Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 12.298
Filter
1.
Mol Pain ; 20: 17448069241258110, 2024.
Article in English | MEDLINE | ID: mdl-38744422

ABSTRACT

Recent studies using different experimental approaches demonstrate that silent synapses may exist in the adult cortex including the sensory cortex and anterior cingulate cortex (ACC). The postsynaptic form of long-term potentiation (LTP) in the ACC recruits some of these silent synapses and the activity of calcium-stimulated adenylyl cyclases (ACs) is required for such recruitment. It is unknown if the chemical activation of ACs may recruit silent synapses. In this study, we found that activation of ACs contributed to synaptic potentiation in the ACC of adult mice. Forskolin, a selective activator of ACs, recruited silent responses in the ACC of adult mice. The recruitment was long-lasting. Interestingly, the effect of forskolin was not universal, some silent synapses did not undergo potentiation or recruitment. These findings suggest that these adult cortical synapses are not homogenous. The application of a selective calcium-permeable AMPA receptor inhibitor 1-naphthyl acetyl spermine (NASPM) reversed the potentiation and the recruitment of silent responses, indicating that the AMPA receptor is required. Our results strongly suggest that the AC-dependent postsynaptic AMPA receptor contributes to the recruitment of silent responses at cortical LTP.


Subject(s)
Adenylyl Cyclases , Colforsin , Gyrus Cinguli , Long-Term Potentiation , Animals , Mice , Gyrus Cinguli/drug effects , Gyrus Cinguli/metabolism , Colforsin/pharmacology , Long-Term Potentiation/drug effects , Adenylyl Cyclases/metabolism , Male , Receptors, AMPA/metabolism , Mice, Inbred C57BL , Synapses/drug effects , Synapses/metabolism , Calcium/metabolism
2.
Toxicon ; 243: 107720, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38614244

ABSTRACT

AIM: This study proposed to assess the synergistic effects of Forskolin and Metformin (alone and in combination) on glucose, hematological, liver serum, and oxidative stress parameters in diabetic, healthy, and hepatocellular carcinoma (HCC) induced rats. MATERIALS AND METHODS: Eighty male Wistar rats were divided into 10 experimental groups (8 rats for each group), including 1) healthy group, 2) diabetic group, 3) HCC group, 4) diabet + Metformin (300 mg/kg), 5) diabet + Forskolin (100 mg/kg), 6) diabet + Metformin (300 mg/kg) & Forskolin (100 mg/kg), 7) HCC + Metformin (300 mg/kg), 8) HCC + Forskolin (100 mg/kg), 9) HCC + Metformin (300 mg/kg) & Forskolin (100 mg/kg), and 10) healthy group + Metformin (300 mg/kg) & Forskolin (100 mg/kg). The rats were administrated Forskolin/Metformin daily for 8 weeks. Glucose, hematological, and liver serum parameters were measured and compared among the groups. The levels of malondialdehyde (MDA), and the activities of superoxide dismutase (SOD) and glutathione peroxidase (GPx), as well as 8-hydroxydeoxyguanosine (8 OHdG) levels, were also measured. RESULTS: The average blood glucose reduction in diabetic rats with the Forskolin, Metformin, and Forskolin + Metformin treatments was 43.5%, 47.1%, and 53.9%, respectively. These reduction values for HCC rats after the treatments were 21.0%, 16.2%, and 23.7%, respectively. For all the diabetic and HCC rats treated with Forskolin/Metformin, the MDA, SOD, and GPx levels showed significant improvement compared with the diabetic and HCC groups (P < 0.05). Although the rats treated with Forskolin + Metformin experienced a higher reduction in oxidative stress of blood and urine samples compared to the Forskolin group, the differences between this group and rats treated with Metformin were not significant for all parameters. CONCLUSION: Metformin and Forskolin reduced oxidative stress in diabetic and HCC-induced rats. The results indicated that the combination of agents (Metformin & Forskolin) had greater therapeutic effects than Forskolin alone in reducing glucose levels in diabetic rats. However, the ameliorative effects of combining Metformin and Forskolin on blood and urine oxidative stress were not statistically higher than those of Metformin alone.


Subject(s)
Carcinoma, Hepatocellular , Colforsin , Diabetes Mellitus, Experimental , Hypoglycemic Agents , Liver Neoplasms , Metformin , Oxidative Stress , Rats, Wistar , Animals , Metformin/pharmacology , Oxidative Stress/drug effects , Colforsin/pharmacology , Male , Rats , Diabetes Mellitus, Experimental/drug therapy , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Carcinoma, Hepatocellular/drug therapy , Liver Neoplasms/drug therapy , Drug Synergism , Blood Glucose , Malondialdehyde/blood
3.
PLoS One ; 19(4): e0302223, 2024.
Article in English | MEDLINE | ID: mdl-38625986

ABSTRACT

Although Schwann cells have been found to play a key role in inflammation and repair following nerve injury, the exact pathway is still unknown. To explore the mechanism by which Schwann cells exert their effects in the neuron microenvironment, we investigated two main inflammatory pathways: the NF-κB and cAMP pathways, and their downstream signaling molecules. In this study, lipopolysaccharide (LPS), a bacterial endotoxin, was used to activate the NF-κB pathway, and forskolin, a plant extract, was used to activate the cAMP pathway. The rat RT4-D6P2T Schwann cell line was treated with 0.1, 1, or 10 µg/mL of LPS, with or without 2 µM of forskolin, for 1, 3, 12, and 24 hours to determine the effects of elevated cAMP levels on LPS-treated cell viability. To investigate the effects of elevated cAMP levels on the expression of downstream signaling effector proteins, specifically NF-κB, TNF-α, AKAP95, and cyclin D3, as well as TNF-α secretion, RT4-D6P2T cells were incubated in the various treatment combinations for a 3-hour time period. Overall, results from the CellTiter-Glo viability assay revealed that forskolin increased viability in cells treated with smaller doses of LPS for 1 and 24 hours. For all time points, 10 µg/mL of LPS noticeably reduced viability regardless of forskolin treatment. Results from the Western blot analysis revealed that, at 10 µg/mL of LPS, forskolin upregulated the expression of TNF-α despite a downregulation of NF-κB, which was also accompanied by a decrease in TNF-α secretion. These results provide evidence that cAMP might regulate TNF-α expression through alternate pathways. Furthermore, although cAMP activation altered AKAP95 and cyclin D3 expression at different doses of LPS, there does not appear to be an association between the expression of AKAP95 or cyclin D3 and the expression of TNF-α. Exploring the possible interactions between cAMP, NF-κB, and other key inflammatory signaling pathways might reveal a potential therapeutic target for the treatment of nerve injury and inflammation.


Subject(s)
Lipopolysaccharides , NF-kappa B , Rats , Animals , NF-kappa B/metabolism , Lipopolysaccharides/pharmacology , Tumor Necrosis Factor-alpha/metabolism , Colforsin/pharmacology , Down-Regulation , Cyclin D3/metabolism , Cyclic AMP/metabolism , Inflammation , Schwann Cells/metabolism
4.
J Vis Exp ; (205)2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38587373

ABSTRACT

cAMP Difference Detector In Situ (cADDis) is a novel biosensor that allows for the continuous measurement of cAMP levels in living cells. The biosensor is created from a circularly permuted fluorescent protein linked to the hinge region of Epac2. This creates a single fluorophore biosensor that displays either increased or decreased fluorescence upon binding of cAMP. The biosensor exists in red and green upward versions, as well as green downward versions, and several red and green versions targeted to subcellular locations. To illustrate the effectiveness of the biosensor, the green downward version, which decreases in fluorescence upon cAMP binding, was used. Two protocols using this sensor are demonstrated: one utilizing a 96-well plate reading spectrophotometer compatible with high-throughput screening and another utilizing single-cell imaging on a fluorescent microscope. On the plate reader, HEK-293 cells cultured in 96-well plates were stimulated with 10 µM forskolin or 10 nM isoproterenol, which induced rapid and large decreases in fluorescence in the green downward version. The biosensor was used to measure cAMP levels in individual human airway smooth muscle (HASM) cells monitored under a fluorescent microscope. The green downward biosensor displayed similar responses to populations of cells when stimulated with forskolin or isoproterenol. This single-cell assay allows visualization of the biosensor location at 20x and 40x magnification. Thus, this cAMP biosensor is sensitive and flexible, allowing real-time measurement of cAMP in both immortalized and primary cells, and with single cells or populations of cells. These attributes make cADDis a valuable tool for studying cAMP signaling dynamics in living cells.


Subject(s)
Cyclic AMP , Respiratory System , Humans , Cyclic AMP/metabolism , Isoproterenol/pharmacology , Colforsin/pharmacology , HEK293 Cells , Respiratory System/metabolism
5.
Respir Investig ; 62(3): 455-461, 2024 May.
Article in English | MEDLINE | ID: mdl-38547757

ABSTRACT

BACKGROUND: Many disease-causing variants in the Cystic Fibrosis Transmembrane conductance Regulator (CFTR) gene remain uncharacterized and untreated. Restoring the function of the impaired CFTR protein is the goal of personalized medicine, particularly in patients carrying rare CFTR variants. In this study, functional defects related to the rare R334W variant were evaluated after treatment with CFTR modulators or Roflumilast, a phosphodiesterase-4 inhibitor (PDE4i). METHODS: Rectal organoids from subjects with R334W/2184insA and R334W/2183AA > G genotypes were used to perform the Forskolin-induced swelling (FIS) assay. Organoids were left drug-untreated or treated with modulators VX-770 (I), VX-445 (E), and VX-661 (T) mixed, and their combination (ETI). Roflumilast (R) was used alone or as a combination of I + R. RESULTS: Our data show a significant increase in FIS rate following treatment with I alone. The combined use of modulators, such as ETI, did not increase further swelling than I alone, nor in protein maturation. Treatment with R shows an increase in FIS response similar to those of I, and the combination R + I significantly increases the rescue of CFTR activity. CONCLUSIONS: Equivalent I and ETI treatment efficacy was observed for both genotypes. Furthermore, significant organoid swelling was observed with combined I + R used that supports the recently published data describing a potentiating effect of only I in patients carrying the variant R334W and, at the same time, corroborating the role of strategies that include PDE4 inhibitors further to potentiate the effect of I for this variant.


Subject(s)
Aminopyridines , Benzamides , Cystic Fibrosis , Phosphodiesterase 4 Inhibitors , Humans , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/pharmacology , Cystic Fibrosis/genetics , Cystic Fibrosis/metabolism , Phosphodiesterase 4 Inhibitors/pharmacology , Phosphodiesterase 4 Inhibitors/metabolism , Colforsin/metabolism , Colforsin/pharmacology , Organoids/metabolism , Mutation , Cyclopropanes
7.
J Physiol ; 602(9): 2019-2045, 2024 May.
Article in English | MEDLINE | ID: mdl-38488688

ABSTRACT

Activation of the cAMP pathway is one of the common mechanisms underlying long-term potentiation (LTP). In the Drosophila mushroom body, simultaneous activation of odour-coding Kenyon cells (KCs) and reinforcement-coding dopaminergic neurons activates adenylyl cyclase in KC presynaptic terminals, which is believed to trigger synaptic plasticity underlying olfactory associative learning. However, learning induces long-term depression (LTD) at these synapses, contradicting the universal role of cAMP as a facilitator of transmission. Here, we developed a system to electrophysiologically monitor both short-term and long-term synaptic plasticity at KC output synapses and demonstrated that they are indeed an exception in which activation of the cAMP-protein kinase A pathway induces LTD. Contrary to the prevailing model, our cAMP imaging found no evidence for synergistic action of dopamine and KC activity on cAMP synthesis. Furthermore, we found that forskolin-induced cAMP increase alone was insufficient for plasticity induction; it additionally required simultaneous KC activation to replicate the presynaptic LTD induced by pairing with dopamine. On the other hand, activation of the cGMP pathway paired with KC activation induced slowly developing LTP, proving antagonistic actions of the two second-messenger pathways predicted by behavioural study. Finally, KC subtype-specific interrogation of synapses revealed that different KC subtypes exhibit distinct plasticity duration even among synapses on the same postsynaptic neuron. Thus, our work not only revises the role of cAMP in synaptic plasticity by uncovering the unexpected convergence point of the cAMP pathway and neuronal activity, but also establishes the methods to address physiological mechanisms of synaptic plasticity in this important model. KEY POINTS: Although presynaptic cAMP increase generally facilitates synapses, olfactory associative learning in Drosophila, which depends on dopamine and cAMP signalling genes, induces long-term depression (LTD) at the mushroom body output synapses. By combining electrophysiology, pharmacology and optogenetics, we directly demonstrate that these synapses are an exception where activation of the cAMP-protein kinase A pathway leads to presynaptic LTD. Dopamine- or forskolin-induced cAMP increase alone is not sufficient for LTD induction; neuronal activity, which has been believed to trigger cAMP synthesis in synergy with dopamine input, is required in the downstream pathway of cAMP. In contrast to cAMP, activation of the cGMP pathway paired with neuronal activity induces presynaptic long-term potentiation, which explains behaviourally observed opposing actions of transmitters co-released by dopaminergic neurons. Our work not only revises the role of cAMP in synaptic plasticity, but also provides essential methods to address physiological mechanisms of synaptic plasticity in this important model system.


Subject(s)
Cyclic AMP , Mushroom Bodies , Neuronal Plasticity , Animals , Mushroom Bodies/physiology , Cyclic AMP/metabolism , Neuronal Plasticity/physiology , Dopamine , Long-Term Potentiation/physiology , Drosophila melanogaster/physiology , Cyclic GMP/metabolism , Synapses/physiology , Long-Term Synaptic Depression/physiology , Colforsin/pharmacology , Cyclic AMP-Dependent Protein Kinases/metabolism
8.
EMBO Rep ; 25(3): 1513-1540, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38351373

ABSTRACT

Membrane adenylyl cyclase AC8 is regulated by G proteins and calmodulin (CaM), mediating the crosstalk between the cAMP pathway and Ca2+ signalling. Despite the importance of AC8 in physiology, the structural basis of its regulation by G proteins and CaM is not well defined. Here, we report the 3.5 Å resolution cryo-EM structure of the bovine AC8 bound to the stimulatory Gαs protein in the presence of Ca2+/CaM. The structure reveals the architecture of the ordered AC8 domains bound to Gαs and the small molecule activator forskolin. The extracellular surface of AC8 features a negatively charged pocket, a potential site for unknown interactors. Despite the well-resolved forskolin density, the captured state of AC8 does not favour tight nucleotide binding. The structural proteomics approaches, limited proteolysis and crosslinking mass spectrometry (LiP-MS and XL-MS), allowed us to identify the contact sites between AC8 and its regulators, CaM, Gαs, and Gßγ, as well as to infer the conformational changes induced by these interactions. Our results provide a framework for understanding the role of flexible regions in the mechanism of AC regulation.


Subject(s)
Adenylyl Cyclases , Calmodulin , Animals , Cattle , Adenylyl Cyclases/chemistry , Adenylyl Cyclases/metabolism , Colforsin/pharmacology , Cryoelectron Microscopy , Proteomics , GTP-Binding Proteins/metabolism
9.
Curr Microbiol ; 81(4): 93, 2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38334775

ABSTRACT

The measles vaccine virus strain (MV-Edm) serves as a potential platform for the development of effective oncolytic vectors. Nevertheless, despite promising pre-clinical data, our comprehension of the factors influencing the efficacy of MV-Edm infection and intratumoral spread, as well as the interactions between oncolytic viruses and specific chemotherapeutics associated with viral infection, remains limited. Therefore, we investigated the potency of Forskolin in enhancing the antitumor effect of oncolytic MV-Edm by promoting the Rab27a-dependent vesicular transport system. After infecting cells with MV-Edm, we observed an increased accumulation of cytoplasmic vesicles. Our study demonstrated that MV-Edm infection and spread in tumors, which are indispensable processes for viral oncolysis, depend on the vesicular transport system of tumor cells. Although tumor cells displayed a responsive mechanism to restrain the MV-Edm spread by down-regulating the expression of Rab27a, a key member of the vesicle transport system, over-expression of Rab27a promoted the oncolytic efficacy of MV-Edm towards A549 tumor cells. Additionally, we found that Forskolin, a Rab27a agonist, was capable of promoting the oncolytic effect of MV-Edm in vitro. Our study revealed that the vesicle transporter Rab27a could facilitate the secretion of MV-Edm and the generation of syncytial bodies in MV-Edm infected cells during the MV-Edm-mediated oncolysis pathway. The results of the study demonstrate that a combination of Forskolin and MV-Edm exerts a synergistic anti-tumor effect in vitro, leading to elevated oncolysis. This finding holds promise for the clinical treatment of patients with tumors.


Subject(s)
Oncolytic Virotherapy , Oncolytic Viruses , Humans , Cell Line, Tumor , Colforsin/pharmacology , Measles virus/genetics , Oncolytic Virotherapy/methods , Oncolytic Viruses/genetics
10.
Molecules ; 29(3)2024 Feb 03.
Article in English | MEDLINE | ID: mdl-38338448

ABSTRACT

Coleus forskohlii (Willd.) Briq. is a medicinal herb of the Lamiaceae family. It is native to India and widely present in the tropical and sub-tropical regions of Egypt, China, Ethiopia, and Pakistan. The roots of C. forskohlii are edible, rich with pharmaceutically bioactive compounds, and traditionally reported to treat a variety of diseases, including inflammation, respiratory disorders, obesity, and viral ailments. Notably, the emergence of viral diseases is expected to quickly spread; consequently, these data impose a need for various approaches to develop broad active therapeutics for utilization in the management of future viral infectious outbreaks. In this study, the naturally occurring labdane diterpenoid derivative, Forskolin, was obtained from Coleus forskohlii. Additionally, we evaluated the antiviral potential of Forskolin towards three viruses, namely the herpes simplex viruses 1 and 2 (HSV-1 and HSV-2), hepatitis A virus (HAV), and coxsackievirus B4 (COX-B4). We observed that Forskolin displayed antiviral activity against HAV, COX-B4, HSV-1, and HSV-2 with IC50 values of 62.9, 73.1, 99.0, and 106.0 µg/mL, respectively. Furthermore, we explored the Forskolin's potential antiviral target using PharmMapper, a pharmacophore-based virtual screening platform. Forskolin's modeled structure was analyzed to identify potential protein targets linked to its antiviral activity, with results ranked based on Fit scores. Cathepsin L (PDB ID: 3BC3) emerged as a top-scoring hit, prompting further exploration through molecular docking and MD simulations. Our analysis revealed that Forskolin's binding mode within Cathepsin L's active site, characterized by stable hydrogen bonding and hydrophobic interactions, mirrors that of a co-crystallized inhibitor. These findings, supported by consistent RMSD profiles and similar binding free energies, suggest Forskolin's potential in inhibiting Cathepsin L, highlighting its promise as an antiviral agent.


Subject(s)
Herpesvirus 1, Human , Colforsin/pharmacology , Colforsin/chemistry , Cathepsin L , Molecular Docking Simulation , Herpesvirus 1, Human/metabolism , Antiviral Agents/pharmacology , Antiviral Agents/chemistry
11.
Theranostics ; 14(4): 1701-1719, 2024.
Article in English | MEDLINE | ID: mdl-38389831

ABSTRACT

Human somatic cells can be reprogrammed into neuron cell fate through regulation of a single transcription factor or application of small molecule cocktails. Methods: Here, we report that forskolin efficiently induces the conversion of human somatic cells into induced neurons (FiNs). Results: A large population of neuron-like phenotype cells was observed as early as 24-36 h post-induction. There were >90% TUJ1-, >80% MAP2-, and >80% NEUN-positive neurons at 5 days post-induction. Multiple subtypes of neurons were present among TUJ1-positive cells, including >60% cholinergic, >20% glutamatergic, >10% GABAergic, and >5% dopaminergic neurons. FiNs exhibited typical neural electrophysiological activity in vitro and the ability to survive in vitro and in vivo more than 2 months. Mechanistically, forskolin functions in FiN reprogramming by regulating the cAMP-CREB1-JNK signals, which upregulates cAMP-CREB1 expression and downregulates JNK expression. Conclusion: Overall, our studies identify a safer and efficient single-small-molecule-driven reprogramming approach for induced neuron generation and reveal a novel regulatory mechanism of neuronal cell fate acquisition.


Subject(s)
Cellular Reprogramming , Transcription Factors , Humans , Colforsin/pharmacology , Cell Differentiation/physiology , Transcription Factors/metabolism , Dopaminergic Neurons/metabolism , Cyclic AMP Response Element-Binding Protein
12.
Cell Biochem Funct ; 42(1): e3915, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38269513

ABSTRACT

Three types of adipocytes, white, brown, and beige, regulate the systemic energy balance through the storage and expenditure of chemical energy. In addition, adipocytes produce various bioactive molecules known as adipokines. In contrast to white adipocyte-derived molecules, less information is available on the adipokines produced by brown adipocytes (batokine). This study explored the regulatory expression of interleukin (IL)-6 in cell culture studies. Norepinephrine or a nonselective ß-adrenergic receptor agonist increased the expression of IL-6 in primary brown adipocytes and HB2 brown adipocytes. Treatment with forskolin (Fsk), an activator of the cAMP-dependent protein kinase (PKA) pathway (downstream signaling of the ß-adrenergic receptor), efficiently stimulated IL-6 expression in brown adipocytes and myotubes. Phosphorylated CREB and phosphorylated p38 MAP kinase levels were increased in Fsk-treated brown adipocytes within 5 min. In contrast, a long-term (∼60 min and ∼4 h) treatment with Fsk was required for increase in STAT3 phosphorylation and C/EBPß expression, respectively. The PKA, p38 MAP kinase, STAT3, and C/EBPß pathways are required for the maximal IL-6 expression induced by Fsk, which were verified by use of various inhibitors of these signal pathways. Vitamin C enhanced Fsk-induced IL-6 expression through the extracellular signal-regulated kinase activity. The present study provides basic information on the regulatory expression of IL-6 in activated brown adipocytes.


Subject(s)
Adipocytes, Brown , Mitogen-Activated Protein Kinase 14 , Animals , Mice , Adipocytes, White , Adipokines , Colforsin/pharmacology , Interleukin-6
13.
Biochem Pharmacol ; 221: 116032, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38281601

ABSTRACT

Repeated sublethal hypoxia exposure induces brain inflammation and affects the initiation and progression of cognitive dysfunction. Experiments from the current study showed that hypoxic exposure downregulates PKA/CREB signaling, which is restored by forskolin (FSK), an adenylate cyclase activator, in both Neuro2a (N2a) cells and zebrafish brain. FSK significantly protected N2a cells from hypoxia-induced cell death and neurite shrinkage. Intraperitoneal administration of FSK for 5 days on zebrafish additionally led to significant recovery from hypoxia-induced social interaction impairment and learning and memory (L/M) deficit. FSK suppressed hypoxia-induced neuroinflammation, as indicated by the observed decrease in NF-κB activation and GFAP expression. We further investigated the potential effect of FSK on O-GlcNAcylation changes induced by hypoxia. Intriguingly FSK induced marked upregulation of the protein level of O-GlcNAc transferase catalyzing addition of the GlcNAc group to target proteins, accompanied by elevated O-GlcNAcylation of nucleocytoplasmic proteins. The hypoxia-induced O-GlcNAcylation decrease in the brain of zebrafish was considerably restored following FSK treatment. Based on the collective results, we propose that FSK rescues hypoxia-induced cognitive dysfunction, potentially through regulation of HBP/O-GlcNAc cycling.


Subject(s)
Cognitive Dysfunction , Zebrafish , Animals , Colforsin/pharmacology , Cognition , Hypoxia/complications , Memory Disorders
14.
Transl Res ; 265: 17-25, 2024 03.
Article in English | MEDLINE | ID: mdl-37990828

ABSTRACT

ADPKD is characterized by progressive cyst formation and enlargement leading to kidney failure. Tolvaptan is currently the only FDA-approved treatment for ADPKD; however, it can cause serious adverse effects including hepatotoxicity. There remains an unmet clinical need for effective and safe treatments for ADPKD. The extracellular Ca2+-sensing receptor (CaSR) is a regulator of epithelial ion transport. FDA-approved CaSR activator cinacalcet can reduce cAMP-induced Cl- and fluid secretion in various epithelial cells by activating phosphodiesterases (PDE) that hydrolyze cAMP. Since elevated cAMP is a key mechanism of ADPKD progression by promoting cell proliferation, cyst formation and enlargement (via Cl- and fluid secretion), here we tested efficacy of cinacalcet in cell and animal models of ADPKD. Cinacalcet treatment reduced cAMP-induced Cl- secretion and CFTR activity in MDCK cells as suggested by ∼70 % lower short-circuit current (Isc) changes in response to forskolin and CFTRinh-172, respectively. Cinacalcet treatment inhibited forskolin-induced cAMP elevation by 60 % in MDCK cells, and its effect was completely reversed by IBMX (PDE inhibitor). In MDCK cells treated with forskolin, cinacalcet treatment concentration-dependently reduced cell proliferation, cyst formation and cyst enlargement by up to 50 % without affecting cell viability. Cinacalcet treatment (20 mg/kg/day for 7 days, subcutaneous) reduced renal cyst index in a mouse model of ADPKD (Pkd1flox/flox;Ksp-Cre) by 20 %. Lastly, cinacalcet treatment reduced cyst enlargement and cell proliferation in human ADPKD cells by 60 %. Considering its efficacy as shown here, and favorable safety profile including extensive post-approval data, cinacalcet can be repurposed as a novel ADPKD treatment.


Subject(s)
Cysts , Polycystic Kidney, Autosomal Dominant , Mice , Animals , Humans , Polycystic Kidney, Autosomal Dominant/drug therapy , Cinacalcet/pharmacology , Cinacalcet/therapeutic use , Receptors, Calcium-Sensing , Colforsin/pharmacology , Drug Repositioning , Cells, Cultured , Kidney
15.
J Clin Invest ; 134(2)2024 Jan 16.
Article in English | MEDLINE | ID: mdl-37962961

ABSTRACT

Cholera is a global health problem with no targeted therapies. The Ca2+-sensing receptor (CaSR) is a regulator of intestinal ion transport and a therapeutic target for diarrhea, and Ca2+ is considered its main agonist. We found that increasing extracellular Ca2+ had a minimal effect on forskolin-induced Cl- secretion in human intestinal epithelial T84 cells. However, extracellular Mg2+, an often-neglected CaSR agonist, suppressed forskolin-induced Cl- secretion in T84 cells by 65% at physiological levels seen in stool (10 mM). The effect of Mg2+ occurred via the CaSR/Gq signaling that led to cAMP hydrolysis. Mg2+ (10 mM) also suppressed Cl- secretion induced by cholera toxin, heat-stable E. coli enterotoxin, and vasoactive intestinal peptide by 50%. In mouse intestinal closed loops, luminal Mg2+ treatment (20 mM) inhibited cholera toxin-induced fluid accumulation by 40%. In a mouse intestinal perfusion model of cholera, addition of 10 mM Mg2+ to the perfusate reversed net fluid transport from secretion to absorption. These results suggest that Mg2+ is the key CaSR activator in mouse and human intestinal epithelia at physiological levels in stool. Since stool Mg2+ concentrations in patients with cholera are essentially zero, oral Mg2+ supplementation, alone or in an oral rehydration solution, could be a potential therapy for cholera and other cyclic nucleotide-mediated secretory diarrheas.


Subject(s)
Cholera , Receptors, Calcium-Sensing , Mice , Humans , Animals , Receptors, Calcium-Sensing/genetics , Magnesium/pharmacology , Cholera Toxin/pharmacology , Calcium , Escherichia coli , Colforsin/pharmacology , Intestinal Mucosa , Diarrhea/drug therapy , Epithelial Cells , Dietary Supplements
16.
Transl Res ; 263: 45-52, 2024 01.
Article in English | MEDLINE | ID: mdl-37678755

ABSTRACT

Cyclic nucleotide elevation in intestinal epithelial cells is the key pathology causing intestinal fluid loss in secretory diarrheas such as cholera. Current secretory diarrhea treatment is primarily supportive, and oral rehydration solution is the mainstay of cholera treatment. There is an unmet need for safe, simple and effective diarrhea treatments. By promoting cAMP hydrolysis, extracellular calcium-sensing receptor (CaSR) is a regulator of intestinal fluid transport. We studied the antidiarrheal mechanisms of FDA-approved CaSR activator cinacalcet and tested its efficacy in clinically relevant human cell, mouse and intestinal organoid models of secretory diarrhea. By using selective inhibitors, we found that cAMP agonists-induced secretory short-circuit currents (Isc) in human intestinal T84 cells are mediated by collective actions of apical membrane cystic fibrosis transmembrane conductance regulator (CFTR) and Clc-2 Cl- channels, and basolateral membrane K+ channels. 30 µM cinacalcet pretreatment inhibited all 3 components of forskolin and cholera toxin-induced secretory Isc by ∼75%. In mouse jejunal mucosa, cinacalcet inhibited forskolin-induced secretory Isc by ∼60% in wild type mice, with no antisecretory effect in intestinal epithelia-specific Casr knockout mice (Casr-flox; Vil1-cre). In suckling mouse model of cholera induced by oral cholera toxin, single dose (30 mg/kg) oral cinacalcet treatment reduced intestinal fluid accumulation by ∼55% at 20 hours. Lastly, cinacalcet inhibited forskolin-induced secretory Isc by ∼75% in human colonic and ileal organoids. Our findings suggest that CaSR activator cinacalcet has antidiarrheal efficacy in distinct human cell, organoid and mouse models of secretory diarrhea. Considering its excellent clinical safety profile, cinacalcet can be repurposed as a treatment for cyclic nucleotide-mediated secretory diarrheas including cholera.


Subject(s)
Antidiarrheals , Cholera , Mice , Humans , Animals , Antidiarrheals/metabolism , Antidiarrheals/pharmacology , Antidiarrheals/therapeutic use , Cholera/drug therapy , Cholera/metabolism , Cholera/pathology , Cholera Toxin/metabolism , Cholera Toxin/pharmacology , Cholera Toxin/therapeutic use , Cinacalcet/pharmacology , Cinacalcet/therapeutic use , Cinacalcet/metabolism , Receptors, Calcium-Sensing/metabolism , Receptors, Calcium-Sensing/therapeutic use , Nucleotides, Cyclic/metabolism , Nucleotides, Cyclic/pharmacology , Nucleotides, Cyclic/therapeutic use , Colforsin/metabolism , Colforsin/pharmacology , Colforsin/therapeutic use , Diarrhea/drug therapy , Diarrhea/metabolism , Intestinal Mucosa/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/therapeutic use , Mice, Knockout
17.
J Cyst Fibros ; 23(1): 169-171, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37633792

ABSTRACT

Pancreatic secretions become viscous and acidic in Cystic fibrosis (CF), highlighting the role of CFTR in pancreatic fluid and bicarbonate secretion. Forskolin-induced swelling (FIS) assay developed in intestinal organoids measures residual CFTR function. It is not known whether FIS reflects bicarbonate secretion in pancreas, an organ that secretes near-isotonic NaHCO3 levels. To investigate this, we generated pancreatic duct organoids from CF and non-CF pigs. Epithelial and ductal origin was confirmed with epithelial markers, ion transporters and lack of acinar, islet cell markers. CF organoids were small with no identifiable lumen; CFTR was expressed only in non-CF organoids. Utilizing FIS, organoid size increased only in response to chloride, not bicarbonate. This report highlights pancreatic duct organoids isolated for the first time from CF pigs and evidence for chloride and not bicarbonate driving pancreatic organoid swelling. These organoids would be useful to test chloride permeability of CFTR mutations that cause CF pancreatic disease.


Subject(s)
Cystic Fibrosis , Animals , Swine , Cystic Fibrosis/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Chlorides/metabolism , Bicarbonates/metabolism , Pancreatic Ducts/metabolism , Colforsin/pharmacology , Organoids/metabolism
18.
Am J Physiol Cell Physiol ; 326(1): C194-C205, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38047301

ABSTRACT

The shuttling of renal collecting duct aquaporin-2 (AQP2) between intracellular vesicles and the apical plasma membrane is paramount for regulation of renal water reabsorption. The binding of the circulating antidiuretic hormone arginine vasopressin (AVP) to the basolateral AVP receptor increases intracellular cAMP, which ultimately leads to AQP2 plasma membrane accumulation via a dual effect on AQP2 vesicle fusion with the apical plasma membrane and reduced AQP2 endocytosis. This AQP2 plasma membrane accumulation increases water reabsorption and consequently urine concentration. Conventional fluorescent microscopy provides a lateral resolution of ∼250 nm, which is insufficient to resolve the AQP2-containing endosomes/vesicles. Therefore, detailed information regarding the AQP2 vesicular population is still lacking. Newly established 4.5x Expansion Microscopy (ExM) can increase resolution to 60-70 nm. Using 4.5x ExM, we detected AQP2 vesicles/endosomes as small as 79 nm considering an average expansion factor of 4.3 for endosomes. Using different markers of the endosomal system provided detailed information of the cellular AQP2 itinerary upon changes in endogenous cAMP levels. Before cAMP elevation, AQP2 colocalized with early and recycling, but not late endosomes. Forskolin-induced cAMP increase was characterized by AQP2 insertion into the plasma membrane and AQP2 withdrawal from large perinuclear endosomes as well as some localization to lysosomal compartments. Forskolin washout promoted AQP2 endocytosis where AQP2 localized to not only early and recycling endosomes but also late endosomes and lysosomes indicating increased AQP2 degradation. Thus, our results show that 4.5 ExM is an attractive approach to obtain detailed information regarding AQP2 shuttling.NEW & NOTEWORTHY Renal aquaporin-2 (AQP2) imaged by expansion microscopy provides unprecedented 3-D information regarding the AQP2 itinerary in response to changes in cellular cAMP.


Subject(s)
Aquaporin 2 , Kidney Tubules, Collecting , Aquaporin 2/metabolism , Microscopy , Colforsin/pharmacology , Kidney/metabolism , Cell Membrane/metabolism , Water/metabolism , Kidney Tubules, Collecting/metabolism
19.
Arch Med Res ; 55(1): 102925, 2024 01.
Article in English | MEDLINE | ID: mdl-38042031

ABSTRACT

BACKGROUND AND AIM: Gestational diabetes mellitus (GDM) is one of the most common metabolic disorders in pregnancy, and a novel association of maternal lipid profile has been suggested to play an important role. However, the molecular mechanism is not clear. METHODS: Bio-analyzed combined with placental metabonomics and single-cell RNA-sequencing (scRNA-seq) successfully identified a potentially important molecule: α-ß hydrolase domain-containing protein 5 (ABHD5). The syncytiotrophoblast (SCT) cell model was adopted as a fusion of BeWo cells in response to forskolin. On this basis, the high glucose-stimulated cell experiment was carried out. 15 women with GDM and 15 normal pregnant women were recruited for validation experiments. RESULTS: ABHD5 was mainly expressed in the trophoblast cells, especially in SCT cells, and significantly decreased in the GDM placenta. After stimulation by high glucose, the expression of ABHD5 was downregulated in a time-dependent manner in BeWo cells treated with forskolin. At the same time, lipid droplets (LDs) were increased in the SCT. LD storage was also increased in the SCT with siABHD5, while it was significantly reduced in SCT cells with high ABHD5 expression. However, this effect could be attenuated by downregulated carnitine palmitoyltransferase 1B (CPT1B). CONCLUSIONS: ABHD5-CPT1B is confirmed as an important regulator of placental lipid metabolism.


Subject(s)
Diabetes, Gestational , Placenta , Female , Humans , Pregnancy , 1-Acylglycerol-3-Phosphate O-Acyltransferase/genetics , 1-Acylglycerol-3-Phosphate O-Acyltransferase/metabolism , Carnitine O-Palmitoyltransferase/metabolism , Colforsin/pharmacology , Colforsin/metabolism , Diabetes, Gestational/genetics , Diabetes, Gestational/metabolism , Glucose/metabolism , Lipid Metabolism , Placenta/metabolism
20.
Reprod Sci ; 31(5): 1268-1277, 2024 May.
Article in English | MEDLINE | ID: mdl-38110819

ABSTRACT

Pre-eclampsia (PE) is thought to be related to placental dysfunction, particularly poor extravillous trophoblast (EVT) invasion and migration abilities. However, the pathogenic mechanism is not fully understood. This article describes the impact of the cyclic adenosine monophosphate(cAMP) signaling pathway on EVT behavior, focusing on EVT proliferation, invasion, and migration. Here, we used the HTR8/SV-neo cell line to study human EVT function in vitro. HTR8/SV-neo cells were treated with different concentrations of forskolin (cAMP pathway-specific agonist) to alter intracellular cAMP levels, and dimethyl sulfoxide (DMSO) was used as the control. First, a cAMP assay was performed to measure the cAMP concentration in HTR8/SV-neo cells treated with different forskolin concentrations, and cell proliferation was assessed by constructing cell growth curves and assessing colony formation. Cell invasion and migration were observed by Transwell experiments, and intracellular epithelial-mesenchymal transition (EMT) marker expression was evaluated by quantitative real-time polymerase chain reaction (qPCR) and Western blotting (WB). According to our research, the intracellular cAMP levels in HTR8/SV-neo cells were increased in a dose-dependent manner, and HTR8/SV-neo cell proliferation, invasion and migration were significantly enhanced. The expression of EMT and angiogenesis markers was upregulated. Additionally, with the increase in intracellular cAMP levels, the phosphorylation of intracellular mitogen-activated protein kinase (MAPK) signaling pathway components was significantly increased. These results suggested that the cAMP signaling pathway promoted the phosphorylation of MAPK signaling components, thus enhancing EVT functions, including proliferation, invasion, and migration, and to a certain extent, providing a novel direction for the treatment of PE patients.


Subject(s)
Cell Movement , Cell Proliferation , Colforsin , Cyclic AMP , Signal Transduction , Trophoblasts , Humans , Cell Movement/drug effects , Colforsin/pharmacology , Cell Proliferation/drug effects , Cyclic AMP/metabolism , Trophoblasts/metabolism , Trophoblasts/drug effects , Signal Transduction/drug effects , Cell Line , Female , Pregnancy , Epithelial-Mesenchymal Transition/drug effects , Pre-Eclampsia/metabolism , Pre-Eclampsia/drug therapy , Pre-Eclampsia/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...