Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.138
Filter
1.
J Tradit Chin Med ; 44(3): 478-488, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38767631

ABSTRACT

OBJECTIVE: To explore the pharmacodynamic effects and potential mechanisms of Shuangling extract against ulcerative colitis (UC). METHODS: The bioinformatics method was used to predict the active ingredients and action targets of Shuangling extract against UC in mice. And the biological experiments such as serum biochemical indexes and histopathological staining were used to verify the pharmacological effect and mechanism of Shuangling extract against UC in mice. RESULTS: The Shuangling extract reduced the levels of seruminterleukin-1ß (IL-1ß), tumor necrosis factor-α (TNF-N), interleukin-6 (IL-6) and other inflammatory factors in UC mice and inhibited the inflammatory response. AKT Serine/threonine Kinase 1 and IL-6 may be the main targets of the anti-UC action of Shuangling extract, and the TNF signaling pathway, Forkhead box O signaling pathway and T-cell receptor signaling pathway may be the main signaling pathways. CONCLUSION: The Shuangling extract could inhibit the inflammatory response induced by UC and regulate intestinal immune function through multiple targets and multiple channels, which provided a new option and theoretical basis for anti-UC.


Subject(s)
Colitis, Ulcerative , Dextran Sulfate , Drugs, Chinese Herbal , Network Pharmacology , Tumor Necrosis Factor-alpha , Animals , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/chemically induced , Mice , Drugs, Chinese Herbal/administration & dosage , Drugs, Chinese Herbal/pharmacology , Dextran Sulfate/adverse effects , Male , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism , Humans , Interleukin-1beta/genetics , Interleukin-1beta/metabolism , Interleukin-6/genetics , Interleukin-6/metabolism , Interleukin-6/immunology , Disease Models, Animal , Signal Transduction/drug effects
2.
Molecules ; 29(9)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38731431

ABSTRACT

An excessive inflammatory response of the gastrointestinal tract is recognized as one of the major contributors to ulcerative colitis (UC). Despite this, effective preventive approaches for UC remain limited. Rosmarinic acid (RA), an enriched fraction from Perilla frutescens, has been shown to exert beneficial effects on disease-related inflammatory disorders. However, RA-enriched perilla seed meal (RAPSM) and perilla seed (RAPS) extracts have not been investigated in dextran sulfate sodium (DSS)-induced UC in mice. RAPSM and RAPS were extracted using the solvent-partitioning method and analyzed with high-pressure liquid chromatography (HPLC). Mice with UC induced using 2.5% DSS for 7 days were pretreated with RAPSM and RAPS (50, 250, 500 mg/kg). Then, the clinical manifestation, colonic histopathology, and serum proinflammatory cytokines were determined. Indeed, DSS-induced UC mice exhibited colonic pathological defects including an impaired colon structure, colon length shortening, and increased serum proinflammatory cytokines. However, RAPSM and RAPS had a protective effect at all doses by attenuating colonic pathology in DSS-induced UC mice, potentially through the suppression of proinflammatory cytokines. Concentrations of 50 mg/kg of RAPSM and RAPS were sufficient to achieve a beneficial effect in UC mice. This suggests that RAPSM and RAPS have a preventive effect against DSS-induced UC, potentially through alleviating inflammatory responses and relieving severe inflammation in the colon.


Subject(s)
Colitis, Ulcerative , Cytokines , Dextran Sulfate , Perilla , Plant Extracts , Seeds , Animals , Dextran Sulfate/adverse effects , Mice , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/pathology , Colitis, Ulcerative/prevention & control , Plant Extracts/pharmacology , Plant Extracts/chemistry , Cytokines/metabolism , Cytokines/blood , Seeds/chemistry , Perilla/chemistry , Disease Models, Animal , Male , Depsides/pharmacology , Depsides/chemistry , Colon/drug effects , Colon/pathology , Colon/metabolism , Cinnamates/pharmacology , Cinnamates/chemistry , Rosmarinic Acid , Perilla frutescens/chemistry
3.
J Agric Food Chem ; 72(19): 10923-10935, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38691832

ABSTRACT

This study aimed to explore the ameliorative effects and potential mechanisms of Huangshan Umbilicaria esculenta polysaccharide (UEP) in dextran sulfate sodium-induced acute ulcerative colitis (UC) and UC secondary liver injury (SLI). Results showed that UEP could ameliorate both colon and liver pathologic injuries, upregulate mouse intestinal tight junction proteins (TJs) and MUC2 expression, and reduce LPS exposure, thereby attenuating the effects of the gut-liver axis. Importantly, UEP significantly downregulated the secretion levels of TNF-α, IL-1ß, and IL-6 through inhibition of the NF-κB pathway and activated the Nrf2 signaling pathway to increase the expression levels of SOD and GSH-Px. In vitro, UEP inhibited the LPS-induced phosphorylation of NF-κB P65 and promoted nuclear translocation of Nrf2 in RAW264.7 cells. These results revealed that UEP ameliorated UC and SLI through NF-κB and Nrf2-mediated inflammation and oxidative stress. The study first investigated the anticolitis effect of UEP, suggesting its potential for the treatment of colitis and colitis-associated liver disease.


Subject(s)
Colitis , Dextran Sulfate , NF-E2-Related Factor 2 , NF-kappa B , Polysaccharides , Animals , Mice , Polysaccharides/pharmacology , Polysaccharides/chemistry , Polysaccharides/administration & dosage , Dextran Sulfate/adverse effects , Male , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics , Humans , Colitis/drug therapy , Colitis/chemically induced , Colitis/metabolism , RAW 264.7 Cells , NF-kappa B/metabolism , NF-kappa B/genetics , Mice, Inbred C57BL , Protective Agents/pharmacology , Protective Agents/administration & dosage , Protective Agents/chemistry , Liver/drug effects , Liver/metabolism , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism , Tumor Necrosis Factor-alpha/immunology , Oxidative Stress/drug effects , Interleukin-1beta/genetics , Interleukin-1beta/metabolism , Interleukin-1beta/immunology , Interleukin-6/genetics , Interleukin-6/metabolism , Interleukin-6/immunology , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/metabolism , Colitis, Ulcerative/chemically induced , Chemical and Drug Induced Liver Injury/drug therapy , Chemical and Drug Induced Liver Injury/metabolism , Mucin-2/genetics , Mucin-2/metabolism
4.
Int J Mol Sci ; 25(10)2024 May 07.
Article in English | MEDLINE | ID: mdl-38791116

ABSTRACT

Ulcerative colitis (UC) is characterized by continuous mucosal ulceration of the colon, starting in the rectum. 5-Aminosalicylic acid (5-ASA) is the main therapy for ulcerative colitis; however, it has side effects. Physical exercise effectively increases the number of anti-inflammatory and anti-immune cells in the body. In the current study, the effects of simultaneous treatment of treadmill exercise and 5-ASA were compared with monotherapy with physical exercise or 5-ASA in UC mice. To induce the UC animal model, the mice consumed 2% dextran sulfate sodium dissolved in drinking water for 7 days. The mice in the exercise groups exercised on a treadmill for 1 h once a day for 14 days after UC induction. The 5-ASA-treated groups received 5-ASA by enema injection using a 200 µL polyethylene catheter once a day for 14 days. Simultaneous treatment improved histological damage and increased body weight, colon weight, and colon length, whereas the disease activity index score and collagen deposition were decreased. Simultaneous treatment with treadmill exercise and 5-ASA suppressed pro-inflammatory cytokines and apoptosis following UC. The benefits of this simultaneous treatment may be due to inhibition on nuclear factor-κB/mitogen-activated protein kinase signaling activation. Based on this study, simultaneous treatment of treadmill exercise and 5-ASA can be considered as a new therapy of UC.


Subject(s)
Colitis, Ulcerative , Disease Models, Animal , Mesalamine , Physical Conditioning, Animal , Animals , Mesalamine/therapeutic use , Mesalamine/pharmacology , Colitis, Ulcerative/therapy , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/pathology , Mice , Male , Colon/pathology , Colon/drug effects , Colon/metabolism , Dextran Sulfate , NF-kappa B/metabolism , Cytokines/metabolism , Apoptosis/drug effects , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use
5.
J Transl Med ; 22(1): 488, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773576

ABSTRACT

Ulcerative colitis (UC) is an idiopathic, chronic inflammatory condition of the colon, characterized by repeated attacks, a lack of effective treatment options, and significant physical and mental health complications for patients. The endoplasmic reticulum (ER) is a vital intracellular organelle in maintaining cellular homeostasis. Endoplasmic reticulum stress (ERS) is induced when the body is exposed to adverse external stimuli. Numerous studies have shown that ERS-induced apoptosis plays a vital role in the pathogenesis of UC. Mogroside V (MV), an active ingredient of Monk fruit, has demonstrated excellent anti-inflammatory and antioxidant effects. In this study, we investigated the therapeutic effects of MV on dextran sulfate sodium (DSS)-induced UC and its potential mechanisms based on ERS. The results showed that MV exerted a protective effect against DSS-induced UC in mice as reflected by reduced DAI scores, increased colon length, reduced histological scores of the colon, and levels of pro-inflammatory cytokines, as well as decreased intestinal permeability. In addition, the expression of ERS pathway including BIP, PERK, eIF2α, ATF4, CHOP, as well as the apoptosis-related protein including Caspase-12, Bcl-2 and Bax, was found to be elevated in UC. However, MV treatment significantly inhibited the UC and reversed the expression of inflammation signaling pathway including ERS and ERS-induced apoptosis. Additionally, the addition of tunicamycin (Tm), an ERS activator, significantly weakened the therapeutic effect of MV on UC in mice. These findings suggest that MV may be a therapeutic agent for the treatment of DSS-induced UC by inhibiting the activation of the ERS-apoptosis pathway, and may provide a novel avenue for the treatment of UC.


Subject(s)
Apoptosis , Colitis, Ulcerative , Dextran Sulfate , Endoplasmic Reticulum Stress , Animals , Endoplasmic Reticulum Stress/drug effects , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/pathology , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/metabolism , Apoptosis/drug effects , Male , Mice, Inbred C57BL , Colon/pathology , Colon/drug effects , Triterpenes/pharmacology , Triterpenes/therapeutic use , Mice , Cytokines/metabolism , Permeability/drug effects , Signal Transduction/drug effects
6.
Life Sci ; 348: 122700, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38724004

ABSTRACT

AIMS: To elucidate the impact of 10-(6-plastoquinonyl) decyltriphenylphosphonium (SkQ1) as an anti-colitogenic agent for maintenance of colon epithelial tract in ulcerated mice through recovery of mitochondrial dysfunction and mitochondrial stress by virtue of its free radical scavenging properties. MAIN METHODS: DSS induced ulcerated BALB/c mice were treated with SkQ1 for 14 days @ 30 nmol/kg/body wt./day/mice. Post-treatment, isolated colonic mitochondria were utilized for spectrophotometric and spectrofluorometric biochemical analysis of various mitochondrial functional variables including individual mitochondrial respiratory enzyme complexes. Confocal microscopy was utilized for measuring mitochondrial membrane potential in vivo. ELISA technique was adapted for measuring colonic nitrite and 3-nitrotyrosine (3-NT) content. Finally in vitro cell line study was carried out to substantiate in vivo findings and elucidate the involvement of free radicals in UC using antioxidant/free radical scavenging regimen. KEY FINDINGS: Treatment with SkQ1 in vivo reduced histopathological severity of colitis, induced recovery of mitochondrial respiratory complex activities and associated functional variables, improved oxidative stress indices and normalized mitochondrial cardiolipin content. Importantly, SkQ1 lowered nitrite concentration and 3-nitrotyrosine formation in vivo. In vitro SkQ1 restored mitochondrial functions wherein the efficacy of SkQ1 proved equal or better compared to SOD and DMSO indicating predominant involvement of O2- and OH in UC. However, NO and ONOO- also seemed to play a secondary role as MEG and L-NAME provided lesser protection as compared to SOD and DMSO. SIGNIFICANCE: SkQ1 can be considered as a potent anti-colitogenic agent by virtue of its free radical scavenging properties in treating UC.


Subject(s)
Colitis, Ulcerative , Colon , Mice, Inbred BALB C , Mitochondria , Oxidative Stress , Plastoquinone , Animals , Mice , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/metabolism , Colitis, Ulcerative/pathology , Mitochondria/drug effects , Mitochondria/metabolism , Plastoquinone/analogs & derivatives , Plastoquinone/pharmacology , Colon/drug effects , Colon/pathology , Colon/metabolism , Oxidative Stress/drug effects , Male , Membrane Potential, Mitochondrial/drug effects , Tyrosine/analogs & derivatives , Tyrosine/metabolism , Tyrosine/pharmacology , Antioxidants/pharmacology , Free Radical Scavengers/pharmacology , Dextran Sulfate
7.
J Biochem Mol Toxicol ; 38(6): e23738, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38764152

ABSTRACT

Ulcerative colitis (UC) is a chronic problem of the intestine and relapsing in nature. Biochanin A is a nature-derived isoflavonoid and has numerous bioactivities. However, its role against UC and intestinal inflammation remains obscure. We aimed to comprehensively explore the pharmacological effect of biochanin A in alleviating colitis and to evaluate the potential mechanisms. Initially, we explored the anti-inflammatory action of biochanin A (15, 30, and 60 µM) by employing lipopolysaccharide (LPS)-activated RAW 264.7 cells. In RAW 264.7 cells under LPS stimulation, biochanin A inhibited the elevation of reactive oxygen species (ROS) (p < 0.0001), interleukin (IL)-1ß (p < 0.0001), IL-18 (p < 0.01), and tumor necrosis factor (TNF)-α (p < 0.01) release, nitrite production (p < 0.0001), and the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) proteins. Next, we studied the effectiveness of biochanin A (20 and 40 mg/kg) in mouse colitis induced with dextran sulfate sodium (DSS) by assessing colon length, disease activity index (DAI) scoring, and performing colonoscopy and histological analysis. The pro-inflammatory cytokines were estimated using ELISA. Western blot studies were performed to assess underlying mechanisms. In mice, biochanin A treatment alleviated DAI score (p < 0.0001), restored colon length (p < 0.05) and morphology, and re-established colon histopathology. Biochanin A affects the phosphorylation of proteins associated with NF-κB (p65) and mitogen-activated protein kinase (MAPK) axis and regulates colonic inflammation by reducing the expression of inflammatory cytokines and myeloperoxidase (MPO) activity. Altogether, our findings support the idea that the anticolitis potential of biochanin A is allied with anti-inflammatory activity by inhibiting the MAPK/NF-κB (p65) axis. Hence, biochanin A may be an alternative option to alleviate the risk of colitis.


Subject(s)
Colitis, Ulcerative , Genistein , Transcription Factor RelA , Animals , Genistein/pharmacology , Mice , RAW 264.7 Cells , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/metabolism , Colitis, Ulcerative/pathology , Transcription Factor RelA/metabolism , Male , MAP Kinase Signaling System/drug effects , Mitogen-Activated Protein Kinases/metabolism , Inflammation/drug therapy , Inflammation/metabolism , Inflammation/pathology , Dextran Sulfate/toxicity
8.
Int Immunopharmacol ; 134: 112241, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38761782

ABSTRACT

Ulcerative colitis (UC) is a main form of inflammatory bowel disease (IBD), which is a chronic and immune-mediated inflammatory disease. Moringin (MOR) is an isothiocyanate isolated from Moringa oleifera Lam., and has been recognized as a promising potent drug for inflammatory diseases and antibacterial infections. The present study investigated the role of moringin in dextran sulfate sodium (DSS)-induced UC mice. Mouse colitis was induced by adding DSS to the drinking water for seven consecutive days. Our experimental results showed that MOR relieves DSS-induced UC in mice by increasing body weight and colonic length, and reducing the disease activity index and histological injury. Mechanistically, MOR improves intestinal barrier function by increasing the expression of tight junction proteins (TJPs) and enhancing the secretion of mucin in DSS-induced mice. MOR inhibits inflammatory response and intestinal damage by regulating Nrf2/NF-κB signaling pathway and modulating the PI3K/AKT/mTOR pathway. Furthermore, in Nrf2 knockout (Nrf2-/-) mice, the protective effects of MOR on DSS-induced UC were abolished. Meanwhile, treatment with MOR reduced inflammation and cell damage via regulating Nrf2/NF-κB pathway in a lipopolysaccharide (LPS)-induced inflammation model of Caco-2 cells. In contrast, ML385, an Nrf2 inhibitor, might eliminate the protection provided by MOR. Notably, treatment with MOR significantly up-regulated the expression of peroxisome proliferator-activated receptor-γ (PPAR-γ), suggesting that MOR may be a potential PPAR-γ activator. In conclusion, MOR exerts protective effect in UC by improving intestinal barrier function, regulating Nrf2/NF-κB and PI3K/AKT/mTOR signaling pathways, and another effect associated with the regulation of PPAR-γ expression.


Subject(s)
Colitis, Ulcerative , Dextran Sulfate , Mice, Inbred C57BL , NF-E2-Related Factor 2 , NF-kappa B , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Signal Transduction , TOR Serine-Threonine Kinases , Animals , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/pathology , TOR Serine-Threonine Kinases/metabolism , NF-kappa B/metabolism , Signal Transduction/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Humans , Male , Mice , Phosphatidylinositol 3-Kinases/metabolism , Caco-2 Cells , Anti-Inflammatory Agents/therapeutic use , Anti-Inflammatory Agents/pharmacology , Mice, Knockout , Disease Models, Animal , Colon/pathology , Colon/drug effects
9.
Biomed Pharmacother ; 175: 116706, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38713944

ABSTRACT

Excessive oxidative stress and NLRP3 inflammasome activation are considered the main drivers of inflammatory bowel disease (IBD), and inhibition of inflammasomes ameliorates clinical symptoms and morphological manifestations of IBD. Herein, we examined the roles of NLRP3 activation in IBD and modulation of NLRP3 by sulforaphane (SFN), a compound with multiple pharmacological activities that is extracted from cruciferous plants. To simulate human IBD, we established a mouse colitis model by administering dextran sodium sulfate in the drinking water. SFN (25, 50 mg·kg-1·d-1, ig) or the positive control sulfasalazine (500 mg/kg, ig) was administered to colitis-affected mice for 7 days. Model mice displayed pathological alterations in colon tissue as well as classic symptoms of colitis beyond substantial tissue inflammation. Expression of NLRP3, ASC, and caspase-1 was significantly elevated in the colonic epithelium. The expression of NLRP3 inflammasomes led to activation of downstream proteins and increases in the cytokines IL-18 and IL-1ß. SFN administration either fully or partially reversed these changes, thus restoring IL-18 and IL-1ß, substantially inhibiting NLRP3 activation, and decreasing inflammation. SFN alleviated the inflammation induced by LPS and NLRP3 agonists in RAW264.7 cells by decreasing the levels of reactive oxygen species. In summary, our results revealed the pathological roles of oxidative stress and NLRP3 in colitis, and indicated that SFN might serve as a natural NLRP3 inhibitor, thereby providing a new strategy for alternative colitis treatment.


Subject(s)
Colitis, Ulcerative , Disease Models, Animal , Inflammasomes , Isothiocyanates , Mice, Inbred C57BL , NLR Family, Pyrin Domain-Containing 3 Protein , Oxidative Stress , Sulfoxides , Animals , Isothiocyanates/pharmacology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Sulfoxides/pharmacology , Oxidative Stress/drug effects , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/metabolism , Colitis, Ulcerative/pathology , Colitis, Ulcerative/chemically induced , Inflammasomes/metabolism , Inflammasomes/drug effects , Mice , Male , Dextran Sulfate , Colon/drug effects , Colon/pathology , Colon/metabolism , RAW 264.7 Cells
10.
Int Immunopharmacol ; 134: 112234, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38739976

ABSTRACT

Ulcerative colitis, a chronic inflammatory condition affecting the rectum and colon to varying degrees, is linked to a dysregulated immune response and the microbiota. Sodium (aS,9R)-3-hydroxy-16,17-dimethoxy-15-oxidotricyclo[12.3.1.12,6]nonadeca-1(18),2,4,6(19),14,16-hexene-9-yl sulfate hydrate (SDH) emerges as a novel diarylheptane compound aimed at treating inflammatory bowel diseases. However, the mechanisms by which SDH modulates these conditions remain largely unknown. In this study, we assessed SDH's impact on the clinical progression of dextran sodium sulfate (DSS)-induced ulcerative colitis. Our results demonstrated that SDH significantly mitigated the symptoms of DSS-induced colitis, reflected in reduced disease activity index scores, alleviation of weight loss, shortening of the colorectum, and reduction in spleen swelling. Notably, SDH decreased the proportion of Th1/Th2/Th17 cells and normalized inflammatory cytokine levels in the colon. Furthermore, SDH treatment modified the gut microbial composition in mice with colitis, notably decreasing Bacteroidetes and Proteobacteria populations while substantially increasing Firmicutes, Actinobacteria, and Patescibacteria. In conclusion, our findings suggest that SDH may protect the colon from DSS-induced colitis through the regulation of Th1/Th2/Th17 cells and gut microbiota, offering novel insights into SDH's therapeutic potential.


Subject(s)
Colitis, Ulcerative , Dextran Sulfate , Diarylheptanoids , Gastrointestinal Microbiome , Mice, Inbred C57BL , Animals , Gastrointestinal Microbiome/drug effects , Mice , Diarylheptanoids/pharmacology , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/immunology , Colitis, Ulcerative/microbiology , Colon/drug effects , Colon/immunology , Colon/pathology , Colon/microbiology , Cytokines/metabolism , Disease Models, Animal , Colitis/chemically induced , Colitis/drug therapy , Colitis/immunology , Colitis/microbiology , Male , Th1 Cells/immunology , Th1 Cells/drug effects , Th17 Cells/immunology , Th17 Cells/drug effects , Anti-Inflammatory Agents/therapeutic use , Anti-Inflammatory Agents/pharmacology , Th2 Cells/immunology , Th2 Cells/drug effects , Humans
11.
Int Immunopharmacol ; 134: 112255, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38744176

ABSTRACT

Inflammatory bowel disease (IBD) is distinguished by persistent immune-mediated inflammation of the gastrointestinal tract. Previous experimental investigations have shown encouraging outcomes for the use of mesenchymal stem cell (MSC)-based therapy in the treatment of IBD. However, as a primary medication for IBD patients, there is limited information regarding the potential interaction between 5-aminosalicylates (5-ASA) and MSCs. In this present study, we employed the dextran sulfate sodium (DSS)-induced ulcerative colitis (UC) mouse model to examine the influence of a combination of MSCs and 5-ASA on the development of UC. The mice were subjected to weight measurement, DAI scoring, assessment of calprotectin expression, and collection of colons for histological examination. The findings revealed that both 5-ASA and MSCs have demonstrated efficacy in the treatment of UC. However, it is noteworthy that 5-ASA exhibits a quicker onset of action, while MSCs demonstrate more advantageous and enduring therapeutic effects. Additionally, the combination of 5-ASA and MSC treatment shows a less favorable efficacy compared to the MSCs alone group. Moreover, our study conducted in vitro revealed that 5-ASA could promote MSC migration, but it could also inhibit MSC proliferation, induce apoptosis, overexpress inflammatory factors (IL-2, IL-12P70, and TNF-α), and reduce the expression of PD-L1 and PD-L2. Furthermore, a significant decrease in the viability of MSCs within the colon was observed as a result of 5-ASA induction. These findings collectively indicate that the use of 5-ASA has the potential to interfere with the therapeutic efficacy of MSC transplantation for the treatment of IBD.


Subject(s)
Colitis, Ulcerative , Dextran Sulfate , Disease Models, Animal , Mesalamine , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Animals , Colitis, Ulcerative/therapy , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/immunology , Colitis, Ulcerative/pathology , Colitis, Ulcerative/chemically induced , Mesalamine/pharmacology , Mesalamine/therapeutic use , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/metabolism , Mice , Humans , Mice, Inbred C57BL , Colon/pathology , Colon/drug effects , Colon/immunology , Cells, Cultured , Male , Cell Proliferation/drug effects , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use
12.
Nutrients ; 16(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38732614

ABSTRACT

The incidence of ulcerative colitis (UC) is increasing annually, and UC has a serious impact on patients' lives. Polysaccharides have gained attention as potential drug candidates for treating ulcerative colitis (UC) in recent years. Huaier (Trametes robiniophila Murr) is a fungus that has been used clinically for more than 1000 years, and its bioactive polysaccharide components have been reported to possess immunomodulatory effects, antitumour potential, and renoprotective effects. In this study, we aimed to examine the protective effects and mechanisms of Huaier polysaccharide (HP) against UC. Based on the H2O2-induced oxidative stress model in HT-29 cells and the dextran sulphate sodium salt (DSS)-induced UC model, we demonstrated that Huaier polysaccharides significantly alleviated DSS-induced colitis (weight loss, elevated disease activity index (DAI) scores, and colonic shortening). In addition, HP inhibited oxidative stress and inflammation and alleviated DSS-induced intestinal barrier damage. It also significantly promoted the expression of the mucin Muc2. Furthermore, HP reduced the abundance of harmful bacteria Escherichia-Shigella and promoted the abundance of beneficial bacteria Muribaculaceae_unclassified, Anaerotruncus, and Ruminococcaceae_unclassified to regulate the intestinal flora disturbance caused by DSS. Nontargeted metabolomics revealed that HP intervention would modulate metabolism by promoting levels of 3-hydroxybutyric acid, phosphatidylcholine (PC), and phosphatidylethanolamine (PE). These results demonstrated that HP had the ability to mitigate DSS-induced UC by suppressing oxidative stress and inflammation, maintaining the intestinal barrier, and modulating the intestinal flora. These findings will expand our knowledge of how HP functions and offer a theoretical foundation for using HP as a potential prebiotic to prevent UC.


Subject(s)
Dextran Sulfate , Gastrointestinal Microbiome , Oxidative Stress , Polysaccharides , Gastrointestinal Microbiome/drug effects , Oxidative Stress/drug effects , Animals , Humans , Polysaccharides/pharmacology , Mice , Male , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/microbiology , Disease Models, Animal , Inflammation/drug therapy , Intestinal Mucosa/drug effects , Intestinal Mucosa/metabolism , Intestinal Mucosa/microbiology , HT29 Cells , Mice, Inbred C57BL , Colitis/chemically induced , Colitis/drug therapy
13.
Braz J Med Biol Res ; 57: e13379, 2024.
Article in English | MEDLINE | ID: mdl-38808888

ABSTRACT

Ulcerative colitis (UC) is a difficult intestinal disease characterized by inflammation, and its mechanism is complex and diverse. Angiopoietin-like protein 2 (ANGPT2) plays an important regulatory role in inflammatory diseases. However, the role of ANGPT2 in UC has not been reported so far. After exploring the expression level of ANGPT2 in serum of UC patients, the reaction mechanism of ANGPT2 was investigated in dextran sodium sulfate (DSS)-induced UC mice. After ANGPT2 expression was suppressed, the clinical symptoms and pathological changes of UC mice were detected. Colonic infiltration, oxidative stress, and colonic mucosal barrier in UC mice were evaluated utilizing immunohistochemistry, immunofluorescence, and related kits. Finally, western blot was applied for the estimation of mTOR signaling pathway and NLRP3 inflammasome-related proteins. ANGPT2 silencing improved clinical symptoms and pathological changes, alleviated colonic inflammatory infiltration and oxidative stress, and maintained the colonic mucosal barrier in DSS-induced UC mice. The regulatory effect of ANGPT2 on UC disease might occur by regulating the mTOR signaling pathway and thus affecting autophagy-mediated NLRP3 inflammasome inactivation. ANGPT2 silencing alleviated UC by regulating autophagy-mediated NLRP3 inflammasome inactivation via the mTOR signaling pathway.


Subject(s)
Autophagy , Colitis, Ulcerative , Disease Models, Animal , Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , Signal Transduction , TOR Serine-Threonine Kinases , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/pathology , Colitis, Ulcerative/metabolism , Animals , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Autophagy/physiology , TOR Serine-Threonine Kinases/metabolism , Mice , Inflammasomes/metabolism , Humans , Male , Angiopoietin-Like Protein 2 , Mice, Inbred C57BL , Female , Angiopoietin-2/metabolism , Dextran Sulfate , Oxidative Stress , Immunohistochemistry , Blotting, Western
14.
Eur J Med Chem ; 272: 116426, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38718622

ABSTRACT

Pyruvate kinase isoform 2 (PKM2) is closely related to the regulation of Th17/Treg balance, which is considered to be an effective strategy for UC therapy. Parthenolide (PTL), a natural product, only possesses moderate PKM2-activating activity. Thus, five series of PTL derivatives are designed and synthesized to improve PKM2-activated activities and anti-UC abilities. Through detailed structure optimization, B4 demonstrates potent T-cell anti-proliferation activity (IC50 = 0.43 µM) and excellent PKM2-activated ability (AC50 = 0.144 µM). Subsequently, through mass spectrometry analysis, B4 is identified to interact with Cys423 of PKM2 via covalent-bond. Molecular docking and molecular dynamic simulation results reveal that the trifluoromethoxy of B4 forms a stronger hydrophobic interaction with Ala401, Pro402, and Ile403. In addition, B4 has a significant effect only on Th17 cell differentiation, thereby regulating the Th17/Treg balance. The effect of B4 on Th17/Treg imbalance can be attributed to inhibition of PKM2 dimer translocation and suppression of glucose metabolism. Finally, B4 can notably ameliorate the symptoms of dextran sulfate sodium (DSS)-induced colitis in mouse model in vivo. Thus, B4 is confirmed as a potent PKM2 activator, and has the potential to develop as a novel anti-UC agent.


Subject(s)
Colitis, Ulcerative , Drug Design , Lactones , Pyruvate Kinase , Sesquiterpenes , Sesquiterpenes/pharmacology , Sesquiterpenes/chemistry , Sesquiterpenes/chemical synthesis , Animals , Mice , Pyruvate Kinase/metabolism , Pyruvate Kinase/antagonists & inhibitors , Lactones/pharmacology , Lactones/chemistry , Lactones/chemical synthesis , Structure-Activity Relationship , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/chemically induced , Humans , Molecular Structure , Cell Proliferation/drug effects , Mice, Inbred C57BL , Dose-Response Relationship, Drug , Male , Dextran Sulfate , Molecular Docking Simulation , Thyroid Hormones/metabolism , Th17 Cells/drug effects , Thyroid Hormone-Binding Proteins
15.
Molecules ; 29(9)2024 May 06.
Article in English | MEDLINE | ID: mdl-38731645

ABSTRACT

Ulcerative colitis (UC), as a chronic inflammatory disease, presents a global public health threat. However, the mechanism of Poria cocos (PC) in treating UC remains unclear. Here, LC-MS/MS was carried out to identify the components of PC. The protective effect of PC against UC was evaluated by disease activity index (DAI), colon length and histological analysis in dextran sulfate sodium (DSS)-induced UC mice. ELISA, qPCR, and Western blot tests were conducted to assess the inflammatory state. Western blotting and immunohistochemistry techniques were employed to evaluate the expression of tight junction proteins. The sequencing of 16S rRNA was utilized for the analysis of gut microbiota regulation. The results showed that a total of fifty-two nutrients and active components were identified in PC. After treatment, PC significantly alleviated UC-associated symptoms including body weight loss, shortened colon, an increase in DAI score, histopathologic lesions. PC also reduced the levels of inflammatory cytokines TNF-α, IL-6, and IL-1ß, as evidenced by the suppressed NF-κB pathway, restored the tight junction proteins ZO-1 and Claudin-1 in the colon, and promoted the diversity and abundance of beneficial gut microbiota. Collectively, these findings suggest that PC ameliorates colitis symptoms through the reduction in NF-κB signaling activation to mitigate inflammatory damage, thus repairing the intestinal barrier, and regulating the gut microbiota.


Subject(s)
Colitis, Ulcerative , Dextran Sulfate , Gastrointestinal Microbiome , NF-kappa B , Signal Transduction , Wolfiporia , Animals , Gastrointestinal Microbiome/drug effects , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/metabolism , Colitis, Ulcerative/microbiology , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/pathology , NF-kappa B/metabolism , Mice , Signal Transduction/drug effects , Wolfiporia/chemistry , Male , Disease Models, Animal , Cytokines/metabolism , Colon/pathology , Colon/metabolism , Colon/drug effects , Colon/microbiology , Tight Junction Proteins/metabolism , Mice, Inbred C57BL
16.
Nutrients ; 16(9)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38732552

ABSTRACT

Ulcerative colitis (UC) is a chronic intestinal ailment which cannot be completely cured. The occurrence of UC has been on the rise in recent years, which is highly detrimental to patients. The effectiveness of conventional drug treatment is limited. The long-term usage of these agents can lead to substantial adverse effects. Therefore, the development of a safe and efficient dietary supplement is important for the prevention of UC. Echinacea purpurea polysaccharide (EPP) is one of the main bioactive substances in Echinacea purpurea. EPP has many favorable effects, such as antioxidative, anti-inflammatory, and antitumor effects. However, whether EPP can prevent or alleviate UC is still unclear. This study aims to analyze the effect and mechanism of EPP on UC in mice using a 3% dextran sulfate sodium (DSS)-induced UC model. The results showed that dietary supplementation with 200 mg/kg EPP significantly alleviated the shortening of colon length, weight loss, and histopathological damage in DSS-induced colitis mice. Mechanistically, EPP significantly inhibits the activation of the TLR4/NF-κB pathway and preserves the intestinal mechanical barrier integrity by enhancing the expression of claudin-1, ZO-1, and occludin and reducing the loss of goblet cells. Additionally, 16S rRNA sequencing revealed that EPP intervention reduced the abundance of Bacteroides, Escherichia-Shigella, and Klebsiella; the abundance of Lactobacillus increased. The results of nontargeted metabonomics showed that EPP reshaped metabolism. In this study, we clarified the effect of EPP on UC, revealed the potential function of EPP, and supported the use of polysaccharide dietary supplements for UC prevention.


Subject(s)
Colitis, Ulcerative , Dextran Sulfate , Echinacea , Gastrointestinal Microbiome , NF-kappa B , Polysaccharides , Toll-Like Receptor 4 , Animals , Male , Mice , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/microbiology , Colon/drug effects , Colon/pathology , Colon/metabolism , Dietary Supplements , Disease Models, Animal , Echinacea/chemistry , Gastrointestinal Microbiome/drug effects , Mice, Inbred C57BL , NF-kappa B/metabolism , Polysaccharides/pharmacology , Signal Transduction/drug effects , Toll-Like Receptor 4/metabolism
17.
Biosci Rep ; 44(5)2024 May 29.
Article in English | MEDLINE | ID: mdl-38699907

ABSTRACT

Asiatic acid (AA) is a polyphenolic compound with potent antioxidative and anti-inflammatory activities that make it a potential choice to attenuate inflammation and oxidative insults associated with ulcerative colitis (UC). Hence, the present study aimed to evaluate if AA can attenuate molecular, biochemical, and histological alterations in the acetic acid-induced UC model in rats. To perform the study, five groups were applied, including the control, acetic acid-induced UC, UC-treated with 40 mg/kg aminosalicylate (5-ASA), UC-treated with 20 mg/kg AA, and UC-treated with 40 mg/kg AA. Levels of different markers of inflammation, oxidative stress, and apoptosis were studied along with histological approaches. The induction of UC increased the levels of lipid peroxidation (LPO) and nitric oxide (NO). Additionally, the nuclear factor erythroid 2-related factor 2 (Nrf2) and its downstream antioxidant proteins [catalase (CAT), superoxide dismutase (SOD), reduced glutathione (GSH), glutathione peroxidase (GPx), and glutathione reductase (GR)] were down-regulated in the colon tissue. Moreover, the inflammatory mediators [myeloperoxidase (MPO), monocyte chemotactic protein 1 (MCP1), prostaglandin E2 (PGE2), nuclear factor-kappa B (NF-κB), tumor necrosis factor-α (TNF-α), and interleukin-1ß (IL-1ß)] were increased in the colon tissue after the induction of UC. Notably, an apoptotic response was developed, as demonstrated by the increased caspase-3 and Bax and decreased Bcl2. Interestingly, AA administration at both doses lessened the molecular, biochemical, and histopathological changes following the induction in the colon tissue of UC. In conclusion, AA could improve the antioxidative status and attenuate the inflammatory and apoptotic challenges associated with UC.


Subject(s)
Apoptosis , Colitis, Ulcerative , Oxidative Stress , Pentacyclic Triterpenes , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/pathology , Colitis, Ulcerative/metabolism , Animals , Pentacyclic Triterpenes/pharmacology , Rats , Oxidative Stress/drug effects , Male , Apoptosis/drug effects , Antioxidants/pharmacology , Colon/pathology , Colon/drug effects , Colon/metabolism , Lipid Peroxidation/drug effects , Disease Models, Animal , Anti-Inflammatory Agents/pharmacology , NF-E2-Related Factor 2/metabolism , Rats, Wistar
18.
PLoS One ; 19(4): e0301660, 2024.
Article in English | MEDLINE | ID: mdl-38626146

ABSTRACT

BACKGROUND: Ulcerative colitis (UC) is an inflammatory disease of the digestive tract. Rauwolfia polysaccharide (Rau) has therapeutic effects on colitis in mice, but its mechanism of action needs to be further clarified. In the study, we explored the effect of Rau on the UC cell model induced by Lipopolysaccharide (LPS). METHODS: We constructed a UC cell model by stimulating HT-29 cells with LPS. Dextran sodium sulfate (DSS) was used to induce mice to construct an animal model of UC. Subsequently, we performed Rau administration on the UC cell model. Then, the therapeutic effect of Rau on UC cell model and was validated through methods such as Cell Counting Kit-8 (CCK8), Muse, Quantitative real­time polymerase chain reaction (RT-qPCR), Western blotting, and Enzyme-linked immunosorbent assay (ELISA). RESULTS: The results showed that Rau can promote the proliferation and inhibit the apoptosis of the HT-29 cells-induced by LPS. Moreover, we observed that Rau can inhibit the expression of NOS2/JAK2/STAT3 in LPS-induced HT-29 cells. To further explore the role of NOS2 in UC progression, we used siRNA technology to knock down NOS2 and search for its mechanism in UC. The results illustrated that NOS2 knockdown can promote proliferation and inhibit the apoptosis of LPS-induced HT-29 cells by JAK2/STAT3 pathway. In addition, in vitro and in vivo experiments, we observed that the activation of the JAK2/STAT3 pathway can inhibit the effect of Rau on DSS-induced UC model. CONCLUSION: In short, Rauwolfia polysaccharide can inhibit the progress of ulcerative colitis through NOS2-mediated JAK2/STAT3 pathway. This study provides a theoretical clue for the treatment of UC by Rau.


Subject(s)
Alkaloids , Colitis, Ulcerative , Colitis , Rauwolfia , Animals , Mice , Alkaloids/pharmacology , Colitis/metabolism , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/genetics , Dextran Sulfate/toxicity , Disease Models, Animal , Lipopolysaccharides/pharmacology , Polysaccharides/metabolism
19.
Zhongguo Zhen Jiu ; 44(4): 441-448, 2024 Apr 12.
Article in English, Chinese | MEDLINE | ID: mdl-38621732

ABSTRACT

OBJECTIVES: To observe the effects of electroacupuncture (EA) with "intestinal disease prescription" on the intestinal mucosal barrier and NLRP3 inflammasome in rats with dextran sulfate sodium (DSS)-induced acute ulcerative colitis (UC), and explore the underlying mechanism of EA with "intestinal disease prescription" for the treatment of UC. METHODS: Thirty-two healthy male SPF-grade SD rats were randomly divided into a blank group, a model group, a medication group, and an EA group, with 8 rats in each group. Except for the blank group, the UC model was established by administering 5% DSS solution for 7 days. After modeling, the rats in the medication group were treated with mesalazine suspension (200 mg/kg) by gavage, while the rats in the EA group were treated with acupuncture at bilateral "Tianshu" (ST 25), "Shangjuxu" (ST 37) and "Zhongwan" (CV 12), with the ipsilateral "Tianshu" (ST 25) and "Shangjuxu" (ST 37) connected to the electrodes of the EA instrument, using disperse-dense wave, with a frequency of 10 Hz/50 Hz, and each intervention lasted for 20 minutes. Both interventions were performed once daily for 3 days. The general conditions of rats were observed daily. After intervention, the disease activity index (DAI) score was calculated; colon tissue morphology was observed using HE staining; serum levels of pro-inflammatory cytokines (interleukin [IL]-18, IL-1ß) were measured by ELISA; protein expression of NLRP3, apoptosis-associated speck-like protein containing a CARD (ASC), and Caspase-1 in colon tissues was detected by Western blot; positive expression of zonula occludens-1 (ZO-1) and Occludin in colon tissues was examined by immunofluorescence. RESULTS: Compared with the blank group, the rats in the model group exhibited poor general conditions, slow body weight gain, shortened colon length (P<0.01), increased DAI score and spleen index (P<0.01), elevated serum IL-18 and IL-1ß levels, and increased protein expression of NLRP3, ASC, and Caspase-1 in colon tissues (P<0.01), along with decreased positive expression of ZO-1 and Occludin in colon tissues (P<0.01). Compared with the model group, the rats in the medication group and the EA group exhibited improved general conditions, accelerated body weight gain, increased colon length (P<0.05), reduced DAI scores and spleen indexes (P<0.05), decreased serum IL-18 and IL-1ß levels, and lower protein expression of NLRP3, ASC and Caspase-1 in colon tissues (P<0.05), as well as increased positive expression of ZO-1 and Occludin in colon tissues (P<0.05). There were no significant differences in the above indexes between the medication group and the EA group (P>0.05). Compared with the blank group, the rats in the model group exhibited disrupted colon mucosal morphology, disordered gland arrangement, and atrophy of crypts, along with significant inflammatory cell infiltration. Compared with the model group, the rats in both the medication group and the EA group showed relatively intact colon mucosal morphology, with restored and improved gland and crypt structures, and reduced inflammatory cell infiltration. CONCLUSIONS: EA with "intestinal disease prescription" has a significant therapeutic effect on DSS-induced UC, possibly by regulating the expression of NLRP3 inflammasome and proteins related to the intestinal mucosal barrier, thereby alleviating symptoms of ulcerative colitis.


Subject(s)
Colitis, Ulcerative , Electroacupuncture , Rats , Male , Animals , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/therapy , Inflammasomes/adverse effects , Interleukin-18 , Rats, Sprague-Dawley , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Occludin , Body Weight , Caspases/adverse effects
20.
J Ethnopharmacol ; 328: 118131, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38565408

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Sarcandra glabra is officially named Zhong Jie Feng as a traditional medicine. In the nationality of Yao and Zhuang, it has been used to treat digestive diseases like stomachache and dysentery. Similarly, in Dai nationality, it has been used to treat intestinal diseases like gastric ulcers. However, the effect and mechanism of S. glabra on experimental ulcerative colitis (UC) are known. AIM OF STUDY: The main objective of this study was to investigate the effect and mechanism of S. glabra on experimental UC. MATERIALS AND METHODS: The chemical components in the water extract of S. glabra (ZJF) were analyzed by UPLC-MS/MS method. The HCoEpiC cell line was used to assess the promotive effect on intestinal proliferation and restitution. RAW264.7 cells were used to assess the in vitro anti-inflammatory effect of ZJF. The 3% DSS-induced colitis model was used to evaluate the in vivo effect of ZJF (4.5 g/kg and 9.0 g/kg). Mesalazine (0.5 g/kg) was used as the positive drug. ELISA, RT-qPCR, Western blot, and multiplex immunohistochemical experiments were used to test gene levels in the colon tissue. The H&E staining method was used to monitor the pathological changes of colon tissue. TUNEL assay kit was used to detect apoptosis of epithelial colonic cells. RESULTS: ZJF could alleviate the DSS-caused colitis in colon tissues, showing a comparative effect to that of the positive drug mesalazine. Mechanism study indicated that ZJF could promote normal colonic HCoEpiC cell proliferation and restitution, inhibit overexpression of pro-inflammatory cytokines, restore the M1/M2 ratio, decrease epithelial colonic cell apoptosis, rescue tight junction protein levels, and modulate IL-17/Notch1/FoxP3 pathway to treat experimental UC. CONCLUSION: Our results indicated that S. glabra can promote intestinal cell restitution, balance immune response, and modulate IL-17/Notch1/FoxP3 pathway to treat experimental UC.


Subject(s)
Colitis, Ulcerative , Colitis , Animals , Mice , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/drug therapy , Mesalamine/adverse effects , Chromatography, Liquid , Interleukin-17/metabolism , Tandem Mass Spectrometry , Colon , Colitis/chemically induced , Colitis/drug therapy , Colitis/metabolism , Transcription Factors/metabolism , Dextran Sulfate/toxicity , Disease Models, Animal , Mice, Inbred C57BL
SELECTION OF CITATIONS
SEARCH DETAIL
...