that uterine PGE2 induced by conceptus IFNT is involved in the early pregnancy-related gene expression in endometrial stromal cells, which could facilitate pregnancy establishment in the bovine.


Subject(s)
Dinoprostone , Stromal Cells , Pregnancy , Female , Cattle , Animals , Dinoprostone/metabolism , Colforsin/pharmacology , Colforsin/metabolism , Stromal Cells/metabolism , Epithelial Cells/metabolism
15.
J Biol Chem ; 299(5): 104650, 2023 05.
Article in English | MEDLINE | ID: mdl-36972789

ABSTRACT

Human trophoblast stem cells (hTSCs) have emerged as a powerful tool to model early placental development in vitro. Analogous to the epithelial cytotrophoblast in the placenta, hTSCs can differentiate into cells of the extravillous trophoblast (EVT) lineage or the multinucleate syncytiotrophoblast (STB). Here we present a chemically defined culture system for STB and EVT differentiation of hTSCs. Notably, in contrast to current approaches, we neither utilize forskolin for STB formation nor transforming growth factor-beta (TGFß) inhibitors or a passage step for EVT differentiation. Strikingly, the presence of a single additional extracellular cue-laminin-111-switched the terminal differentiation of hTSCs from STB to the EVT lineage under these conditions. In the absence of laminin-111, STB formation occurred, with cell fusion comparable to that obtained with differentiation mediated by forskolin; however, in the presence of laminin-111, hTSCs differentiated to the EVT lineage. Protein expression of nuclear hypoxia-inducible factors (HIF1α and HIF2α) was upregulated during EVT differentiation mediated by laminin-111 exposure. A heterogeneous mixture of Notch1+ EVTs in colonies and HLA-G+ single-cell EVTs were obtained without a passage step, reminiscent of heterogeneity in vivo. Further analysis showed that inhibition of TGFß signaling affected both STB and EVT differentiation mediated by laminin-111 exposure. TGFß inhibition during EVT differentiation resulted in decreased HLA-G expression and increased Notch1 expression. On the other hand, TGFß inhibition prevented STB formation. The chemically defined culture system for hTSC differentiation established herein facilitates quantitative analysis of heterogeneity that arises during hTSC differentiation and will enable mechanistic studies in vitro.


Subject(s)
Cell Differentiation , Cytological Techniques , Laminin , Stem Cells , Trophoblasts , Humans , Cell Differentiation/drug effects , Colforsin/pharmacology , Colforsin/metabolism , HLA-G Antigens/genetics , HLA-G Antigens/metabolism , Laminin/pharmacology , Stem Cells/cytology , Stem Cells/drug effects , Transforming Growth Factor beta/metabolism , Trophoblasts/cytology , Trophoblasts/metabolism , Culture Media/chemistry , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Gene Expression Regulation, Developmental/drug effects , Cytological Techniques/methods
16.
J Physiol Biochem ; 79(2): 415-425, 2023 May.
Article in English | MEDLINE | ID: mdl-36821072

ABSTRACT

The antidepressant drug opipramol has been reported to exert antilipolytic effect in human adipocytes, suggesting that alongside its neuropharmacological properties, this agent might modulate lipid utilization by peripheral tissues. However, patients treated for depression or anxiety disorders by this tricyclic compound do not exhibit the body weight gain or the glucose tolerance alterations observed with various other antidepressant or antipsychotic agents such as amitriptyline and olanzapine, respectively. To examine whether opipramol reproduces or impairs other actions of insulin, its direct effects on glucose transport, lipogenesis and lipolysis were investigated in adipocytes while its influence on insulin secretion was studied in pancreatic islets. In mouse and rat adipocytes, opipramol did not activate triglyceride breakdown, but partially inhibited the lipolytic action of isoprenaline or forskolin, especially in the 10-100 µM range. At 100 µM, opipramol also inhibited the glucose incorporation into lipids without limiting the glucose transport in mouse adipocytes. In pancreatic islets, opipramol acutely impaired the stimulation of insulin secretion by various activators (high glucose, high potassium, forskolin...). Similar inhibitory effects were observed in mouse and rat pancreatic islets and were reproduced with 100 µM haloperidol, in a manner that was independent from alpha2-adrenoceptor activation but sensitive to Ca2+ release. All these results indicated that the anxiolytic drug opipramol is not only active in central nervous system but also in multiple peripheral tissues and endocrine organs. Due to its capacity to modulate the lipid and carbohydrate metabolisms, opipramol deserves further studies in order to explore its therapeutic potential for the treatment of obese and diabetic states.


Subject(s)
Anti-Anxiety Agents , Islets of Langerhans , Opipramol , Humans , Rats , Mice , Animals , Insulin/metabolism , Insulin Secretion , Opipramol/metabolism , Opipramol/pharmacology , Anti-Anxiety Agents/pharmacology , Anti-Anxiety Agents/metabolism , Lipogenesis , Colforsin/pharmacology , Colforsin/metabolism , Islets of Langerhans/metabolism , Adipocytes/metabolism , Lipolysis , Glucose/metabolism , Lipids/pharmacology
17.
Biomaterials ; 293: 121982, 2023 02.
Article in English | MEDLINE | ID: mdl-36640555

ABSTRACT

Human pluripotent stem cell-derived hepatocytes (hPSC-Heps) may be suitable for treating liver diseases, but differentiation protocols often fail to yield adult-like cells. We hypothesised that replicating healthy liver niche biochemical and biophysical cues would produce hepatocytes with desired metabolic functionality. Using 2D synthetic hydrogels which independently control mechanical properties and biochemical cues, we found that culturing hPSC-Heps on surfaces matching the stiffness of fibrotic liver tissue upregulated expression of genes for RGD-binding integrins, and increased expression of YAP/TAZ and their transcriptional targets. Alternatively, culture on soft, healthy liver-like substrates drove increases in cytochrome p450 activity and ureagenesis. Knockdown of ITGB1 or reducing RGD-motif-containing peptide concentration in stiff hydrogels reduced YAP activity and improved metabolic functionality; however, on soft substrates, reducing RGD concentration had the opposite effect. Furthermore, targeting YAP activity with verteporfin or forskolin increased cytochrome p450 activity, with forskolin dramatically enhancing urea synthesis. hPSC-Heps could also be successfully encapsulated within RGD peptide-containing hydrogels without negatively impacting hepatic functionality, and compared to 2D cultures, 3D cultured hPSC-Heps secreted significantly less fetal liver-associated alpha-fetoprotein, suggesting furthered differentiation. Our platform overcomes technical hurdles in replicating the liver niche, and allowed us to identify a role for YAP/TAZ-mediated mechanosensing in hPSC-Hep differentiation.


Subject(s)
Hepatocytes , Oligopeptides , Humans , Colforsin/metabolism , Colforsin/pharmacology , Cell Differentiation , Oligopeptides/pharmacology , Oligopeptides/metabolism , Cytochrome P-450 Enzyme System/metabolism , Cytochrome P-450 Enzyme System/pharmacology , Hydrogels/chemistry
18.
Food Chem Toxicol ; 173: 113636, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36708866

ABSTRACT

Mitochondrial dysfunction has been implicated in Parkinson's disease. Mic60 is a critical component of mitochondrial crista remodeling and participates in maintaining mitochondrial structure and function. This study investigated whether the carnosic acid (CA) of rosemary protects the mitochondria of SH-SY5Y cells against the neurotoxicity of 6-hydroxydopamine (6-OHDA) by regulating Mic60. Our results showed that CA pretreatment reversed the reduction in the Mic60 and citrate synthase proteins, as well as the protein induction of PKA caused by 6-OHDA. Moreover, Mic60 and PINK1 siRNAs blocked the ability of CA to lessen the release of mitochondrial cytochrome c by 6-OHDA. As shown by immunoprecipitation assay, in 6-OHDA-treated cells, the interaction of Mic60 with its phosphorylated threonine residue was decreased, but the interaction with its phosphorylated serine residue was increased. PINK1 siRNA and forskolin, a PKA activator, reversed these interactions. Moreover, forskolin pretreatment prevented CA from rescuing the interaction of PINK1 and Mic60 and the reduction in cytochrome c release and mitophagy impairment in 6-OHDA-treated cells. In conclusion, CA prevents 6-OHDA-induced cytochrome c release by regulating Mic60 phosphorylation by PINK1 through a downregulation of PKA. The regulation of Mic60 by CA can be considered as a protective mechanism for the prevention of Parkinson's disease.


Subject(s)
Neuroblastoma , Parkinson Disease , Humans , Oxidopamine/toxicity , Cytochromes c/metabolism , Mitochondrial Proteins/metabolism , Parkinson Disease/metabolism , Colforsin/metabolism , Neuroblastoma/metabolism , Mitochondria/metabolism , Cell Line, Tumor , RNA, Small Interfering , Protein Kinases/genetics , Protein Kinases/metabolism , Apoptosis
19.
Mol Biol Rep ; 50(1): 631-640, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36371553

ABSTRACT

BACKGROUND: Devising of an appropriate in vitro culture method for germ cells differentiation in the presence of soluble factors has attracted considerable attention, which results will provide new insight into reproductive biology. In this study, we compared the effects of forskolin, retinoic acid (RA) or granulosa cell-conditioned medium in the presence or absence of granulosa cell co-culturing on germ cell differentiation from embryonic stem cells (ESCs). METHODS AND RESULTS: Embryonic stem cells were differentiated using embryoid bodies (EBs) for 5 days, and then EB-derived cells were co-cultured with or without adult mouse granulosa cells using monolayer protocol and treated with 50 µM forskolin, 1 µM RA and 50% granulosa cell-conditioned medium for 4 days. Granulosa cell-conditioned medium significantly increased the levels of Scp3, Rec8, Mvh and Gdf9 expression in the granulosa cell co-culture method compared to untreated cells. A significant elevation of Stra8, Rec8 and Mvh was observed after treatment with RA in the absence of granulosa cells and there was no significant increase in the levels of expression of germ cell-specific genes after treatment with forskolin compared to control. Furthermore, forskolin and RA significantly increased viability and proliferation of germ-like cells, compared with granulosa cell-conditioned medium. CONCLUSIONS: Our study revealed that granulosa cell-conditioned medium and RA effectively can induce germ cell differentiation from ESCs, however combined application of granulosa cell-conditioned medium and co-culturing with granulosa cells had synergic effect on germ cell development in vitro as optimized protocol.


Subject(s)
Germ Cells , Tretinoin , Animals , Female , Mice , Tretinoin/pharmacology , Coculture Techniques , Colforsin/pharmacology , Colforsin/metabolism , Culture Media, Conditioned/pharmacology , Culture Media, Conditioned/metabolism , Cell Differentiation , Cells, Cultured , Germ Cells/metabolism , Granulosa Cells/metabolism
20.
Cardiovasc Res ; 119(2): 450-464, 2023 03 31.
Article in English | MEDLINE | ID: mdl-35576489

ABSTRACT

AIMS: The adenylate cyclase type 9 (ADCY9) gene appears to determine atherosclerotic outcomes in patients treated with dalcetrapib. In mice, we recently demonstrated that Adcy9 inactivation potentiates endothelial function and inhibits atherogenesis. The objective of this study was to characterize the contribution of ADCY9 to the regulation of endothelial signalling pathways involved in atherosclerosis. METHODS AND RESULTS: We show that ADCY9 is expressed in the endothelium of mouse aorta and femoral arteries. We demonstrate that ADCY9 inactivation in cultured endothelial cells paradoxically increases cAMP accumulation in response to the adenylate cyclase activators forskolin and vasoactive intestinal peptide (VIP). Reciprocally, ADCY9 overexpression decreases cAMP production. Using mouse femoral artery arteriography, we show that Adcy9 inactivation potentiates VIP-induced endothelial-dependent vasodilation. Moreover, Adcy9 inactivation reduces mouse atheroma endothelial permeability in different vascular beds. ADCY9 overexpression reduces forskolin-induced phosphorylation of Ser157-vasodilator-stimulated phosphoprotein (VASP) and worsens thrombin-induced fall of RAP1 activity, both leading to increased endothelial permeability. ADCY9 inactivation in thrombin-stimulated human coronary artery endothelial cells results in cAMP accumulation, increases p-Ser157-VASP, and inhibits endothelial permeability. MLC2 phosphorylation and actin stress fibre increases in response to thrombin were reduced by ADCY9 inactivation, suggesting actin cytoskeleton regulation. Finally, using the Miles assay, we demonstrate that Adcy9 regulates thrombin-induced endothelial permeability in vivo in normal and atherosclerotic animals. CONCLUSION: Adcy9 is expressed in endothelial cells and regulates local cAMP and endothelial functions including permeability relevant to atherogenesis.


Subject(s)
Adenylyl Cyclases , Atherosclerosis , Animals , Humans , Mice , Adenylyl Cyclases/genetics , Adenylyl Cyclases/metabolism , Atherosclerosis/genetics , Atherosclerosis/prevention & control , Atherosclerosis/metabolism , Colforsin/pharmacology , Colforsin/metabolism , Endothelial Cells/metabolism , Endothelium/metabolism , Thrombin/metabolism , Cyclic AMP/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...